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Hybrid functionals mixing the exact exchange with (semi)local functionals to reinstall the missing
derivative discontinuity, have been successfully employed to predict band gaps (Eg) in bulk semi-
conductors. Here we show that traditional hybrid functionals with fixed fractions of exact exchange
do not perform significantly better than the most popular semilocal PBE-GGA functional for Eg

of semiconductor nanostructures, since their band-gap corrections are essentially size independent.
This is because they cannot respond properly to the variation in screening when size changes. They
merely predict constant band gap corrections to the PBE gaps in silicon nanowires (Si NWs) when
wire diameter reduces, instead of the dramatic increase predicted by many-body GW calculations.
Moreover, these hybrid functionals generate almost identical wave functions compared with PBE for
both bulk Si and Si NWs, whose overlaps with corresponding quasiparticle wave functions become
much smaller than 1 for narrow NWs.

PACS numbers: 73.21.Hb, 73.22.Dj, 78.67.Lt

I. INTRODUCTION

The Kohn-Sham (KS) formulation of density func-
tional theory (DFT)1,2 has become the dominating
method for predicting the ground-state properties of con-
densed matter systems, due largely to the simplicity
of the exchange-correlation (XC) energy in either lo-
cal density (LDA) or generalized gradient (GGA) ap-
proximations. However, lack of derivative discontinu-
ity with respect to the electron number3–5 within these
(semi)local approximations leads to severe underestima-
tion of fundamental band gaps (Eg)6–9. This problem
can be resolved in the framework of the many-body per-
turbation theory (MBPT)10,11 by solving the quasipar-
ticle (QP) equation.12 A practical scheme is the GW
approximation6–9, within which the self-energy (Σ) is ob-
tained from the Green function (G) and the dynamically
screened Coulomb interaction (W ) by

Σ = iGW. (1)

The GW method usually predicts reasonable band gaps
for a broad range of semiconductors and insulators13–17,
but computationally it is extremely demanding, espe-
cially for nanoscale materials.

An alternative remedy lies within the generalized KS
(GKS) scheme18–20, which reinstalls the missing deriva-
tive discontinuity using a single Slater determinant. The
GKS equation is written as:(

Ôs[{ψi}] + Vext(r) + VR(r)
)
ψj(r) = εjψj(r), (2)

where Ôs[{ψi}] is a nonlocal orbital-dependent opera-
tor depending on the choice of the Slater determinant
S[{ψi}], Vext(r) is the external potential, and VR(r) is
the remainder potential including XC, Hartree, and ki-
netic energy components not accounted for by Ôs[{ψi}].
It is generally hoped that the GKS band gap (EGKS

g )

produced by a judiciously chosen Ôs[{ψi}] will be con-
siderably closer to the QP band gap than EKS

g , because
Ôs[{ψi}] inherently exhibits the derivative discontinuity
due to its orbital dependence18,19,21,22. It is further ex-
pected that the nonlocal character of Ôs[{ψi}] would al-
low it to efficiently mimic the role played by Σ in MBPT
calculations of QP energies23,24.

The hybrid functional approach is a special case of
GKS18, in which Ôs[{ψi}] corresponds to the sum of
single-particle kinetic energy operator and an empirically
weighted mixture of approximate (semi)local exchange
and orbital-dependent exact Fock exchange. Popular hy-
brid functionals such as B3LYP25, PBE026, and HSE27,
can predict good band gaps for bulk materials28,29, and
thus they are considered as an interesting compromise
between KS and GW methods, because of their consid-
erable accuracy and relatively low computational cost.
Hybrids have been widely employed to investigate elec-
tronic structures of a variety of materials, including
nanostructures31–34; however, very few efforts30 have
been spent on justifying and examining their reliability
for nanoscale systems.

In this work, we demonstrate that hybrid functionals
with fixed fraction of exact exchange are not reliable to
predict band gaps for nanoscale materials at all. Even if
a hybrid functional could give a bulk band gap close to
the experimental value, this functional fails to improve
Eg over simple (semi)local functionals for low-dimension
materials with strong quantum confinement. In particu-
lar, as diameter of a silicon nanowire (Si NW) reduces,
hybrid functionals yield almost constant band gap cor-
rections, instead of the dramatic size-dependent variation
correctly captured by the GW approximation. They also
fail to improve the poor quality of the KS wave functions
(WFs) for the conduction states in Si NWs, thus we con-
clude that for electronic structure calculations these tra-
ditional hybrid functionals are no better than (semi)local
functionals, and their success in simple semiconductors is
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largely fortuitous.

II. FORMALISM AND COMPUTATIONAL
METHODS

The simplest formula of the XC energy, Ehyb
xc , of a

hybrid functional can be expressed as:

Ehyb
xc = bEHF

x + (1− b)ELDA/GGA
x + ELDA/GGA

c , (3)

where the parameter b indicates the portion of exact
Hartree-Fock (HF) exchange, EHF

x , while ELDA/GGA
x and

E
LDA/GGA
c respectively denote the exchange and correla-

tion energy for the (semi)local functional. Hybrid func-
tionals with different portions of exact exchange could
give the same ground-state total energy and density, with
different eigenvalues εj and eigenfunctions ψj(r)18.

Specifically, PBE026 was constructed by simply mix-
ing 25% exact exchange with 75% of PBE (Perdew-
Burke-Ernzerhof formulation of GGA35) exchange, while
B3LYP25 is a three-parameter hybrid functional:

EB3LYP
xc = 0.20EHF

x + 0.80ELDA
x + 0.72(EB88

x (4)
− ELDA

x ) + 0.81ELYP
c + 0.19ELDA

c ,

where EB88
x and ELYP

c are the Becke 88 [Ref. 36] and
Lee-Yang-Parr37 exchange functionals, respectively. HSE
is a range-separated hybrid functional, which splits the
exchange term into short-range (SR) and long-range (LR)
parts to avoid the demanding integrals over the long-
range part of exact exchange:

EHSE
xc = 0.25EHF

x,SR + 0.75EPBE
x,SR + EPBE

x,LR + EPBE
c . (5)

Though HSE contains the same portions of exact ex-
change and PBE exchange as PBE0 in its short-range
exchange part, excluding the long-range part of exact ex-
change causes a significantly different effective screening
environment for HSE relative to PBE027.

To put our verification regarding the reliability of
hybrid functionals for nanoscale materials in concrete
terms, we choose silicon nanowires (Si NWs38,39), one
of the most important semiconductor nanomaterials, to
study the gap scaling law as a function of quantum con-
finement. Si NWs are the prototypical one-dimensional
(1D) nanostructures, exhibiting both 1D extension along
the wire axis and 2D confinement perpendicularly. Previ-
ous calculations40–42 show that LDA and GGAs not only
underestimate Eg, but also leads to an increasing error
in Eg as wire diameter (d) decreases. Thus one cannot
use a single scissor shift to correct KS band gaps for Si
NWs with varying size. Here, we examine whether hybrid
functionals can lead to meaningful improvement over KS
in predicting Eg.

We investigated hydrogen-passivated Si NWs grown
along 〈100〉, 〈110〉 and 〈111〉 directions, with d up to 4.0
nm. All cylindrical wire models were constructed with-
out SiH3 on the surface. We performed structural relax-
ations using the plane-wave VASP package43 using the

PBE functional and adopting the projector augmenta-
tion wave method45. 10 Å of vacuum was added between
NWs, and a plane-wave cutoff of 400 eV and 16 k-points
along the wire axis were used to guarantee convergence
within 0.01 eV for the calculated band gaps. The hybrid
functional calculations were also carried out using the
VASP package and the PBE pseudopotentials. Such in-
consistency in pseudopotential only leads to a negligible
error (≤ 0.05 eV) in band gap for Si-based materials30.

Since accurately measuring band gaps of Si NWs re-
mains a major challenge and so far barely any exper-
imental data39 are available, we examine hybrid func-
tional results by comparing with the benchmarks set by
the highly accurate GW calculations, which have been
successfully carried out for Si NWs41,42,47,48 using pseu-
dopotentials. Our one-shot G0W0 calculations were per-
formed using the ABINIT code49 with pseudopotentials.
To overcome the long-range image interactions for NWs
due to the periodic boundary condition, we employed a
cylinder truncation scheme42,47,48,50, in which the trun-
cated Coulomb interaction for a wire oriented along the
z -axis is given by

Vc(r) =
e2

|r|
θ(ρ− ρc), (6)

where ρ is the cylindrical coordinate perpendicular to
the wire axis z, and ρc is the radial cutoff and has been
set to half of the distance between the neighboring wires
in our calculations. We adopted two plasmon-pole mod-
els (PPMs) of Hybertsen-Louie (HL51) and Godby-Needs
(GN52,53) to approximate the frequency dependence of
the dielectric function10 (ε), and previous studies56,59
have found that Eg obtained by numerically explicit inte-
gration using the contour-deformation approach lay be-
tween the results of HL and GN. We used PBE wavefunc-
tions and eigenenergies as input for evaluating the self-
energy, employed the norm-conserving pseudopotentials,
and set the energy cutoffs for the ground-state and the
GW -kernel calculations to be 14 Ha. We used the ex-
trapolar technique proposed by Bruneval and Gonze,57
and we found that convergence was achieved when the
number of conduction bands was set to twice of that for
valence bands in each Si NWs, using 16 k-points along
the wire axis.

III. RESULTS AND DISCUSSION

Our calculated Eg for bulk Si are 1.69, 1.71, 1.20 and
6.62 eV, using PBE0, B3LYP, HSE and HF, respectively,
agreeing well with previous benchmark calculations46.
Compared with PBE value of 0.59 eV, hybrid functionals
considerably exaggerate the bulk band gap. B3LYP and
PBE0 essentially predict the same band gap, much larger
than the corresponding HSE value. This is because of the
range-separation approach adopted in HSE, where the
exact exchange is short ranged and consequently leads to
the much reduced Eg compared to PBE0 and B3LYP.
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FIG. 1. (color online) Band gap versus Si NW diameter using
various functionals and the GW approximation for (a) 〈100〉,
(b) 〈110〉, and (c) 〈111〉.

The present GW band gaps for bulk Si are 1.27 and
1.22 eV using HL and GN PPMs, respectively, in good
agreement with previous works6,56,58. The GW band
gaps for Si NWs are plotted in Fig. 1, which clearly shows
that the two PPMs produce very close Eg for a given Si
NW. Despite the similarity, the GN band gap is always
slightly smaller than that of HL, and the difference in Eg

between HL and GN gradually increases from 0.05 eV for
bulk Si to about 0.2 eV for a 1nm NW. Recent works
have revealed that GN and HL PPMs could differ signif-
icantly from each other for strongly localized electronic
systems, but they behave similarly for highly delocalized
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FIG. 2. (color online) Band gap corrections (∆Eg = Eg −
EPBE

g ) for hybrid functionals (B3LYP, PBE0, and HSE) and
the GW approximation for (a) 〈100〉, (b) 〈110〉, and (c) 〈111〉.

systems54,56, because HL enforces the fulfillment of the f -
sum rule which tends to underestimate the screening and
consequently produce larger band gaps56,59. In this case,
as d shrinks the electron localization in NWs increases,
so that HL tends to overestimate Eg more.

Because of strong quantum confinement in narrow Si
NWs, band gaps can be well described by the effective-
mass approximation (EMA) model40,60:

ENW
g = Ebulk

g +
C

dα
, (7)

where the exponent α is equal to 2 within EMA64, and
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TABLE I. Fitted parameters α and C (eV·nmα) as in Eq.
6 for Si NWs. Here HL and GN represent GW calculations
using two different PPMs.

PBE HSE PBE0 B3LYP HF HL GN
〈100〉 α 1.37 1.29 1.18 1.17 0.98 1.43 1.42

C 2.27 2.29 2.49 2.33 2.24 3.70 3.57
〈110〉 α 1.24 1.33 1.06 1.05 0.96 1.44 1.43

C 1.08 1.17 1.31 1.20 1.03 2.31 2.19
〈111〉 α 1.45 1.43 1.29 1.26 1.00 1.50 1.48

C 2.14 2.19 2.34 2.18 1.53 3.63 3.47

the confinement constant C can be expressed as C =
2h̄2ζ2/m∗, with ζ = 2.4048 the first root of the zeroth-
order cylindrical Bessel function of the first kind and m∗
the effective mass. As shown in Fig. 1, all these methods
produce Eg for Si NWs satisfying the scaling law (Eq.
6); but they predict different values of parameters C and
α. The KS scheme underestimates not only Eg in Si
NWs, but also the trend, i.e., values of C and α are also
underestimated, compared to the GW results.

Table I summarizes the fitted values for parameters α
and C. GW predicts α to be around 1.4–1.5, smaller
than the ideal value of 2 because the EMA assumes an
unrealistic infinite potential at the wire surface. Another
observation is that the constant C for 〈100〉 and 〈111〉
wires are rather close, but more than 50% larger than
that for the 〈110〉 wires. Such anisotropy reflects the ori-
entation dependence of the Si NW band gaps caused by
different effective mass m∗ in the confinement plane40,41:
m∗〈100〉 ∼ m∗〈111〉 < m∗〈110〉. PBE predicts slightly smaller
α but severely underestimates C compared with GW ,
leading to a fast increasing error in Eg as d reduces. Al-
though HF exaggerates band gaps by 6 eV, its fitted α
and C are the smallest among all these methods; in par-
ticular, its α are very close to 1.0 while C are slightly
smaller than the PBE values except for the 〈100〉 wires.
The confinement constant C is inversely proportional to
the effective mass m∗, which is determined from the dis-
persion relation at the band edge by

m∗ =
h̄2

∂2E/∂2kz
. (8)

Our band structure analysis for Si NWs confirms the
trend in m∗ obtained by using various functionals.

Next we focus on α and C obtained from hybrid func-
tionals and examine if they can predict better trends.
Surprisingly, these three hybrid functionals give α and C
comparable to those of PBE. Among them HSE almost
reproduces the PBE values, while PBE0 and B3LYP pre-
dict smaller α and larger C than PBE. Previously re-
searchers mostly focused on exponent α and largely ig-
nored the role played by the confinement constant C in
the band gap scaling40,60; it was expected that better
density functional would principally improve α. How-
ever, Table I demonstrates that the major issue of the
(semi)local functionals lies in severe underestimation of

C (the ratios of CGW/CPBE are around 1.6–1.7 for 〈100〉
and 〈111〉 wires while ∼ 2.0 for the 〈110〉 NWs, respec-
tively) instead of α (αGW/αPBE is in the range of 1.05–
1.15). In this sense, B3LYP and PBE0 perform even
worse than PBE, while HSE behaves very similar to PBE.

The hybrid functionals band-gap corrections
(∆Ehyb

g = Ehyb
g − EPBE

g ) to PBE are in general
just constants as functions of d; ∆Ehyb

g (d) even de-
creases when d decreases towards 1 nm, while the
GW corrections ∆EGW

g ∝ 1/dα (Fig. 2), increasing
dramatically. In fact, ∆Ehyb

g,NW(d) ≈ ∆Ehyb
g,bulk, i.e., the

hybrid functional band-gap corrections for any Si NWs
are essentially the same as those for bulk Si.

Previously a size-independent constant correction (∼
0.6 eV from bulk Si) to the KS band gaps of Si NWs was
proposed to study their optical properties,62 omitting the
excitonic binding; however, the quasiparticle correction
could partially cancel the excitonic correction.61 Com-
pared to this scissor-shift method, hybrid functionals of-
fer no further improvement over PBE on band structures
for these nanoscale materials.

Within the GW approximation, self-energy is a nonlo-
cal frequency-dependent operator sensitive to the screen-
ing environment. The real part of Σ could be split into
two components: <(Σ) = ΣSEX + ΣCOH, where the lo-
cal ΣCOH represents the Coulomb-hole (COH) interac-
tion and the nonlocal ΣSEX is the statically screened ex-
change (SEX):

ΣCOH(r, r′) = −1

2
δ(r− r′)[v(r, r′)−W (r, r′)], (9)

ΣSEX(r, r′) = −
Nocc∑
i=1

φi(r)φ∗i (r
′)W (r, r′), (10)

in which v is the bare Coulomb potential, and Nocc rep-
resents the number of occupied bands. As WFs become
more confined and localized, ΣSEX is gradually enhanced
since the screening (W ) becomes weaker,47,76? and then
dominates the self-energy and the GW band-gap correc-
tions consequently show a strong size dependence. But
the hybrid functional Ehyb

xc cannot response the change
in screening as well as the self-energy operator Σ. This
is because the fraction of the exact exchange is fixed, so
that the average dielectric screening that a hybrid func-
tional offers varies only due to the (semi)local functional
part; therefore it behaves just like these LDA/GGA func-
tionals when confinement strength changes except for a
constant band-gap shift. For simple bulk materials such
as Si, the valence electrons are very delocalized,54,55 and
the screening could be similar among these materials. As
a result, although a well constructed hybrid functional,
such as HSE (a screened PBE hybrid), can well predict
Eg of these materials, the success is more or less fortu-
itous and empirical due to cancellation of overestimation
of Eg by HF and underestimation by LDA/GGA. For
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FIG. 3. (color online) Panels (a–e) show electron density dis-
tribution for the 〈001〉 0.71 nm Si NW at the Γ-point for the
VBM-4, VBM-2, CBM, and CBM+4 states, calculated us-
ing the self-consistent GW , PBE, B3LYP, PBE0, and HSE,
respectively.

materials with sharply different valence electron localiza-
tion and screening compared to simple semiconductors,
such as transition metal oxides, errors in Eg will vary
dramatically, and hybrid functionals with a fixed mix-
ing parameter can not work equally well for both cases.
Here we show that even for the same material (Si) as
the size approaches the quantum confinement regime, hy-
brid functionals with fixed fractions of exact exchange fail
completely to predict the size-dependent band-gap cor-
rection as GW does.

Though the (semi)local functionals severely underesti-
mates Eg, even LDA WFs can provide excellent approx-
imations to the QP WFs for simple bulk systems6,8,9,
with overlaps |〈ψLDA|ψQP〉| ≥ 0.999. It is not clear if
LDA/GGAWFs can still well represent QPWFs in NWs.
We performed fully quasiparticle self-consistent GW cal-
culations in which the WFs are updated together with
G and W until convergence reached13,71. Because the
self-consistent GW computation is extremely expensive,
we only carried out such calculations for a 〈100〉 0.71 nm
Si NW (Si9H12). Fig. 3 shows electron density (|ψ(r)|2)
at the Γ-point for the conduction band minimum (CBM)
and the CBM+4 state, in comparison with the second
and forth states below valence band maximum (VBM-2
and VBM-4). These states are chosen to avoid degener-
acy. Surprisingly, even in such a narrow wire the PBE
WFs for valence bands still overlap with QP ones nearly
perfectly (|〈ψPBE|ψQP〉| ≈ 0.996); however, the quality
of the KS WFs for conduction bands is much poorer,
with overlaps only about 81.9%, 42.0%, 18.5% and 39.2%

for the CBM, CBM+3, CBM+4, CBM+5 states, respec-
tively. Hybrid functionals cannot improve WFs over PBE
at all. For all these states of the 0.71 nm Si NW we find
that (|〈ψPBE|ψhyb〉| ≥ 0.998).

Although our conclusion on the performance of hy-
brid functionals for nanoscale materials is based on cal-
culations on Si NWs alone, we believe that it holds for
other semiconductor NWs and nanocrystals, as previous
calculations47,74,75 revealed very similar results for band
gap scaling to those of Si NWs. Finally we would like
to point out that in this work we have focused on tra-
ditional and widely employed hybrid functionals such as
HSE, PBE0 and B3LYP. We have noticed that recent
developments in hybrid functionals72,73 proposed setting
the mixing parameter b = 1/ε, in order to respond better
to the change in dielectric environment. These new hy-
brid functionals thus could predict good trend of Eg in
nanoscale semiconductors, though computationally they
are might be more demanding than those hybrid func-
tionals with fixed b.

IV. SUMMARY

In conclusion, we have investigated the accuracy of hy-
brid functionals with fixed mixing parameters for band
gaps of nanoscale materials. Comparing with the GW
benchmarks, we find that these hybrid functionals only
yield almost constant gap corrections to PBE results as
quantum confinement increases, instead of reproducing
the crucial size-dependent GW corrections, though in
general the calculated band gaps by hybrid functionals
are closer to GW values than LDA or GGA. Hybrid
and (semi)local functionals obtain very similar param-
eters for the band-gap scaling law as a function of wire
diameter d, both severely underestimating the confine-
ment constant C because they are not able to response
the change in screening properly. Furthermore, WFs ob-
tained using hybrid functionals are very similar to those
of (semi)local functionals even in strongly confined NWs.
Therefore, these hybrid functionals have limited applica-
bility for investigating electronic structures of novel ma-
terials, especially for those with more localized electrons
than bulk semiconductors. However, recently developed
hybrid functionals with mixing parameters according to
material’s dielectric constant could solve this problem.
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