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We present a theoretical and experimental analysis of the cantilever motions detected in photo-
induced force microscopy (PiFM) using the sideband coupling detection scheme. In sideband cou-
pling, the cantilever dynamics are probed at a combination frequency of a fundamental mechanical
eigenmode and the modulation frequency of the laser beam. Using this detection mode, we develop
a method for reconstructing the modulated photo-induced force gradient from experimental param-
eters in a quantitative manner. We show evidence, both theoretically and experimentally, that the
sideband coupling detection mode provides PiFM images with superior contrast compared to images
obtained when detecting the cantilever motions directly at the laser modulation frequency.

I. INTRODUCTION

The capability of cantilever-based atomic force mi-
croscopy (AFM) to probe pN-level local forces strongly
relies on the resonant mechanical motion of the can-
tilever beam. By detecting the tip-sample interactions
at a fundamental eigenfrequency of the cantilever, the
force-induced mechanical motions are amplified, which
allows for a sensitive registration of forces that are at
play at the nanoscale.1 Conventional AFM methods typ-
ically use the first mechanical resonance of the cantilever
beam for mapping the topography of the sample. How-
ever, the cantilever system exhibits multiple mechanical
eigenmodes, and the frequencies of these modes (f0i, with
i = 1, 2, ...) can, in principle, be used as detection chan-
nels for probing cantilever motion.
The principle of multifrequency AFM is based on the

notion that multiple frequency channels can be used si-
multaneously, opening up the possibility to examine dif-
ferent tip-sample interactions at the same time 2. By
detecting the amplitude and phase of multiple eigen-
modes, the experiment can be optimized to detect, for
instance, local variations in the contact difference po-
tential 3–5 along with local mechanical measurements of
material stiffness and damping 6,7. Another example is
photo-induced force microscopy (PiFM), which uses one
cantilever eigenmode for registering sample topography
and a second mechanical eigenmode for detecting photo-
induced forces in the tip-sample junction 8–16.
In each of the frequency channels, the force-induced

motion can be extracted by modulating the local force
at a modulation frequency fm and by tuning fm close
to an eigenmode frequency of the cantilever system, i.e.
fm ≈ f0i. This form of amplitude modulation detec-
tion can be labeled as the direct mode, because the ex-
tracted demodulated amplitude is directly related to the
local force. An alternative detection scheme is the so-
called sideband coupling mode, in which case fm is mixed
with fi which is a carrier frequency and the combination
frequency fm ± fi is detected. Unlike the direct mode,
the sideband coupling mode in amplitude modulation de-
tection is sensitive to the gradient of the force. Since

the force gradient is often a more sensitive function of
the tip-sample distance, the sideband coupling detection
can produce images with sharper contrast in the ampli-
tude modulation AFM, compared to the direct detection
mode.
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FIG. 1: Sideband coupling mechanism

Sideband coupling has been used extensively in Kelvin
probe force (KPFM) microscopy 5 and in PiFM 8,9. In
both modalities, the sideband coupling scheme has been
shown to yield images with improved contrast relative to
direct mode detection. The sideband coupling scheme re-
lies on the presence of a nonlinearity in the oscillating mo-
tion to enable the generation of combination frequencies.
The current description of sideband coupling postulates
that the origin of the nonlinearity is the force gradient in
the tip-sample junction. To connect the amplitude at the
sideband frequencies to the forces in the tip-sample junc-
tion, a detailed description of the force and the cantilever
dynamics is required. Such descriptions are specific to
the interactions at play in the junction, and require a
careful analysis before quantitative parameters can be
extracted from the detected cantilever motions.
In this work, we develop a quantitative theory of side-

band coupling for probing force gradients detected in
PiFM, in the context of multifrequency AFM. Previous
theoretical descriptions of the PiFM response focused on
signals detected in the direct mode 10, making it possi-
ble to deduce quantitative photo-induced forces from the
cantilever motions. Here, we expand this approach to
include signals detected in the sideband coupling mode,
which shows a markedly different response relative to the
direct mode. We compare the contrast seen in sideband
coupling and direct detection modes in PiFM and explain
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the origins of the observed differences.

II. THEORY OF SIDEBAND COUPLING

A. Sideband coupling theory in multifrequency

atomic force microscopy

The motional dynamics of a continuous beam sys-
tem (cantilever-tip system) is described by the Euler-
Bernoulli model. The motion of the tip apex can be ap-
proximated by a point-mass model and described by the
superposition of its eigenmodes17,18. Because the higher
eigenmodes contribute negligibly to the cantilever mo-
tion19, for our discussion here, we may assume that only
the fundamental (i = 1) and the second mechanical res-
onance (i = 2) of the beam system are significant. The
dynamics of the cantilever in two degrees of freedom can
be described by20:

mz̈ + b1ż + k1z = F (t; z(t)) (1)

mz̈ + b2ż + k2z = F (t; z(t)) (2)

where m is the mass of the cantilever, F (t; z(t)) is the
total external force including a tip-sample interaction
force, ki and bi are the ith spring constant and damp-
ing coefficient of the cantilever, respectively. The side-
band motion is induced by coupling the modulated force
gradient (fm) with the carrier frequency (fi). The in-
stantaneous tip-sample distance is represented by z(t) ≃
zc+z1(t)+zm(t)+zs(t)+O(ε) where zc is the equilibrium
position, z1 is the coordinate of the carrier motion of the
fundamental eigenmode, zm describes the motion due to
the modulated force and zs is the relevant coordinate for
sideband-coupled motion. The motion of zm and zs can
be described as the superposition of eigenmodes at their

respective frequencies, given as zm(ωm) ≈
2
∑

i=1

zi(ωm) and

zs(ωs±) ≈
2
∑

i=1

zi(ωs±). Assuming that the motion is si-

nusoidal, the instantaneous tip-sample distance is given
as

z(t) ≈ zc + z1(t) + zm(t) + zs(t) +O(ε) (3)

with

z1(t) ≈ A1 sin(ω1t+ θ1)

zm(t) ≈ Am1
sin(ωmt+ θm1

) +Am2
sin(ωmt+ θm2

)

zs(t) ≈ As1 sin(ωs± t+ θs1) +As2 sin(ωs±t+ θs2)

where ωs± = ωm ± ω1. Ami
and θmi

are the amplitude
and phase that are driven by the photo-induced force act-
ing on the fundamental and second eigenmodes, Asi and
θsi are the amplitude and phase driven by the interaction
responsible for coupling the eigenmodes. Substituting
Eq. (3) into Eqs. (1) and (2) by multiplying both sides of
the resulting equation by sin(ωjt+ θj) and cos(ωjt+ θj),
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FIG. 2: Dynamic motion of a cantilever.

followed by an integration over the oscillation period, the
following general relations for the amplitude and phase
of the motions are obtained:

(ki −mω2
j )
Aj

2
=

1

T

∫

0

T

F (t; z(t)) sin(ωjt+ θj)dt(4)

biωjAj

2
=

1

T

∫

0

T

F (t; z(t)) cos(ωjt+ θj)dt (5)

where i = 1, 2, j = 1,mi, si±. Eqs. (4) and (5) are
the general expressions of our sideband coupling theory
in multifrequency atomic force microscopy. If the form
of F (t) is known, the amplitudes A1, Ami

, Asi± and the
phase shifts θ1, θmi

, θsi± can be calculated through nu-
merical integration. In the next subsection, we will con-
sider the small oscillation limit and apply the sideband
coupling theory to the case where photo-induced forces
are detected.

B. Small oscillation limit

Under the assumption that the oscillation is sufficiently
small, Eq. (4) and Eq. (5) can be analytically solved by
regarding the sideband motion zs as a perturbation. Note
that this small oscillation approximation is equivalent to
the first-order approximation to the general motion of
the cantilever system24. The total external force can be
expanded at the equilibrium position zc as follows:

F (t; z(t)) ≈ F (zc) +

(

∂F

∂z

)

zc

(z − zc) + . . . . (6)

We assume that the higher order coupling terms (second
order and higher) can be ignored in the small oscillation
limit. In PiFM with sideband mode detection, we mod-
ulate the fundamental eigenmode of the cantilever for
tracking the topography and modulate the optical force
at the angular frequency ωm. Therefore, the total exter-
nal force can be written as:

F (t; z(t)) = F1 cos(ω1t) + Fint(z) + FDC
pif (z)

+FAC
pif (z) cos(ωmt+ θpif ) (7)

where F1 is the driving force for the fundamental res-
onance, and Fint is a mechanical tip-sample interaction
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force that can be generally described as the sum of a con-
servative and a non-conservative force: Fint(z) = Fc(z)−
Γ(z)ż20. Such a form of the force provides a good de-
scription of the energy dissipation of the cantilever.21,22

In the small oscillation limit, non-velocity dependent ef-
fects, such has the hysteresis effect, can be assumed to
be small.23 The photo-induced force contributes the third
and fourth term on the righthand side of Eq. (7), and is
given as FDC

pif +FAC
pif cos(ωmt+θpif )

25. The origin of the
sideband signal derives from the product of the carrier
motion and the modulated force. Inserting Eq. (3) and
Eq. (7) into Eq. (6), then the external force induced by
sideband is explicitly obtained as follows from the second
term of Eq. (6):

Fside =

(

∂F

∂z

)

zc

z1(t)

=

(

∂FAC
pif

∂z

)

zc

cos(ωmt+ θpif )A1 sin(ω1t+ θ1)

= ±

(

∂FAC
pif

∂z

)

zc

A1

2
sin(ωs± t+ θpif ± θ1)

= F (ωs+) + F (ωs−) (8)

where ωs± = ωm ± ω1 are the sum and differece fre-
quencies at which the sideband coupled signal is de-
tected. In the remainder of this work, we will choose
ωs− for our sideband detection. By setting the side-
band frequency to coincide with the second resonance
frequency, ωs ≡ ωs− = ω2, the sideband motion is ampli-
fied by the second eigenmode. For abbreviated notation,
we will write the gradient of the photo-induced force as

kAC
pif = (

∂FAC
pif

∂z
)zc .

When we consider the sideband motion as a perturbed
motion, by substituting Eq. (6) into the integral forms of
Eqs. (4) and (5), the integral can be evaluated over the
period T = 2πp1/ω1 = 2πps/ωs = 2πpm/ωm in which
the motion z(t) is periodic. The intermediate steps in
this calculation are explained in the Appendix. In the
resulting equations, the force gradient acts as a pertur-
bation that alters the amplitude and frequency of the
carrier motion. For the unperturbed solution, the follow-
ing general relations for the amplitude and the phase of
the carrier and the sideband motion are obtained:

A1(ω1) = G1(ω1)F1 (9)

As(ωs) = G2(ωs)
kAC
pif (zc)

2
A1 (10)

with the transfer function

Gi(ωj) =
1

√

m2(ω′2
i − ω2

j )
2 + (b′iωj)2

(11)

where ω′
i =

√

(ki −
(

∂F̄c

∂z

)

zc
)/m accounts for the fre-

quency shift induced by the force gradient, F̄c = Fc +

FDC
pif is the effective conservative force, and b′i = bi+Γ(zc)

is an effective damping parameter. Eq. (9) is the unper-
turbed solution of the carrier motion. Eq. (10) is the
first order perturbation solution due to the presence of
the modulated force. Note that the expressions (9) and
(10) are similar to the equations found in prior work.5

Here we advance previous work by including damping
explicitly in the transfer function, and by using ampli-
tude and phase information of the first eigenmode for
calculating the transfer function of the cantilever’s sec-
ond eigenmode.
The amplitude of the sideband motion As is propor-

tional to the force gradient of the photo-induced force
rather than to the photo-induced force itself. For com-
parison, the amplitude of the photo-induced force, which
is probed in the direct detection mode, is given as10:

Ad(ω2) = G2(ω2)F
AC
pif (zc). (12)

Because the detected amplitude in the direct mode is di-
rectly related to FAC

pif , the signal contains both localized

(attractive) and non-localized (repulsive) force contribu-
tions14. On the other hand, the sideband mode is related
to the force gradient of the photo-induced force, kAC

pif .
Therefore, since the gradient of localized force contribu-
tions is much higher than the gradient of the slowly vary-
ing non-localized forces, the sideband is much more sen-
sitive to localized tip-sample interactions. The reduced
spatial scale at which these interactions are prominent
gives rise to a high spatial resolution and improved con-
trast compared to what is seen in the direct detection
mode. We will compare contrast attained in the sideband
and direct mode in Section V based on both simulation
and experimental results. In the next section, we will
develop a method for reconstructing the modulated force
gradient from the cantilever motion.

C. Reconstruction of distance-dependent force

The amplitude and phase of the carrier motion de-
tected in the sideband mode are experimentally acces-
sible quantities. We next describe an analytical method
to relate the experimental observables to the force gradi-
ents present in the tip-sample junction. Evaluating the
integrals in Eqs. (4) and (5) and using Eq. (6), the force
gradients of the photo-induced force and the mechanical
interaction force can be expressed as:

k̄c(z) = −
F1

A1(z)
sin θ1(z) + (k1 −mω2

1) (13)

Γ(z) =
F1

A1(z)ω1
cos θ1(z)− b1 (14)

|kAC
pif (z)| =

As(z)

A1(z)

2

G2(ωs)
(15)

with b′2 = b2 + Γ(z), k̄c(z) = (∂F̄c

∂z
)zc and ω′

2 =
√

(k2 −
(

∂F̄c

∂z

)

z
)/m where F̄c = Fc + FDC

pif . The inter-
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mediate steps in deducing these equations can be found
in the Appendix. The formalism outlined by Eqs. (13)-
(15) makes it possible to reconstruct the distance de-
pendent force gradient of the mechanical and photo-
induced force from the experimentally accessible param-
eters A1, As and θ1. Note that Eq. (15) describes, in
general, any applied force gradient that introduces side-
band motion in the cantilever system at the sideband
frequency fs± = fm ± f1. Note also that we have as-
sumed that the effective force gradient acts on both the
first and the second mode of the cantilever.

III. AMPLITUDE-DISTANCE SIMULATIONS

We first study the general trends of the cantilever dy-
namics in the presence of both mechanical and photo-
induced forces by using Eqs. (9) and (10). For this
purpose, it is required to choose a functional form for
the forces Fint and Fpif . There are numerous formu-
lations for conservative (Fc) and nonconservative (Fnc)
forces 1,26–28. In this simulation, we will consider the
simplest case in which the mechanical tip-sample interac-
tion force can be described by an attractive van der Waals
type conservative force and the photo-induced forces are
the attractive localized gradient force Fg and the repul-
sive scattering force Fsc

10 are modeled as:

Fint(z) = −
HR

6z2
(16)

Fpif (z) = −
β

z4
+ Fsc (17)

where H is the Hamaker constant, R is the tip radius,
and z is the distance between the tip’s apex and the sam-
ple surface. The magnitude of the photo-induced gradi-
ent force depends on the β parameter, which is defined as
β = 3Re{α∗

tαp}E
2
0z/2πε0, where E0z is the z-component

of the incident field, αt and αp are the complex polariz-
ability of the tip and the molecule respectively 29. The
scattering force Fsc is regarded as a constant in the near-
field region.
Fig. 3 shows the distance dependent (a) amplitude and

(b) phase curves of the fundamental resonance and the
amplitude of the sideband mode (c) with the chosen sim-
ulation parameters 30. Simulations are shown for two set-
tings of the photo-induced force, where the β-parameter
for the red solid curve is ten times higher than for the
black solid curve. In Fig. 3 (d), the gradient of the photo-
induced force is plotted for the two different settings of
the β-parameter, using Eq. 17 for the functional form
of the distance-dependent force. The green squares (β)
and blue dots (10β) represent the reconstructed force gra-
dient by using Eq. (15) with the plotted A1, As and θ1
respectively. As is clear from the Figure, the overlap of
the reconstructed force gradient with the calculated force
gradient is excellent, underlining that the reconstruction
formalism accurately reproduces the active force. Note
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FIG. 3: (a) Amplitude and (b) phase curves of the fundamen-
tal resonance. (c) Amplitude of the sideband mode and (d)
modulated photo-induced force gradient with respect to tip-
sample distance and the beta pre-factors: β (black solid line)
and 10 β (red solid line). The reconstructed force gradients
obtained with Eq. (15), and by using the above A1, As and
θ1, are plotted with green square (β) and blue circular (10 β)
dots.30.

that, unlike direct mode detection10, the sideband cou-
pling detection mode is not sensitive to the constant scat-
tering force, which is reflected in the absence of scattering
force effects in the distance dependence of kpif .

When the tip approaches the sample surface, the am-
plitude at the carrier frequency decreases because the
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gradient of the conservative force increases, which leads
to a change in the frequency shift ω′

i (Fig. 3 (a)). When
the localized force is increased by 10 times (red solid line),
the gradient of the DC component of the photo-induced
force (FDC

pif ) also contributes to ω′
i, and the amplitude

(and phase) at the carrier frequency are further reduced
at shorter tip-sample distances (Fig. 3 (a, b)). This effect
is related to the optical force artifact known in scattering
near-field optical microscopy32,33.

Unlike the amplitude at the carrier frequency (A1), the
amplitude at the sideband frequency (As) is sensitive to
the modulated force gradient of the photo-induced force,
kAC
pif . In Fig. 3(c), As is seen to go through a maximum

as the tip approaches the sample. For the black solid
line, the maximum appears near z ≈ 1 nm for the chosen
beta pre-factor30. The magnitude and the width of the
peak is dependent on β, which in turn is related to the
effective polarizabilities of the tip and the sample. By
increasing the localized force by 10 times (red solid line),
the AC force gradient enhances the magnitude and width
of the peak in the amplitude-distance curve. In addition,
the maximum of the curve has shifted to z ≈ 1.4nm. The
simulation thus shows that As is very sensitive to kAC

pif .

IV. EXPERIMENT

1.4NA
objective

cantilever

quadrant detector
laser

modulator

AFM controller

f01

fm

n
1

Topography PiFM

FIG. 4: Sketch of the photo-induced force microscope

A. Sample materials

Two test samples are used in this study. The first sam-
ple consists of gold nanowires patterned on a 0.17 mm
thick borosilicate coverslip. The nanowires are fabricated
by the lithographically patterned nanowire electrodepo-
sition technique 34. The resulting nanowires exhibit an
average width of 120 nm and an average height of 40 nm,
whereas the length of the nanowires extends over millime-
ters. The second sample is a borosilicate coverslip with
deposited nanoclusters of silicon 2,3-naphthalocyanine
bis(trihexylsilyloxide) (SiNc) (Sigma-Aldrich). The sam-
ples are prepared by spincasting a concentrated solution
of SiNc in toluene onto a plasma-cleaned coverslip. Af-
ter evaporation of the solvent, a distribution of nanoscale
SiNc aggregates is seen, varying in size from several mi-
crometers to less than 10 nm in diameter.

B. Light source

The experiments are carried out with a femtosecond
light source (MaiTai, Spectra-Physics), which delivers
a 80 MHz, 200 fs pulse train. The average power of
the laser beam at the sample plane is around 50 µW to
90 µW at 809nm wavelength for both samples. The laser
light is amplitude modulated by an acousto-optical mod-
ulator at a frequency fm = fs + f1 with fs = f02. The
beam, which is linearly (x) polarized, is expanded with a
beam expander to a diameter of ∼ 5 mm, and steered to
an optical microscope. A schematic of the optical layout
is given in Fig. 4.

C. Atomic force microscope

A custom-modified atomic force microscope (Molecu-
lar Vista–VistaScope) is used for the PiFM experiments.
A simplified scheme of the force detection is included
in Figure 4. The system consists of an inverted optical
microscope equipped with a NA = 1.40 oil immersion ob-
jective, a sample stage scanner, an AFM scan head and
transmission and reflection optics for sample inspection.
The incident laser light is focused by the microscope ob-
jective to produce a diffraction-limited focal spot at the
sample plane. The focal field thus produced contains sig-
nificant portions of y-polarized and z-polarized light. To
optimize the PiFM contrast, the tip is positioned at the
location of maximum z-polarized light in the focal spot,
making the measurement sensitive to the z-directed lo-
calized forces14.
We have measured the free oscillation resonance curve

(amplitude versus frequency) and the DC deflection to
calibrate the sensitivity of the cantilever and fitted the
free oscillation carrier amplitude by using Eq. (9), which
is obtained at 10 µm above the sample without apply-
ing the laser beam. We measured the sensitivity as
5.13 mV/nm and the free oscillation amplitude A01 as
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194.66 mV. This yields a calibrated free oscillation am-
plitude of 194.66/5.13=38 nm. By fitting the free oscil-
lation resonance curve, we also extracted the other me-
chanical parameters of the cantilever such as its qual-
ity factor. PiFM experiments are carried out with a 30
nm diameter gold coated silicon tip (ACLGG, AppNano
Inc.). The measured mechanical properties of this can-
tilever are k1 = 48 N/m, f01 = 177.7 kHz, Q1 = 676,
k2 = 1992.3 N/m, f02 = 1094.6 kHz and Q2 = 654.
The topographic and photo-induced force images are

acquired simultaneously. This is achieved by demodulat-
ing the tip response at f01 to retrieve the topography im-
age and at fs to retrieve the photo-induced force image.
The laser modulation frequency was set to fm = fs + f1
for photo-induced force measurements, coinciding the
sideband (difference) frequency with the second mechani-
cal resonance of the cantilever fs = f02 to amplify the As

signal. Because the demodulation frequency is at a rela-
tively high frequency (1094.6 kHz), thermal noise contri-
butions play only a minor role.
The minimum detectable force and the thermal noise

amplitude of each eigenmodes of a cantilever are given as
Fmini

=
√

4kikBTB/Qiω0i and Ni =
√

4kBTQiB/ω0iki
where B is the bandwidth of a measurement and i is the
i–th eigenmode35. For the second resonance with B =
100 Hz and T = 300 K, the minimum detectable force
and the thermal noise amplitude are 1.03× 10−13 N and
1.45×10−12 m for the fundamental resonance and 8.57×
10−13 N and 2.81 × 10−13 m for the second mechanical
resonance respectively.

V. CONTRAST ANALYSIS OF SIDEBAND

COUPLING IN PIFM

We next apply the developed formalism to experimen-
tally obtained amplitude-distance measurements, and
show that quantitative force information can be ex-
tracted from signals detected through the sideband cou-
pling scheme. We first inspect the gold nanowire sample,
where we measure the distance-dependent PiFM signal
between the gold-coated tip and the gold surface of the
nanowire. The bare glass surface next to the nanowire
is used as a reference. Figure 5 shows the (a) ampli-
tude and the (b) phase of the fundamental resonance of
the cantilever when operated at a free oscillation am-
plitude A01 = 36 nm, recorded when the tip is parked
over the glass (black) and gold nanowire (red). The blue
region is the hard contact region where the cantilever
beam is mechanically bent. The latter region corresponds
to the hard contact mode where the thermal expansion
force is an important contributor to the measurement 31.
Here, we are mainly concerned with the region accessible
with the non-contact/tapping mode of the AFM, a region
where photo-induced forces are important. As is evident
from the Figure, the difference between the curves ob-
tained over the glass and the gold surface is very small.
These observations corroborate the trends seen in the
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FIG. 5: (a) Amplitude and (b) phase curves of the funda-
mental resonance. (c) Amplitude of the sideband mode with
respect to tip-sample distance. Black square dots correspond
to the glass surface and the red circular dots denote the mea-
surement on gold. (d) Reconstructed force gradients obtained
with Eq. (15), by using the above A1, As and θ1, are plotted as
black square (glass) and red circular (gold) dots. The curves
are fitted by the gradient of Eq. (17) for glass (green solid
line) and gold (blue solid line).

simulations of Fig. 3(a) and (b), emphasizing that the
photo-induced force effects are minimal in the A1 and θ1
detection channels.

On the other hand, the As detection channel clearly
shows a difference between the measurement for glass
and for gold, as evidenced in Fig. 5 (c). For the mea-
surement performed over the gold surface, the sideband
amplitude is maximized at a distance of z ≈ 7.5 nm from
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the material, while falling off for larger tip-sample dis-
tances. When the same measurement is conducted over
glass, the amplitude at the sideband frequency is signifi-
cantly less, showing a shallow maximum near z ≈ 2 nm.
These general features are similar to what is predicted
by the theory calculations presented in Fig. 3(c). The
increased As for gold is expected because gold exhibits a
much higher polarizability than glass, corresponding to
a higher β-value.
In order to extract quantitative information from the

sideband amplitude distance curve, we use our recon-
struction formalism to compute the field gradient (kAC

pif ).

The results are shown in Fig. 5 (d). The blue and green
solid lines are fits based on the gradient of the force pre-
sented in Eq. 17 using the β pre-factor as a fitting param-
eter. Using this approach, we find β as 4.7× 10−41 N·m4

for gold and 5.2× 10−42 N·m4 for glass. The beta value
depends on the field enhancement, material polarizabil-
ity and the total beam intensity. The different β-values
thus reflect the difference in the effective polarizability
of the materials under the tip, with a higher effective
polarizability for gold relative to glass.
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FIG. 6: (a) Laser intensity dependence of the sideband cou-
pled mode and the direct mode. Experimental sideband cou-
pled signal is indicated by black square dots and the simula-
tion based on Eq. (10) by the red solid line. Experimental
direct modulation signal is shown by the green circular dots
and simulation based on Eq. (12) by the blue solid line. The
tip-sample distance is ∼10nm. Images of SiNc clusters are
shown for the topography (b and e), PiFM sideband (c and
f), and PiFM direct modulation (d and g). The tip-sample
distance is 10nm (top row) and 26nm (bottom row)

As discussed above, the sideband coupling detection

mode is sensitive to the gradient of the photo-induced
force, whereas the direct mode is sensitive to the photo-
induced force itself. This implies that PiFM images taken
in the sideband coupling mode may appear very different
from the images obtained in the direct mode. A direct
comparison is presented in Figure 6, which shows a mea-
surement on SiNc nano clusters on glass. In panel (a),
the PiFM response from a nano cluster is shown as a
function of laser intensity for both the sideband coupling
mode (pink squares) and the direct mode (black dots).
For this measurement, the tip was parked 10 nm above a
selected nano cluster. We observe a marked difference in
the laser intensity dependence between the two detection
modes. A higher laser intensity corresponds to a higher
β value and thus to a higher FAC

pif . Using the expression

of the photo-induced force, Eq. (17), we can simulate the
amplitude of the sideband coupling mode and the direct
mode by employing equations (10) and (12), respectively.

The most notable difference between the curves is that
the curve for the sideband coupling mode goes through
a maximum, while the curve for the direct mode satu-
rates at higher intensities of the laser light. This dif-
ference is explained by the different expressions for As

and Ad. For a given magnitude of the photo-induced
force, Ad is proportional to the AC force through the
transfer function which is inversely proportional to the
DC force gradient. The expression for Ad depends on β

as C1β/
√

C2β2 + C3, which is simplified from Eq. 12,
and where Ci are constants. This functional form shows
that Ad saturates in the limit of high β values. However,
the sideband amplitude As shows a more complex depen-
dence on β. As can be simplified and rewritten in terms

of β as c1β/
√

c2β4 + c3β2 + c4, where ci are constants.
This form shows that As exhibits a maximum as a func-
tion of β. The result of the simulation is shown by the
solid lines in Fig 6(a), which reproduces the experimen-
tally obtained data very well.

Fig 6(a) also contains clues toward the expected dif-
ferences in PiFM images, detected in either the sideband
coupling mode or the direct mode. It can be seen that
for smaller β values (lower laser power), the slope of the
PiFM response in the sideband coupling mode is steeper
than in the direct mode. This steeper β-dependence
translates into an enhanced sensitivity of the sideband
coupling mode. We thus expect to see higher contrast
in sideband coupling detected PiFM images. Fig. 6(b)
shows a topography image of a SiNc nano cluster. The
corresponding images obtained with the modulation fre-
quency set to fm = fs+f01 where fs = f02 (sideband fre-
quency) and to fm = f02 (direct frequency), are shown in
panels (c) and (d), respectively. The images are obtained
at a tip-sample distance of 10 nm. It can be seen that
the contrast in the sideband coupling mode is indeed no-
ticeably better, with sharper defined features especially
at the edges of the nano cluster.

Besides the steeper β-dependence, the sideband cou-
pling also suppresses contributions originating from the
scattering force. Since the scattering force is largely in-
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sensitive to the polarizability of the sample (molecule), it
gives rise to a background signal that reduces the contrast
in PiFM images. The effect of the scattering force can
be significant at larger tip-sample distances, where the
magnitude of the gradient force is reduced. In Fig 6(e),
the topography of another SiNc nano cluster is shown,
along with the corresponding PiFM images obtained in
the sideband coupling mode (f) and the direct mode (g),
now recorded at a tip-sample distance of 26 nm. It is
evident that the contrast in panel (g) is compromised.
The much lower gradient force is overwhelmed by the
constant scattering force, producing an image with lim-
ited contrast. In the sideband coupling mode, however,
the scattering force is suppressed, and the gradient force,
though weak, can still be discerned. This example illus-
trates that the sideband coupling mode offers enhanced
sensitivity to the gradient force in scenarios where the
scattering force may otherwise dominate the PiFM re-
sponse.

VI. DISCUSSION AND CONCLUSION

The existence of cantilever motions at sideband fre-
quencies implies the presence of nonlinearities that enable
the mixing two frequencies at which the system is driven.
The cantilever beam is inherently nonlinear, and is thus
capable of synthesizing motions at frequencies that are
combinations of input frequencies17,18,37,38. However, the
manifestation of sideband motions is evident only when
the beam is driven at large oscillation amplitudes, typi-
cally over a few hundred nanometers. For much smaller
oscillation amplitudes, such as used in PiFM imaging ap-
plications with relatively stiff cantilever beams, the in-
trinsic nonlinearity of the system does not generate sig-
nificant sideband motions. In this limit, the probe is
considered a linear harmonic oscillator18,24, and intrin-
sic nonlinearities can be ignored. In the linear oscillator
regime, the origin of nonlinearities is found in the force
interactions experienced by the cantilevered tip39,40. In
particular, the presence of a force gradient offers a mech-
anism for mixing two driving frequencies, generating a
response at the respective sum and difference frequencies.
The amplitude of the sideband oscillation thus scales with
the magnitude of the force gradient experienced by the
tip.
The sensitivity of the sideband oscillations to the force

gradients in the tip-sample junction has been long recog-
nized and utilized in Kelvin probe force microscopy, and
recently in PiFM microscopy. In PiFM, where the sam-
ple is illuminated with a modulated laser beam, the side-
band coupling detection scheme sensitively probes the
field gradient of the optically induced force in the tip-
sample junction. The photo-induced force contributes
both a gradient force and a scattering force, and since the
tip-sample interactions are reflected mostly in the gradi-
ent force, rejection of the scattering force is of great rele-
vance. By suppressing the scattering force, the sideband

coupling detection scheme displays a unique sensitivity to
the sample’s polarizability, enabling spectroscopic imag-
ing of nanoscopic entities14. Although the favorable at-
tributes of sideband coupling detection are known8,9, a
general theoretical description explaining the origin of
the PiFM imaging contrast in this mode has not been
previously discussed. The work discussed here presents a
fully consistent theoretical framework for quantitatively
analyzing and predicting PiFM signals detected in the
sideband coupling mode.

Our description considers the cantilever motions at
multiple frequencies and interprets their amplitudes in
the context of mechanical and optical forces and their
gradients in the tip-sample junction. The formalism con-
siders the mixing between oscillations at all the relevant
driving frequencies, and our theory confirms that the
sideband frequencies observed in PiFM find their origin
in the gradient of the photo-induced force. By tuning the
sideband mixing frequency to a mechanical resonance of
the cantilever system, the amplitude at the sideband fre-
quencies can be significantly amplified, thus enhancing
the sensitivity of the technique to the modulated gradi-
ent of Fpif , or k

AC
pif for short.

A second attribute of the formalism developed here is
that quantitative values for kAC

pif can be extracted from
experimental measurements of the oscillation amplitudes
of the cantilever at the sideband frequency. Using A1,
θ1 and As as input parameters, we predict values for
kAC
pif that coincide with reasonable estimates of the photo-

induced forces in the junction. For instance, the recon-
struction method enables us to directly compare the the-
oretically predicted distance-dependence of kAC

pif with ex-
perimentally obtained tip-sample distance measurements
(Figure 5(d)). This ability renders sideband detected
PiFM a quantitative imaging technique.

All the main signatures in the distance dependence of
the amplitude and phase at the fundamental and side-
band frequencies, obtained from experiments, are repro-
duced in the sideband coupling theory discussed in this
work. In particular, we find a characteristic maximum
of the sideband amplitude as a function of tip-sample
distance, which depends on the magnitude of β, the pre-
factor included in kAC

pif . Another experimental observ-
able, the PiFM amplitude as a function of β, obtained
by increasing the laser intensity, is also correctly pre-
dicted by our theory. We find that the β-dependence
of the amplitude detected in the sideband coupled mode
is markedly different from the amplitude registered in
the direct mode. In the low intensity limit, which co-
incides with typical experimental conditions, we observe
that the sideband amplitude displays a higher sensitiv-
ity to β compared to the amplitude in the direct mode.
This enhanced sensitivity is a key factor that explains
why images obtained in the sideband coupling mode ap-
pear sharper and with more detail.

Sideband coupling detection is not limited to PiFM or
Kelvin probe microscopy. The sideband principle has also
been applied to enhance the contrast in bimodal AFM to
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probe sample elasticity and damping 39. In frequency
modulated Kelvin probe microscopy, sideband coupling
detection has been used in a multifrequency AFM ap-
proach to extract the contact potential as well as the to-
pography 3,36. The theory developed in this work is gen-
eral and can be applied to the latter examples of sideband
detected AFM as well. We expect that beyond its use
in PiFM, the current theory and reconstruction method
may aid other scan probe techniques in extracting quan-
titative information from experiments.
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Appendix A: Modeling details

In the experiment, the sideband frequency is set to
match the frequency of the second mechanical resonance
of the cantilever system. To simplify the calculation, we
choose ωs− for the sideband detection by setting it as
ωs = ωs− = ωm − ω1 = ω2 ≈ 6.27ω1. Because ωs− is
far removed from the first mechanical resonance, we can
approximate the amplitude of sideband mode as As ≈
As2− >> As1− . By considering above approximation, the
integral equations for the carrier and sideband motions
are rewritten as:

(k1 −mω2
1)
A1

2
=

1

T

∫

0

T

F (t) sin(ω1t+ θ1)dt (A1)

b1ω1A1

2
=

1

T

∫

0

T

F (t) cos(ω1t+ θ1)dt (A2)

(k2 −mω2
s)
As

2
=

1

T

∫

0

T

F (t) sin(ωst+ θs)dt (A3)

b2ωsAs

2
=

1

T

∫

0

T

F (t) cos(ωst+ θs)dt (A4)

The carrier motion can be obtained by calculating
Eqs. (A1) and (A2). The sideband motion can be ob-
tained by calculating Eqs. (A3) and (A4). The integra-
tion can be performed over the period T = 2πp1/ω1 =
2πps/ωs = 2πpm/ωm in which the signal z(t) is peri-
odic. The eigenmode frequencies, ω1, ωs and ωm, are
required to be commensurable; i.e., ω1/ωs = p1/ps,
ω1/ωm = p1/pm and ωs/ωm = ps/pm, where p1, pm
and ps are integers. This is always possible with high
accuracy such as p1 = 15, ps = 94 and pm = 109 for
ωs = ω2 = 6.27ω1 and ωm = 7.27ω1. The physical mean-
ing of p1, ps and pm is to increase the measuring time.

The total force in PiFM is given as

F (t; z(t)) = F1 cos(ω1t) + Fint + FDC
pif (z)

+FAC
pif (z) cos(ωmt+ θm) (A5)

where Fint = Fc(z) − Γ(z)ż. With a small oscillation
approximation, the total force can be expanded as:

F (t; z(t)) ≈ F (zc) +

(

∂F

∂z

)

zc

(z − zc) + . . . . (A6)

where z(t) ≈ zc + z1(t) + zm(t) + zs(t). Substituting
Eq. (A5) into Eq. (A6), by considering the higher or-
der terms are sufficiently small, the total force terms are
rewritten as:

F1 cos(ω1t) = F1 cos(ω1t) (A7)

Fc(z) ≈ Fc(zc) +

(

∂Fc

∂z

)

zc

(z1 + zm + zs) (A8)

Γ(z)ż ≈ (Γ(zc) +

(

∂Γ(z)

∂z

)

zc

(z1 + zm + zs))ż (A9)

FDC
pif (z) ≈ FDC

pif (zc) +

(

∂FDC
pif

∂z

)

zc

(z1 + zm + zs)

(A10)

FAC
pif (z) cos(ωmt+ θm) ≈ FAC

pif (zc) cos(ωmt+ θm)

+

(

∂FAC
pif

∂z

)

zc

(z1 + zm + zs) cos(ωmt+ θm) (A11)

When we set ωs = ωm −ω1 = ω2, the second term in the
Eq. (A11) gives the coupled response between the mo-
tions through the modulated photo-induced force gradi-
ent. The sideband force is explicitly derived from this
coupled response as below:

(

∂FAC
pif

∂z

)

zc

cos(ωmt+ θm)z1

=

(

∂FAC
pif

∂z

)

zc

cos(ωmt+ θm)A1 sin(ω1t+ θ1)

=

(

∂FAC
pif

∂z

)

zc

A1

2
sin((ωm + ω1)t+ θm + θ1)

−

(

∂FAC
pif

∂z

)

zc

A1

2
sin(ωst+ θm − θ1) (A12)

where ωs ≡ ωm − ω1. The first term in the Eq. (A12)
is the right sideband force ωs+ and the second term is
the left sideband force ωs− . Because we will choose the
left sideband for our detection, the sideband frequency
is given as ωs ≡ ωs− = ω2. When we consider the side-
band motion as a perturbation, the total motion can be
described as:

z(t) ≈ z(0) + z(1) + . . . (A13)

z(0) = z1 + zm (A14)

z(1) = zs (A15)
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In the small oscillation limit, the higher order pertur-
bation terms can be ignored. Then, the total force can
be separated as the unperturbed and the first order per-
turbed forces which are given as:

F (z) ≈ F (z(0)) + F (z(1)) (A16)

F (z(0)) = F1 cos(ω1t) + Fc(z
(0))− Γ(z(0))ż(0)

+FDC
pif (z(0)) (A17)

F (z(1)) = Fc(z
(1))− Γ(z(1))ż(1) + FDC

pif (z(1))

+FAC
pif (z(0)) cos(ωmt+ θm) (A18)

The integral equations for the unperturbed carrier mo-
tion are described as:

(k1 −mω2
1)
A1

2
=

1

T

∫

0

T

F (z(0)) sin(ω1t+ θ1)dt

(A19)

b1ω1A1

2
=

1

T

∫

0

T

F (z(0)) cos(ω1t+ θ1)dt (A20)

By calculating above integrals over the period T =
2πp1/ω1 = 2πps/ωs = 2πpm/ωm, the unperturbed so-
lutions for the carrier motion are found as:

(k1 − k̄c −mω2
1)A1 = F1 sin θ1 (A21)

(b1 + Γ)ω1A1 = F1 cos θ1 (A22)

where k̄c = ∂F̄c

∂z
|zc and F̄c = Fc + FDC

pif . By squaring

and summing up the Eqs. (A21) and (A22), we obtain
the unperturbed amplitude of the carrier motion as:

A1 =
F1

√

m2(ω′2
1 − ω2

1) + b′21 ω
2
1

(A23)

with b′1 = b1 + Γ(z) and ω′
1 =

√

(k1 − k̄c)/m. In order
to write the expressions that follow in a more compact
form, it is useful to define a transfer function as:

Gi(ωj) =
1

√

m2(ω′2
i − ω2

j )
2 + (b′iωj)2

(A24)

with b′i = bi + Γ(z) and ω′
i =

√

(ki − k̄c)/m where i =
1, 2 and j = 1,m, s. Using the transfer function and

Eqs. (A21) and (A22), the following relations are found:

A1(ω1) = G1(ω1)F1 (A25)

θ1(ω1) = tan−1 m(ω′2
1 − ω2

1)

b′1ω1
(A26)

k̄c(zc) = −
F1

A1
sin θ1 + (k1 −mω2

1) (A27)

Γ(zc) =
F1

A1ω1
cos θ1 − b1 (A28)

The sideband motion can be obtained by substituting
Eq. (A18) into the equations of motion Eqs. (A3) and
(A4). The integral equations for the sideband motion
are found as:

(k2 −mω2
s)
As

2
=

1

T

∫

0

T

F (z(1)) sin(ωst+ θs)dt

(A29)

b2ωsAs

2
=

1

T

∫

0

T

F (z(1)) cos(ωst+ θs)dt (A30)

By calculating above integrals over the period T =
2πp1/ω1 = 2πps/ωs = 2πpm/ωm, the sideband motion
are found as:

(k2 − k̄c −mω2
s)As = −

kAC
pif

2
A1 cos(θs − (θm − θ1))

(A31)

(b2 + Γ)ωsAs =
kAC
pif

2
sin(θs − (θm − θ1)) (A32)

where kAC
pif (z) =

∂Fpif

∂z
|zc . We obtain the sideband mo-

tion from Eqs. (A31) and (A32) as:

As(ωs) = G2(ωs)
kAC
pif (zc)

2
A1 (A33)

θs(ωs) = − cot−1 m(ω′2
2 − ω2

s)

b′2ωm

+ θm − θ1 (A34)

|kAC
pif (zc)| =

As(zc)

A1(zc)

2

G2(ωs)
(A35)
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