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Exceptional points (EPs) are degeneracies in open wave systems where at least two energy levels and their 
corresponding eigenstates coalesce. We report evidence of the existence of EPs in 3D plasmonic 
nanostructures. The systems are composed of coupled plasmonic nanoresonators and can be judiciously and 
systematically driven to EPs by controlling symmetry-compatible modes via their near-field and far-field 
interactions. The proposed platform opens the way to the investigation of EPs for enhanced light-matter 
interactions and applications in communication, sensing and imaging. 

 
Most physical systems are open in nature, i.e. energy 
flows in and out and is exchanged with the environment as 
radiation and absorption which is in contrast with closed 
systems where energy stays put and is conserved. Closed 
systems benefit from the well-established theory for 
conservative systems, i.e. Hermitian systems. A 
remarkable difference is that in Hermitian systems, 
eigenmodes do not decay and their corresponding 
eigenvalues are real whereas in non-hermitian systems 
eigenmodes do decay and consequently their 
corresponding eigenvalues are complex [1]. Over the last 
decade many have sought to bridge the gap between 
physics of open and closed systems. This renewed 
attention has underlined one of the fundamental 
differences between Hermitian and non-Hermitian 
systems: their singularities. In Hermitian systems, modes 
couple to induce singularities called diabolical points 
(DPs), where only the respective eigenvalues are equal 
whereas for non-Hermitian systems modes couple to 
induce singularities called exceptional points (EPs), where 
both eigenvalues and eigenvectors coalesce [2-3].  
In conjunction with theoretical inquiries, recent 
experimental work has given a glimpse of the many 
promises that an increased understanding of open systems 
holds. For instance, there has been ample effort in 
realizing novel photonic devices in the realm of lasers 
such as: PT-symmetric lasers [4-5], lasers operating near 
EPs [6], Bound State in Continuum lasers [7-9]. 
Concurrently, there has also been theoretical progress with 
strictly passive devices exploiting EPs for a superior 
sensing scheme that offers enhanced sensitivity [10-11]. 
Thus far, EPs have been experimentally studied in a 
variety of physical systems including 2D microwave 
cavities [12], electronic circuits [13], 2D chaotic optical 
microcavities [14], and coupled atom-cavity systems [15]. 
However, to date, exceptional points have not been 

realized in a fully three-dimensional plasmonic system. 
This is of importance because it is highly desirable to have 
a sensitive sub-wavelength sensing system compatible 
with biologically relevant substances. Plasmons resulting 
from the interaction between photons and free electrons 
are ideally suited for biological sensing given the field 
enhancement and resonance sensitivity to environment.  
Here, we report the first evidence of the existence of EPs 
in an open plasmonic system made of coupled plasmonic 
nanoresonators. We show that the control of the near-field 
and far-field interactions lead to a systematic construction 
of EPs. We subsequently propose a general class of 
plasmonic architecture exhibiting designer exceptional 
points. 
We consider the plasmonic system based on three coupled 
nanobars, depicted in Figure 1(a). The dimensions of an 
individual gold nanobar are chosen such that the 
fundamental resonance falls in the optical domain at a 
frequency of 193.5 THz (1.55 µm). Placing these gold 
nanobars in close proximity couples their individual 
plasmon modes into hybrid modes as shown in Figure 1(b) 
[16]. Here, the instantaneous charge profiles of the first 
three modes are depicted. Intrinsically, the system has 
reflection symmetry with respect to the xy-plane that 
bisects the central nanobar and its modes are thus either 
even or odd. In our case, modes A and C have an even 
symmetry whereas Mode B has an odd symmetry. Mode 
A, with eigenfrequency ωA, has charges in all the bars 
oscillating in-phase and mode C, with eigenfrequency ωC, 
has charges in all bars oscillating out-of-phase. Mode B, 
ωB, has no charges in the central bar as seen in Figure 
1(b). Therefore, mode A resides at a higher energy (higher 
frequency) due to all repelling Coulomb interactions and 
mode C resides at a lower energy (lower frequency) as a 
result of Coulomb interactions. Lastly, mode B resides 
between mode A and mode C on the energy scale.  
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FIG. 1. (a) Physical setup of a unit cell with three paired gold 
bars, with the middle one separated by a variable distance (dx, 
dy, dz) with respect to the other two. The dimensions of each 
nanobar are given by L (450 nm), W (50 nm), and T (40 nm). 
The periodicity in x and y-directions are given by Px (800 nm) 
and Py (400 nm). The dielectric (SiO2) spacer is shown in blue. 
The gold bars are described using a Drude model with a plasma 
frequency (ωp=1.367x1016 rad/sec) and collision frequency 
(ωc=6.478x1013 rad/sec) [17].  (b) Energy-level diagram 
describing the plasmon hybridization in the gold-bar system 
with three modes: ωA, ωB, ωC where ωA > ωB > ωC for dx=0. ω0 
corresponds to the resonance of an individual bar. 

The formation of an EP can be understood as a specific 
case of mode coupling and can thus be described by 
Coupled-Mode-Theory (CMT). In this framework, mode 
coupling is described by a non-Hermitian effective 
Hamiltonian matrix [18-19]. ۶܍ ൌ ۶  ݆L  ݆ 12   ற܄܄

(1) 

Where H0 is a Hermitian Hamiltonian matrix that 
describes the system without coupling (closed system). 
The second term, jL, in the equation represents 
extraneous losses. In our case, this term accounts for 
plasmonic losses. The third term, VV†, describes the 
coupling with the environment. Hence Heff describes the 
full system (open system). Here, the eigenmodes of the 
system are represented by the complex eigenvalues and 
eigenvectors of the effective Hamiltonian. Experimentally, 
however, these eigenvalues are not directly available. 
Nevertheless, we can measure the scattering spectra and 
extract eigenvalues as they directly correspond to the 
complex poles of the scattering spectra [20-21].  
An EP is a singularity of the effective Hamiltonian, which 
arises due to its non-Hermitian nature, at which two 
modes coalesce [2]. To achieve an EP, both the real and 

imaginary parts of the eigenvalues (resonance frequency 
and linewidth) need to coincide simultaneously. For an EP 
of order 2, such coalescence is dependent on at least two 
physical parameters [3]. A method is thus needed to select 
among the geometrical parameters of the system 
(dx,dy,dz). 
For the three-nanobar setup portrayed in Fig. 1, a closed 
system Hamiltonian can be used for an intuitive 
understanding of the mode behavior as described below.  ۶ ൌ ൭ ߱ ߢ ߢଶߢ ߱ ଶߢߢ ߢ ߱ ൱ (2) 

 

Here, ω0 is the uncoupled resonance of an individual 
nanobar. κn and κn2 are the nearest and next-to-nearest 
neighbor coupling constants acting between two 
individual nanobars. We note that this matrix is 
bisymmetric and hence has eigenvectors that are either 
symmetric (even) or skew-symmetric (odd) [23]. For a 
3x3 H0, there are always two even (modes A and C) and 
one odd (mode B) eigenvectors. For the initial three-
nanobar setup (dx=0, dy=0, dz=0), κn is much larger than 
κn2 and the Hamiltonian is almost tridiagonal. This is not 
favorable for coalescence as even and odd modes are then 
interlaced. Hence, we need to reduce κn with respect to κn2 
to move away from a diagonally dominant Hamiltonian 
(1st constraint). Besides, since even and odd modes do not 
couple, we are only interested in the coalescence of the 
two even modes. Therefore, we seek a parameter that does 
not introduce coupling between even and odd modes, i.e. 
does not break the system’s mirror symmetry (2nd 
constraint). Both constraints can be met by shifting the 
middle bar along the x-direction [21-22].  
Since plasmonic losses in these identical nanobars are 
represented by a scalar matrix, the losses only contribute 
an overall complex shift. Moreover, the coupling to the 
environment adds to the imaginary part of the eigenvalues. 

Here, xL and xR are the left and right eigenvectors 
respectively. For a sufficient shift, dx and dz, mode A and 
mode C become degenerate (complex eigenvalue). 
 

ߣ ൌ ߱  ߛ݆ െ ݆ 12 L࢞ L࢞R࢞ற܄܄ ሺ۶  ݆Lሻ࢞R  ݅ א ۤܽ, ܾ,  (3) ۥܿ
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FIG. 2. Resonance information in the form of complex poles 
extracted from scattering parameters and plotted as a function of 
shift ‘dx’ (middle-bar) for px=800 nm and dz=60 nm. (a) 
Resonance frequency of modes A (○), B (Δ), C (□) and higher 
order mode D (◊) with varying ‘dx’ and their corresponding (b) 
linewidths. There is observable coupling between neighboring 
modes that share a symmetry, i.e. mode A with C at dx=350 nm 
and mode A with D at dx=80 nm. Mode B is unperturbed by 
both the shift and neighboring modes due to its symmetry. 
Coupling of modes A and C is of interest for this parameter set 
as the resonance frequency cross with ‘dx’ and linewidths 
experience an avoided resonance crossing. 
 
We now numerically examine the effect of shifting the 
middle bar in the x-direction on all three modes of the 
coupled plasmonic system (see Figure 2). As the middle 
bar is progressively displaced, the repelling forces 
associated with mode A weaken to become attractive. 
Similarly, the attractive forces of mode C weaken to 
become repulsive. Lastly, the Coulomb forces associated 
with mode B remain constant with shift of the central bar 
as there is no field present in this bar. This behavior is 
noticeable in the resonances of this system as seen in 
Figure 2(a). Mode A moves to lower frequencies with 
shift and mode C moves to higher frequencies with shift 
whereas mode B remains unperturbed. Due to the 
presence of a higher-order resonance (mode D), also with 
an even symmetry, mode A does not monotonously 
decrease with shift. For values of ‘dx’ below 80 nm, mode 
A increases in frequency with shift due to coupling to 
mode D. As evident from the coupling between even 
modes A and D around dx=100 nm and between modes A 
and C at dx=340 nm, neighboring resonances of shared 
symmetry couple to each other. Having an odd symmetry, 
mode B never couples to any of the even modes. The 
coupling between modes is further evident in their 
linewidth behavior as seen in Figure 2b. As modes A and 
D are avoided in frequency at dx=80 nm, their respective 
linewidths cross. Similarly, modes A and C cross in 
frequency at dx=340 nm and their linewidths exhibit an 
avoided resonance crossing. In terms of the near-field 
coupling terms, at no shift, i.e. dx=0, κn is the dominant 
coupling term. With an increase in dx, κn weakens with 
respect to κn2. It is precisely this interplay that forces the 
eigenvalues associated with modes A and C to converge 
towards one another, which is mandatory for engineering 

an EP. Note that the present system is not exactly at an 
EP.  

In the close vicinity of an order-2 EP, the effective 
Hamiltonian of this system can be written in its reduced 
form as a 2x2 matrix considering only the two concerned 
even modes [2].  ۶ ൌ ߱ 00 ߱൨  ݆ ቈ ߛ ඥߛߛඥߛߛ ߛ  

(4) 

As stated earlier, realization of an EP via two modes 
requires at least two physical parameters. The two 
parameters used for the above system to reach an EP are a 
shift, dx, in the central bar and the inter-spacing between 
nanobars, dz, in the z-direction where both parameters 
influence κn and κn2. By performing detailed full-wave 
finite element simulations, we present here a numerical 
proof of an EP in our nanobars system (see Figure 3). An 
EP occurs at a frequency of ~212 THz for a 345 nm lateral 
shift of the middle bar and an inter-particle spacing close 
to 61 nm. For dz=61 nm, the two resonance frequencies 
(ωA, ωC) cross each other with increasing shift, dx, and the 
linewidths (γA, γC) avoid each other as seen in Fig. 3(a). 
Conversely, for dz=61.5 nm, the linewidths cross and 
frequencies are avoided as seen in Fig. 3(b). For a value 
between 61 and 61.5 nm, there is a definite occurrence of 
an EP singularity where both resonance frequencies and 
linewidths coalesce. 

 
FIG. 3. Resonances approaching an exceptional point (black ■) 
plotted in the complex plane (γ+jω) for modes A (○) and C (□) 
as a function of ‘dx’ (300 to 400 nm) for two different values of 
inter-bar spacing, dz=61 and 61.5 nm (increasing ‘dx’ indicated 
by arrows). (a) For dz=61 nm, the resonance frequencies of 
modes A and C cross as the center bar is shifted (dx) but the 
linewidths are avoided whereas (b) for dz=61.5 nm, the 
linewidths cross and the resonance frequencies are avoided. An 
EP singularity occurs at a value of ‘dz’ between 61 and 61.5 nm 
for a dx of ~345 nm where both resonance frequencies and 
linewidths coalesce. 

Another indication of an occurrence of an EP lies with the 
complex residues of the corresponding complex poles 
associated with the resonances [24, 25]. In the case of the 
three-nanobar system, both the real and imaginary 
components of the residues diverge as one approaches the 
EP (see Figure 4(a),(b)). As the EP is approached from the 
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left, or increasing dx, the real parts diverge and similarly 
the imaginary parts diverge as the EP is approached from 
the right. However, the sum of the residues for both the 
real and imaginary remain finite (see Figure 4(c), (d)) 
[26].  

 
FIG. 4. Residues of the corresponding modes A (○) and C (□) 
as a function of shift, dx, for dz=61 nm. (a) Real and (b) 
Imaginary parts of the residues diverging when approaching the 
EP (dx=345 nm). Sum of the (c) real and (d) imaginary parts of 
the residues which remain finite.  

Furthermore, an EP is not exclusive to the three-bar 
system. An EP can also be realized in systems with more 
plasmonic resonators in a given unit cell. Here, we address 
the general case of having an odd number of bars 
(N=2n+1) in a unit cell and once again guided by an NxN 
closed system Hamiltonian. In general, for such a matrix 
of order N, there are ܰڿ 2⁄ ܰہ even and ۀ 2⁄  odd ۂ
eigenvectors. These eigenvectors are alternately even and 
odd with eigenvalues arranged in descending order given 
that the eigenvalues are distinct. The resulting 
eigenvectors of eigenvalues (see Eq. 3) can be expressed 
as ሺܝ ߙ ۸ܝሻT   (even eigenvectors) ሺܝ 0 െ۸ܝሻT   (odd eigenvectors) 

(5) 

Here, J is the exchange matrix [23]. Note for an odd 
eigenvector, there is no excitation or field in the central 
bar as was the case for Mode B earlier. 
As an example, we take the case with five coupled bars 
(n=2) described by 5x5 Hamiltonian, H0, written as 
follows when all bars are perfectly aligned in the z-
direction, i.e. dx=0. 

 ۶ ൌ ۈۉ
ۇ ߱ ߢߢ ߱ ଶߢ 0 ߢ0 ଶߢ ଶߢ0 0ߢ ଶ0ߢ 0 ߱ ߢ ߢଶߢ ߱ ଶߢߢ ߢ ߱ ۋی

ۊ
 

(6) 

Here, we can neglect the coupling terms κn3 and κn4 as 
they are simply dominated by κn and κn2. Similar to the 
three-bar case, we must choose physical parameters to 
modify so as to weaken κn and strengthen κn2. In order to 

retain the bisymmetric nature of the Hamiltonian, we note 
that all nearest-neighbor and next-to-nearest-neighbor 
coupling terms need to be the same as you modify the 
geometry of the system in accordance with the two 
constrains outlined earlier. Therefore, we concurrently 
shift the top, middle and the bottom bars in the x-direction 
which satisfies this condition and appropriately modifies 
κn and κn2. For an order N=5, there are three even and two 
odd eigenvectors. For an EP, we focus our attention on 
interaction between two of the even modes. The two 
parameters are still the inter-spacing, dz, along the z-
direction and shift, dx (see Figure 5). Similar to the three-
bar case, we observe resonances crossing in frequency and 
an avoided crossing in linewidths as evidence of an EP. 
An EP occurs at a frequency of ~227 THz for a 345 nm 
lateral shift of the bars and an inter-particle spacing, dz, 
close to 42 nm. This approach is general and can be 
utilized to engineer an EP in coupled nanoresonator 
structures which can be physically realized [27]. 

 
FIG. 5. Realization of an exceptional point in a system with 5 
bars (2n+1 with n=2) with top, middle and bottom bars shifted 
by dx (300 to 400 nm) for dz=42 nm and 43 nm. Mode 1 (○) 
and Mode 2 (□): two modes of shared symmetry interact to form 
an EP (■) at a value of d between 42 and 43 nm for a dx of ~345 
nm.  (a) For dz=42 nm, the resonance frequencies of modes 1 
and 2 cross as the bars, indicated by arrows, are shifted (dx) but 
the linewidths are avoided whereas (b) for dz=43 nm, the 
linewidths cross and the resonance frequencies are avoided. 

We have demonstrated the existence of exceptional points 
in three dimensional systems of coupled plasmonic 
nanostructures. The EP is constructed by coalescing 
symmetry-compatible modes and its existence is further 
evident from the diverging complex residues in the 
vicinity of the EP singularity. A thorough discussion on 
the importance of mode symmetries for EPs was 
presented. 
The general approach to designing EPs in systems of 
coupled resonators proposed here can be used to construct 
EPs of higher order in physical systems where more than 
two modes coalesce. These ideas could be applied to other 
areas of wave physics such as acoustic and matter waves. 
We believe this work paves the way to the experimental 
observation of exceptional points in various physical 
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systems and will foster further research towards 
unprecedented sensing schemes. 
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