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The bandstructure of bulk silicon has a six-fold valley degeneracy. Strain in the Si/SiGe quantum
well system partially lifts the valley degeneracy, but the materials factors that set the splitting of
the two lowest lying valleys are still under intense investigation. Using cavity input-output theory,
we propose a method for accurately determining the valley splitting in Si/SiGe double quantum
dots embedded in a superconducting microwave resonator. We show that low lying valley states
in the double quantum dot energy level spectrum lead to readily observable features in the cavity
transmission. These features generate a “fingerprint” of the microscopic energy level structure of a
semiconductor double quantum dot, providing useful information on valley splittings and intervalley
coupling rates.
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I. INTRODUCTION

Silicon is a promising material system for spin-based
quantum information processing due to weak spin-orbit
and hyperfine couplings [1]. Electron spin lifetimes as
long as T1 = 3000 seconds were measured as early as 1959
in phosphorous doped silicon [2]. In natural abundance
silicon, electron spin coherence times T2 = 60 ms have
been reported [3]. Isotopic enrichment has extended the
quantum coherence time to T2 = 10 seconds [4]. More-
over, the ability to dope silicon with a wide range of
donors and acceptors is particularly exciting, as heavy
elements such as 209Bi (with nuclear spin quantum num-
ber I = 9/2) have a complicated energy level structure
that results in so-called “clock transitions” that are first-
order-insensitive to magnetic field fluctuations [5]. Cou-
pling to the nuclear spin of a single phosphorous donor
also allows access to an additional quantum degree of
freedom that can be used as a long-lived quantum mem-
ory [6, 7].

In terms of its ability to support quantum coherence,
the trajectory of the silicon material system is quite im-
pressive [8]. On the other hand, silicon presents severe
materials challenges in quantum devices, where control
at the level of single electrons is desired. Electrons con-
fined in Si/SiGe quantum wells have an effective mass
m∗ = 0.19 me (roughly three times larger than the
GaAs/AlGaAs quantum well system), where me is the
free electron mass [9, 10]. As a result, Si quantum de-
vices must be significantly smaller than their GaAs coun-
terparts to achieve similar orbital excited state energies.
Over the past several years, the effective mass challenge
has been effectively solved through the development of
novel overlapping gate architectures, and the isolation of
single electrons in accumulation mode Si/SiGe quantum
dots (QD) is becoming routine [11–15].

A major remaining challenge is to understand the fac-
tors that limit the valley splitting in silicon [16]. The bulk
electronic bandstructure of Si has six equivalent minima
(termed valleys) that are located 0.85 of the way from

the Brillouin zone edge [9]. In Si/SiGe quantum well sys-
tems, the 4% larger lattice constant of Ge strains the Si
quantum well, raising in energy the four in-plane ∆4 val-
leys and lowering in energy the two perpendicular-to-the-
plane ∆2 valleys [10]. In view of the interplay between
the spin and valley degrees of freedom in multi-electron
systems [17], the ability to probe and, ultimately, control
the splitting between the remaining quasi-degenerate val-
leys in Si/SiGe quantum well systems represents an ur-
gent challenge on the way towards scalable spin qubits in
Si/SiGe QDs.

Theory suggests that the vertical electric field sets the
overall scale of the valley splitting [18]; a prediction that
has been experimentally verified in Si MOS (metal-oxide-
semiconductor) QDs [19]. However, in the Si/SiGe sys-
tem, the valley splitting is known to substantially vary
in QD devices fabricated on the same heterostructure.
Work by Borselli et al. reports valley splittings in the
range of 120 to 270 µeV [20]. In recent work by Zajac
et al., valley splittings in the range of 35 – 70 µeV were
extracted in the same multiple QD device [14]. Mea-
surements by Shi et al. show that the valley splitting
can be tuned by using gate voltages to laterally shift
the position of the electronic wave function in the two-
dimensional electron gas [21]. These experiments sug-
gest that the microscopic structure of the QD system
(interface roughness, step edges, etc.) plays a strong role
in determining the valley splitting [22]. Unfortunately
magnetospectroscopy measurements are time consuming
to perform and the data can often be ambiguous, espe-
cially when the valley splitting is of the order of kBT ,
where kB is Boltzmann’s constant and T is the electron
temperature. Therefore the development of new probes
of valley splitting will benefit the QD community.

In this paper we propose a cavity-based measurement
of the low lying energy level structure of few-electron
semiconductor double quantum dots (DQD) in the cir-
cuit quantum electrodynamics (cQED) architecture. Hy-
brid DQD-cQED systems have been used to demonstrate
electric dipole couplings g0/2π ranging from 10 to 100
MHz [23–26], quantum control and readout of spin-orbit
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qubits [25], and spin-photon coupling [27]. In essence,
these experiments probe the electric susceptibility χ of a
mesoscopic system with a sensitivity well-beyond that of
a single electron [28]. The susceptibility is the largest at
a DQD interdot charge transition, where a single electron
can tunnel from the left dot to the right dot, resulting
in an electric dipole moment that is roughly 1000 times
larger than in atomic systems [24]. Here we show that
the low lying valley structure of a few electron Si/SiGe
QD is directly accessible in a hybrid cQED system. The
amplitude response of the cavity generates a fingerprint
of the DQD energy level structure, providing not only
access to the energy level splittings, but also the inter-
dot and intervalley coupling rates. We model the system
response using realistic parameters that should be acces-
sible in future experiments. While our theory is focused
on valley-orbit coupled states, we note that coupling of
the spin degree of freedom to a cavity can be achieved
via gradient magnetic or hyperfine fields in double quan-
tum dots [29], ferromagnetic contacts coupled to double
quantum dots [30], the interplay of exchange and spin-
orbit coupling in antiferromagnetic molecular magnets
[31], cavity-field-dependent tunneling between quantum
dots [32], direct magnetic coupling [33], and via spin-
orbit coupling for electron spins [34, 35] and hole spins
[36].

II. MODEL

A. Cavity-coupled double quantum dot

Figure 1(a) illustrates the proposed experimental sys-
tem. A DQD containing a single excess electron is
electric-dipole coupled to a high quality factor super-
conducting resonator. We model the DQD as a four-
level system consisting of the left dot ground state |L〉 =
|(1, 0)〉, left dot excited state |L′〉 = |(1′, 0)〉, right dot
ground state |R〉 = |(0, 1)〉, and right dot excited state
|R′〉 = |(0, 1′)〉. The left dot valley splitting EL =
E|L′〉 − E|L〉 is often different than the right dot valley
splitting ER. The energy difference between the left dot
ground state |L〉 and the right dot ground state |R〉 is
set by the detuning ε. In general, this system could be
used to measure a variety of low lying excited states, such
as orbital excited states, valley states, and Zeeman split
states [27]. We focus on the Si/SiGe QD system, where
valley splittings are typically <200 µeV in energy [14, 20].

The cavity field is sensitive to charge dynamics in the
DQD due to the large electric dipole coupling that is
achieved in cQED systems [24]. In typical experiments,
the cavity is probed by driving it with an input field ain
with frequency ωR and detecting the transmitted field
aout. Measurements of the cavity response provide useful
information about the mesoscopic systems (e.g. a quan-
tum dot) embedded in the cavity [23, 37]. Both the
amplitude and phase of the transmitted signal provide
useful information. As an example, sequential tunnel-
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Figure 1. (a) A cavity-coupled DQD is probed using a small
input field ain with frequency ωR. Charge dynamics in the
DQD result in changes in the transmitted field aout. The DQD
is coupled to source (S) and drain (D) electrodes. (b) DQD
energy levels plotted as a function of energy level detuning ε.
In general, the left dot valley splitting EL is different than
the right dot valley splitting ER. For this plot, EL = 76 µeV,
ER = 58 µeV, t = 25µeV, and t′ = 13µeV.

ing through a voltage biased DQD was recently shown
to result in microwave frequency amplification, such that
|aout/ain| > 1 [38–40].

For the one-electron case probed here, the spin does
not play any role. Applying a Zeeman field will result in
two avoided crossings for every avoided crossing in the
spinless model. However, the low-energy avoided cross-
ing involving the spin-down states and the high-energy
avoided crossings involving the spin-up states will be cen-
tered at the same value of ε, giving a cavity response
that is nearly identical to a spinless system. Despite the
irrelevance of spin for the one-electron system, the in-
formation gained from the described readout of valley
splittings will have important consequences for the two-
electron case, where the exchange coupling between two
electrons couples both spins and valleys [17]. The inter-
play between spin and valley also manifests itself in the
Pauli spin-valley blockade [41].
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B. Hamiltonian

We model the single electron Si/SiGe DQD using the
Hamiltonian,

H̃0 =

ε/2 + EL 0 t t′

0 ε/2 −t′ t
t −t′ −ε/2 + ER 0
t′ t 0 −ε/2

 , (1)

which is expressed in the local valley eigenbasis |L′〉, |L〉,
|R′〉, |R〉. The valley eigenstates |L〉 and |L′〉 (|R〉 and
|R′〉) of the left (right) QD are split by the valley split-
ting EL (ER). In general, the excited states may have a
different projection onto the ±z valley basis states (see
Appendix A). Therefore, the matrix elements that cou-
ple the four levels are distinct. The states |L〉 and |R〉
are hybridized by the (intravalley) interdot tunnel cou-
pling t near ε = 0 while |L′〉 and |R′〉 are hybridized near
ε = EL − ER. The valley state |L′〉 (|R′〉) is coupled to
|R〉 (|L〉) by the intervalley matrix element t′ leading to
avoided crossings near −EL (ER).

The DQD energy levels are plotted as a function of
the detuning parameter ε in Fig. 1(b). The left (right)
dot energy levels increase (decrease) in energy with in-
creasing ε. In Fig. 1(b) we take EL = 76 µeV, ER =
58 µeV, t = 25µeV, and t′ = 13µeV. For reference, the
cavity frequency f0 = 7.8 GHz corresponds to an energy
of 32µeV.

C. Electric dipole coupling

We assume that the DQD is irradiated with a classi-
cal probe field with angular frequency ωR. The probe
field generates an oscillating voltage inside the super-
conducting resonator. This voltage is directly coupled
to the DQD detuning parameter, making it time depen-
dent: ε(t) = ε0 + δε cos(ωRt). Here ε0 is a static energy
level detuning, which can be slowly varied in experiments
using dc gate voltages. The parameter δε describes the
magnitude of the detuning modulation. The interaction
with the probe field thus gives rise to a term in the Hamil-
tonian,

H̃P =
1

2
δε cos(ωRt)σz, (2)

where, in the same basis used in Eq. (1) above,

σz =

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 . (3)

Here, we have assumed that the electric dipole coupling is
valley independent. In principle, there could be an elec-
tric dipole transition between the two valley states within
each dot separately. However, the dipole matrix element

within a single dot is much smaller than that for the
transition between two dots, and very likely too small to
be observed. Furthermore, such inter-valley transitions
within a single dot are only relevant if by coincidence the
probe frequency matches the valley splitting in one of the
dots, otherwise this transition is off-resonant.

The coupling of the DQD to a single quantized mode of
a microwave cavity with resonance frequency f0 = ω0/2π
can be described as

H̃I = 2g0
(
a+ a†

)
σz, (4)

where a† and a are the bosonic creation and annihilation
operators for the cavity photons and a+a† is proportional
to the electric field of the cavity mode. The cavity mode
evolves according to the Hamiltoninan H̃C = ω0a

†a in
units where ~ = 1. We take g0/2π = 30 MHz in what
follows.

In order to describe the dissipative dynamics of the
DQD-cavity system, including its steady state, it is con-
venient to work in the eigenbasis of H̃0. Writing U0 for
the unitary operator that diagonalizes H̃0, we have

H̄0 = U0H̃0U
†
0 =

3∑
n=0

Enσnn, (5)

where E0 ≤ E1 ≤ E2 ≤ E3 are the ordered eigenvalues of
H̃0, σmn = |m〉〈n|, and |n〉 denotes an eigenstate of H̃0

with eigenvalue En. The dipole operator σz then needs
to be transformed into the eigenbasis of H̃0,

D = U0σzU
†
0 =

3∑
m,n=0

dmnσmn, (6)

where the matrix elements dmn = d∗nm determine the
dipole transition matrix elements between energy eigen-
states. When transforming the full Hamiltonian H̃ =
H̃0 + H̃P + H̃C + H̃I into the eigenbasis of H̃0, we have

H̄ = U0H̃U
†
0 where, in H̄P and H̄I the operator σz is

replaced by D.

To remove the time-dependence from our description,
we transform the Hamiltonian H̄ into a frame rotating at
the frequency ωR and make a rotating wave approxima-
tion. Note that in a system with more than two levels,
the choice of a rotating frame is not unique; here, we
choose a rotating frame that allows us to describe tran-
sitions between levels adjacent in energy. The transition
to the rotating frame can be described using the unitary

UR(t) = exp

[
−it

(
ωRa

†a+

3∑
n=0

nωRσnn

)]
. (7)

In the rotating frame, we have

H = URH̄U
†
R + iU̇RU

†
R = H0 +HP +HC +HI , (8)
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with

H0 =

3∑
n=0

(En − nωR)σnn, (9)

HP '
1

4
δε

2∑
n=0

dn+1,nσn+1,n, (10)

HC = ∆0a
†a, (11)

HI ' 2g0

(
a

2∑
n=0

dn+1,nσn+1,n + h.c.

)
, (12)

where ∆0 = ω0 − ωR is the detuning between the cavity
resonance frequency and probe frequency. Here, En and
dn+1,n = d∗n,n+1 have to be obtained from the (numeri-

cal) diagonalization of H̃0. The Hamiltoninan described
by Eqs. (8)–(12) forms the basis of the following the-
oretical analysis of the dispersive readout of the valley
splitting in a DQD.

III. INPUT-OUTPUT THEORY

The response of the DQD system to a microwave
probe field can be determined using input-output the-
ory [42]. We begin by finding the stationary solution for
the equations of motion of the operators a and σn,n+1

in the Heisenberg picture, ȧ = i[H, a] and σ̇n,n+1 =
i[H,σn,n+1], including the relevant dissipative terms,

ȧ = −i∆0a−
κ

2
a+
√
κ1ain,1 +

√
κ2ain,2

−2ig0

2∑
n=0

dn,n+1σn,n+1, (13)

σ̇n,n+1 = −i(En+1 − En − ωR)σn,n+1 −
γ

2
σn,n+1

+
√
γF − 2ig0dn+1,n(pn − pn+1)a, (14)

where κ = κ1 + κ2 + κi is the total cavity decay rate,
with κ1,2 the decay rates through the input and output
ports, and κi the internal decay rate. ain,1 and ain,2 de-
note the incoming parts of the external field at the two
ends of the cavity, and γ and F are the decay rate and
quantum noise within the DQD. For simplicity we have
assumed γ to be equal for all transitions and temperature
independent. In the following we assume a cavity qual-
ity factor Q = f0/κ = 2500 and an electronic dephasing
rate of γ = 2.4 GHz. Although this is a conservative es-
timate, we have checked that the relevant features in the
transmission coefficient are still visible for even stronger
dephasing, γ = 5 GHz.

A previous work considered the cavity-coupled dynam-
ics with the DQD restricted to the ground state energy
level [25]. Thermal population of low lying excited states
may be important in the Si/SiGe system due to small
valley splittings. To account for finite temperature ef-
fects, we have replaced the operator σn,n by the occupa-
tion probability pn = 〈σn,n〉 of the nth DQD level. We

assume a thermal population of the DQD levels with

pn =
e−En/kBT∑
n e
−En/kBT

. (15)

The stationary solution is found by setting σ̇n,n+1 = 0
in Eq. (14), neglecting the quantum noise F , and solving
for σn,n+1, with the result

σn,n+1 =
−2g0dn+1,n(pn − pn+1)

En+1 − En − ωR − iγ/2
a ≡ χn,n+1a, (16)

where we have introduced the electric susceptibility
χn,n+1 pertaining to the n → n + 1 transition. Solv-
ing for a in the stationary limit (ȧ = 0) and calculating
the outgoing field aout =

√
κ2a, we find:

A =
aout
ain

=
−i√κ1κ2

∆0 − iκ/2 + 2g0
∑2
n=0 dn,n+1χn,n+1

, (17)

with the real-valued microwave transmission probability
|A|2 and phase shift ∆φ = − arg(A), which represents the
main analytical result of this paper. In general, the cav-
ity input port is driven with a weak coherent microwave
tone, i.e., ain = α with the coherent-state amplitude α.

IV. RESULTS

Our goal is to extract information about the valley
splittings ER and EL, as well as the valley-dependent
tunneling matrix elements t and t′, from measurements
of the cavity transmission. We expect that the elec-
tric dipole matrix elements at the avoided crossings in
Fig. 1(b) will lead to features in the amplitude and phase
of the microwave field transmitted through the DQD. The
distances between these four features are determined by
ER and EL, thus potentially allowing for the extraction
of those two parameters from the analysis of the spec-
trum. For brevity, we restrict our discussion to the cavity
amplitude response. The phase response provides similar
information [25].

We first demonstrate that the cavity transmission is
sensitive to low lying valley states by evaluating the mi-
crowave transmission probability |A|2 as a function of ε

and T by numerically diagonalizing H̃0 for every value
of ε and filling the states according to Eq. (15). A two-
dimensional plot of |A(ε, T )|2 is shown in Fig. 2(a). Fig-
ures 2(b,c) show cuts through this plot at temperatures
of T = 1 K and T = 250 mK. At low temperatures,
most of the population is in the DQD ground-state and
correspondingly, only the lowest avoided crossing near ε
= 0 is visible. This avoided crossing results in a reduc-
tion in the cavity transmission, as has been observed in
GaAs and InAs DQDs [24, 25]. As the temperature is in-
creased the population of the higher-lying states increases
following Eq. (15) and these states start contributing to
the cavity response. The |L′〉-|R〉 avoided crossing ap-
pears as a smaller dip around ε = −EL ≈ −80µeV.
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Figure 2. (a) Microwave transmission coefficient |A|2 as a
function of the DQD detuning ε and temperature T . The
vertical red dotted lines indicate the anticrossings in the DQD
spectrum (cf. Fig. 1). The horizontal yellow lines indicate two
cuts at temperatures T = 1 K and T = 250 mK for which the
transmission coefficient is plotted separately in (b) and (c).
The tunneling matrix elements between the QDs are assumed
to be t = 25µeV, while those between opposite valleys are
t′ = 13µeV. The microwave resonator frequency is f0 =
ω0/2π = 7.8 GHz = 32µeV and the probe field is on resonance
with the cavity, ωR = ω0. The valley splittings are chosen as
EL = 76 µeV, and ER = 58 µeV.

Due to the smaller left dot valley splitting, the |L〉-|R′〉
avoided crossing has a larger contribution to the cavity
response, resulting in a deeper dip in the cavity trans-
mission around ε = ER ≈ 60µeV. These simulations
demonstrate that valley states can be observed in the
cavity response.

We next show that the cavity response is sensitive to
the magnitude of the valley splitting. Figure 3 shows the
cavity transmission as a function of detuning and right
dot valley splitting. In these simulations the left dot
valley splitting is EL = 70µeV and T = 250 mK. With

Figure 3. (a) Cavity transmission as a function of the inter-
dot bias ε and the right-dot valley splitting ER, with EL =
76µeV, f0 = ω0/2π = 7.8 GHz = 32µeV, ωR = ω0, t = 25
µeV, t′ = 13 µeV, and T = 250 mK. The horizontal yellow
lines indicate two cuts at valley splittings: (b) ER = 100µeV
and (c) ER = 10µeV. The vertical red dotted lines indicate
the anticrossings in the DQD spectrum (cf. Fig. 1) at ε =
−EL and ε = ER; the other avoided crossings are not shown
due to their vicinity to the |L〉 - |R〉 avoided crossing at ε = 0.

ER = 0, the cavity transmission is dominated by the |L〉-
|R〉 ground state anticrossing and the |L′〉-|R〉 anticross-
ing. Here the cavity response is asymmetric with respect
to ε = 0. As the right dot valley splitting increases, a dip
in cavity transmission is observed, which is associated
with the |L〉-|R′〉 anticrossing. The competition between
valley splitting and thermal excitation becomes apparent
as the valley splitting is further increased because the
cavity response is only sensitive to states that are occu-
pied. As a result, the dip in cavity transmission that
is associated with the |L〉-|R′〉 anticrossing becomes less
pronounced with valley splittings beyond ≈ 150µeV. A
second dip in the cavity response emerges for ε > 0 when
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Figure 4. (a) Cavity transmission as a function of ε and the
intervalley matrix element t′. The horizontal yellow lines indi-
cate two cuts at intervalley tunnel couplings: (b) t′ = 12µeV
and (c) t′ = 4µeV. Here, we use a fixed t = 25µeV,
EL = ER = 60µeV, and f0 = ω0/2π = 7.8 GHz = 32µeV,
ωR = ω0, T = 250 mK. The vertical red dotted lines indicate
the anticrossings in the DQD spectrum (cf. Fig. 1).

ER > 80 µeV. This feature is associated with the higher
lying |L′〉-|R′〉avoided crossing.

In semiconductor DQD charge qubit experiments the
interdot tunnel coupling can be tuned using electrostatic
gate voltages. Tunability of the tunnel coupling is ob-
served in charge sensing and photon assisted tunneling
measurements [43–45]. In contrast, little is known about
the experimental tunability of the intervalley coupling.
We now show that the cavity response is sensitive to
changes in the intervalley matrix element t′. The cavity
transmission is plotted as a function of ε and t′ in Fig. 4.
Here the valley splittings are fixed at ER = EL = 60µeV,
t = 25 µeV, and T = 250 mK. For small values of t′ the
|L〉-|R〉 ground state anticrossing dominates the cavity
response leading to a significant reduction in the cavity

transmission near ε = 0. The disappearance of the side
peaks for very small t′ represents a limitation of the pre-
sented method because it prevents the determination of
the valley splittings. This may be improved with lower
frequency resonators, e.g. using simple lumped circuits
[46]. As t′ is increased, the dispersive features associated
with the |L′〉-|R〉 and |L〉-|R′〉 anticrossings broaden and
become more pronounced [see Fig. 4(b)]. The avoided
crossings in the energy level diagram begin to merge and
are not well defined for t′ > 20µeV. As a result, a
broad dip is observed in the cavity transmission, cen-
tered around ε = 0. These theoretical predictions show
that measurements of the cavity transmission may lead
to useful characterization of the intervalley coupling rate.

As long as the local valley eigenstates of the individual
QDs do not differ too much from the ±z valley basis
states, we can expect that t′ ≤ t. However, one can
envision other situations where t′ exceeds t, where, e.g.,
t ∼ 0 and t′ > 0. In Fig. 5, we have analyzed the cavity
transmission for this case as a function of t′. There is no
dispersive feature around zero detuning for t ∼ 0 due to
the absence of an avoided crossing between the |R〉 and
|L〉 charge states at ε = 0 and between the |R′〉 and |L′〉
charge states at ε = ER−EL. The remaining two avoided
crossings with splittings 2t′ at ε = −EL and ε = ER
lead to two dispersive features. For 2t′ < f0, the probe
frequency matches the level spacing for a pair of values
of ε to the left and right of each of these anticrossings,
thus the appearance of two double peaks. These double
peaks merge around the resonance 2t′ ∼ f0 and then
fade out for 2t′ > f0 where the probe frequency becomes
off-resonant.

V. CONCLUSIONS

cQED-based approaches to quantum information sci-
ence have been very productive [47]. They have allowed
long-range coupling of qubits, high fidelity readout of
cavity coupled quantum devices, and investigations of
mesoscopic physics. In this paper, we have demonstrated
that the cQED architecture can be used as a sensitive
probe of low-lying valley states. For realistic device pa-
rameters, the cavity transmission exhibits dips that are
associated with energy level anticrossings with low ly-
ing valley states. The position of these dips in cavity
transmission yields the valley splittings. The tempera-
ture dependence of the cavity response also gives infor-
mation on the magnitude of the valley splitting. Since
the cavity probes the susceptibility of the DQD, it is also
sensitive to the curvature of the energy levels, and can
be used to extract the intervalley matrix elements. Due
to the high energy resolution of narrow-band microwave
spectroscopy, coupling Si/SiGe QDs to microwave cavi-
ties may allow for efficient measurements of valley split-
tings in an approach that is complementary to existing
approaches, such as magnetospectroscopy [20, 48] or the
quantum Hall effect [49, 50]. The method presented in
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Figure 5. Cavity transmission as a function of ε and the inter-
valley matrix element t′ for t ∼ 0. Here, we use EL = ER =
60µeV, and f0 = ω0/2π = 7.8 GHz = 32µeV, ωR = ω0, T =
250 mK. The yellow horizontal line indicates t′ = f0/2 where
the double lines merge into single lines. The vertical red dot-
ted lines indicate the anticrossings in the DQD spectrum (cf.
Fig. 1).

this paper can potentially be applied to probe the energy
level structure of different types of quantum dots, e.g.
Zeeman energies for spin sublevels in a gradient field [51]
or spatially varying g-factors in strong spin-orbit systems
[52].
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Appendix A: Valley-dependent model of a double
quantum dot

Here, we derive our model Eq. (1) for a single elec-
tron in a DQD with a single valley-degenerate orbital in
each QD. We start from a description of the DQD in
a common valley basis for both QDs because it allows

us to formulate a model for valley-preserving tunneling
through the smooth electrostatic barrier between the two
QDs. We then obtain Eq. (1) by changing into the local
valley eigenbasis in each QD.

The state of the electron on the left (right) QD is
denoted |l〉 (|r〉), and we introduce the Pauli operators
in this left-right orbital Hilbert space as σz|l〉 = +|l〉
and σz|r〉 = −|r〉, and σx|l〉 = |r〉, etc. The valley-
independent part of the DQD Hamiltonian can be written
as

Hd =
ε

2
σz + tcσx, (A1)

where ε represents the DQD energy detuning (bias) en-
ergy and tc the inter-dot tunneling matrix element which
we can choose to be real.

The two low-energy valley states in the extended two-
dimensional electron system in a Si/SiGe quantum well
are denoted | ± z〉, and we introduce the corresponding
valley Pauli operators τ ′z|±z〉 = ±|±z〉, τ ′x|+z〉 = |−z〉,
etc. The most general two-level valley Hamiltonian for
each of the two individual QDs can then be written as
δi ·τ ′/2 where i = l, r and δi is an arbitrary vector whose
length determines the bare valley splitting in QD i. Using
the sum and difference δ± = (δl ± δr)/2, we can write
the valley Hamiltonian of the DQD as

H ′v =
1

2

∑
i=l,r

|i〉〈i| δi · τ ′ =
1

2
(δ+ + σzδ−) · τ ′. (A2)

Rotating the valley basis such that the common τz valley
quantization axis is parallel to δ+ and the τx axis along
the projection of δ− into the plane perpendicular to δ+,
we find

H ′v =
δ

2
τz +

1

2
(δzτz + δxτx)σz. (A3)

Combining Hd and H ′v, we obtain

H ′0 = Hd +H ′v =

(
HL tc11
tc11 HR

)
, (A4)

where 11 denotes the 2x2 identity matrix and

HL =
ε

2
+
EL
2

+
EL
2

(
cos θL sin θL
sin θL − cos θL

)
, (A5)

HR = − ε
2

+
ER
2

+
ER
2

(
cos θR sin θR
sin θR − cos θR

)
, (A6)

with the valley splittings and angles

∆L = δ + δz, (A7)

∆R = δ − δz, (A8)

EL,R =
√

∆2
L,R + δ2x, (A9)

tan θL,R =
δx

∆L,R
. (A10)

We have shifted the definition of ε by (EL − ER)/2 and

omitted an irrelevant constant energy shift by
√
δ2 + δ2x,
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in order to center the level crossing of the lower valley
eigenstates in the left and right QD at ε = 0 and zero en-
ergy. In order to obtain Eq. (1), we rotate the valley basis
about the y-axis by θi in QD i, using the transformation

U =


cos θL2 sin θL

2 0 0
− sin θL

2 cos θL2 0 0
0 0 cos θR2 sin θR

2

0 0 − sin θR
2 cos θR2

 , (A11)

and obtain

H̃0 = UH ′0U
† =

ε/2 + EL 0 t t′

0 ε/2 −t′ t
t −t′ −ε/2 + ER 0
t′ t 0 −ε/2

 ,

(A12)

with

t = tc cos

(
θL + θR

2

)
, (A13)

t′ = tc sin

(
θL + θR

2

)
. (A14)

Here, since tc was chosen real, both t and t′ will be real.
The Hamiltonian Eq. (A12) is expressed in the local val-
ley eigenbasis,

|L′〉 = |l〉
(

cos
θL
2
|+ z〉+ sin

θL
2
| − z〉

)
, (A15)

|L〉 = |l〉
(
− sin

θL
2
|+ z〉+ cos

θL
2
| − z〉

)
, (A16)

|R′〉 = |r〉
(

cos
θR
2
|+ z〉+ sin

θR
2
| − z〉

)
, (A17)

|R〉 = |r〉
(
− sin

θR
2
|+ z〉+ cos

θR
2
| − z〉

)
. (A18)
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