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We theoretically address the effects of strong magnetic fields in three-dimensional Weyl semimet-
als (WSMs) built out of Weyl nodes with a monopole charge n. For n = 1, 2 and 3 we realize single,
double, and triple WSM, respectively and the monopole charge n determines the integer topological
invariant of the WSM. Within the linearized continuum description, the quasiparticle spectrum is
then composed of Landau levels (LLs), containing exactly n number of chiral zeroth Landau levels
(ZLLs), irrespective of the orientation of the magnetic field. In the presence of strong backscattering,
for example, (due to quenched disorder associated with random impurities), these systems generi-
cally give rise to longitudinal magnetotransport. Restricting ourselves to the quantum limit (and
assuming only the subspace of the ZLLs to be partially filled) and mainly accounting for Gaussian
impurities, we show that the longitudinal magnetoconductivity (LMC) in all members of the Weyl
family displays a positive linear-B scaling, when the field is applied along the axis that separates
the Weyl nodes. But, in double and triple WSM, LMC displays a smooth crossover to a nonlinear
B-dependence as the field is tilted away from such a high-symmetry direction. In addition, due to
the enhanced density of states, the LL quantization can trigger instabilities toward the formation
of translational symmetry breaking density-wave orderings for sufficiently weak interaction (BCS
instability), which gaps out the ZLLs. Concomitantly as the temperature (magnetic field) is gradu-
ally decreased (increased) the LMC becomes negative. Thus WSMs with arbitrary monopole charge
(n) can host an intriguing interplay of LL quantization, longitudinal magnetotransport (a possible
manifestation of one-dimensional chiral or axial anomaly), and density-wave ordering, when placed
in a strong magnetic field.

I. INTRODUCTION

Strong spin-orbit coupling is the fundamental origin
of several topological phases of matter, such as topo-
logical insulators and superconductors in two and three
spatial dimensions1–6. The salient features of these sys-
tems are (i) an insulating bulk (electrical or thermal),
and (ii) topologically protected metallic surface states
(which could be superconducting depending on the situ-
ation). Among such gapless phases, the ones (so-called
Weyl materials) formed by chiral Weyl fermions have at-
tracted considerable recent attention and may serve as an
experimental platform where various exotic phenomena
(such as axionic electrodynamics and chiral anomaly),
which were originally proposed in the context of high
energy physics and quantum field theory, may be ob-
served in the context of solid state physics7–9. The
current work is a comprehensive theoretical study of
the strong-field magnetotransport properties of gener-
alized three-dimensional Weyl systems (with arbitrary
monopole charges) in the quantum limit.

Weyl fermions may result from complex band struc-
tures in strong spin-orbit coupled semiconductors10–24,
multilayer heterostructures25–30, and they can also be
found inside a broken symmetry phase in strongly corre-
lated materials, such as 227 pyrochlore iridates, as emer-
gent quasiparticles31–34. The Weyl semimetals (WSMs)
can be classified into two broad categories: (i) Inver-
sion (P) symmetry breaking WSMs that are commonly
found in weakly correlated semiconductors, and (ii) time-

reversal (T ) odd WSMs that can be found in strongly
correlated materials with comparable strength of spin-
orbit coupling and electronic interaction. However, ir-
respective of the microscopic origin, WSMs are com-
posed of Weyl nodes in the reciprocal space, where
Kramers non-degenerate valence and conduction bands
touch each other at the so-called diabolic points in mo-
mentum space35. The Weyl nodes act as the source
(monopole) and sink (anti-monopole) of Abelian Berry
flux, and in its close vicinity, Weyl fermions can be identi-
fied as left (right) chiral fermions. A no-go theorem guar-
antees the existence of an equal number of left and right
chiral fermions in the system36. The monopole charge
(n) also dictates the amount of Berry flux enclosed by a
plane perpendicular to the line joining these two points
and in turn defines the integer topological invariant of
the system. Thus monopole charge permits a topolog-
ical classification of Weyl semimetals, and for n = 1, 2
and 3 we can call them single, double and triple WSM,
respectively. The most common Weyl system has just
n = 1 whereas the system with arbitrary n can be re-
garded as a generalized Weyl system. (In the current
work we consider magnetotransport in single, double, and
triple WSMs although our theory is generalizable to even
higher values of n, but it is well-known that Weyl sys-
tems with monopole charge n > 3 is not allowed in three-
dimensional lattice systems37,38, and therefore our work
applies to all possible physical Weyl materials that can
be studied in the laboratory.) The energy-momentum
dispersion of Weyl quasiparticles in these systems along
various high-symmetry directions is shown in Fig. 1. Al-
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FIG. 1: (a) Spectrum of Weyl fermions along the kz direction
in any Weyl semimetal. Dispersion in the xy plane respec-
tively for (b) single, (c) double and (d) triple Weyl semimet-
als. Notice that E ∼ |k⊥|n, where n is the monopole charge
and k⊥ = (kx, ky), but E ∼ |kz| in all Weyl semimetals.

though the Weyl nodes are often accompanied by unit
monopole charge, it is nonetheless conceivable to realize
Weyl nodes with a higher integer charge and the system
with arbitrary n can be regarded as a generalized Weyl
system, such as the proposed double WSM in HgCr2Se4

and SrSi2
37–39. Even though the material existence of a

triple WSM has remained elusive so far, with the antici-
pated progress of materials science the discovery of such
a generalized triple WSM is certainly possible. Most, if
essentially not all, of the substantial theoretical litera-
ture on WSMs have focused on the single WSM because
the existing experimental materials are all WSMs with
n = 1. On the other hand, there are significant dif-
ferences in the properties of generalized WSMs depend-
ing on their monopole charges, necessitating theoretical
studies of multi-WSMs with higher (n > 1) values of
monopole charges, which is what we do in the current
work considering n = 2 and 3, and contrasting their prop-
erties with n = 1 WSM (and with each other).

The integer topological invariant also determines var-
ious thermodynamic, transport, and topological proper-
ties of a WSM. For example, one of the hallmark signa-
tures of a WSM is the presence of topologically protected
Fermi arc31 that has recently been seen through angle re-
solved photoemission spectroscopy (ARPES), scanning
tunneling microscopy (STM), and quantum oscillation
measurements17–22,40,41. In a multi-WSM the Fermi arc
bears an additional n-fold degeneracy, where n is the
monopole charge of Weyl nodes. Therefore, in double
and triple WSMs, the Fermi arc respectively possesses
two and three fold orbital degeneracies, which, for ex-
ample, can be detected in ARPES and STM. We here
explore the ramifications of the underlying topological
invariant of a pristine WSM, when the system is placed
in a strong magnetic field. Our theoretical findings are
the following:

1. When placed in a strong magnetic field, WSMs un-
dergo Landau level (LL) quantization, supporting
exactly n number of zeroth Landau levels (ZLLs),
irrespective of the field orientation (within contin-
uum approximation). All LLs, including the zeroth
ones, disperse along the direction of the applied
field. Thus, the orbital degeneracy of ZLL (n) gets
tied with the monopole charge or topological in-
variant of the Weyl nodes.

2. Even though n dispersive ZLLs always go through
zero energy (in the continuum limit), they are in
general non-degenerate, unless the field is applied
along the axis on which Weyl nodes reside in the
absence of the field [see Figs. 5(a) and 5(b)].

3. Density of states (DOS) displays nontrivial de-
pendence (such as its periodicity) on the tilting
angle of the magnetic field away from a high-
symmetry direction, separating the Weyl nodes [see
Figs. 6 and 7]. Such intriguing features can be ob-
served in angle resolved quantum oscillation mea-
surements42,43.

A strong magnetic field causes an effective reduction
of the dimensionality of the system. In particular, each
branch of ZLLs cuts the zero energy (where the Fermi
energy is pinned) at two isolated points in the Bril-
louin zone, yielding two field-induced Weyl nodes, around
which the quasiparticles are once again described as (one-
dimensional) chiral (left and right) fermions (We note
that the effective reduction of a generic three-dimensional
electron system to an apparent one-dimensional electron
gas along the magnetic field direction is of course a well-
known effect of the strong field limit where LL coupling
can be ignored—for WSMs this dimensional reduction
leads to effectively chiral one-dimensional fermion sys-
tems.). If an electric field (E) is now applied in paral-
lel to the magnetic field, it can produce charge transfer
from left to right Weyl nodes, causing violation of sepa-
rate conservation laws for left and right chiral fermions,
captured by the following anomaly equation44,45

∂µ (jµ,R − jµ,L) = N
eE

~π
. (1)

Here, e is the electric charge, jµ,R/L is the charge (for
µ = 0) and current (for µ = 1) operator for left/right
chiral fermion, and N can be identified as the total de-
generacy of the effective one-dimensional system. The
total charge and current density is respectively given by
j0 = Ψ†Ψ and j1 = Ψ†σ3Ψ, where Ψ> = (ΨL,ΨR) is
a two-component spinor, describing the emergent one-
dimensional world. Due to the reduced dimensionality
of the system, one can define σ3 ≡ γ5, and accordingly
we can define axial or chiral charge and current density
as jax0 = Ψ†γ5Ψ = j1 and jax1 = Ψ†Ψ = j0. Hence,
one can express Eq. (1) as ∂µj

ax
µ = N(eE)/(~π). In

the language of quantum field theory, such a violation of
separate conservation laws for left and right fermions is



3

known as chiral anomaly, specific to odd spatial dimen-
sions. In regular WSM, the degeneracy of the ZLL plays
the role of N , whereas in WSMs with n 6= 1, N = n × LL
degeneracy. Therefore, upon identifying N as the total
degeneracy of the generalized WSM ZLL, we arrive at
the quantum field theoretic Adler-Jackiw-Bell anomaly
equation44,46,47

∂µj
ax
µ = n

e2

2π2~
E ·B, (2)

now generalized for the generalized Weyl system, con-
stituted by Weyl nodes with an arbitrary (integer)
monopole charge n. Notice that here electric (E) and
magnetic (B) fields are strictly static Abelian background
fields. We also stress that in the above expression E ·B
can never be negative as the B-linear dependence arises
from the LL DOS, and insensitive to the direction of ap-
plied electric and magnetic field.

Such a tantalizing quantum field theoretic chiral
anomaly analogy has led to considerable theoretical48–70

and experimental71–84 activities aimed at demonstrating
the manifestation of chiral anomaly in solid state Weyl
materials through longitudinal magnetotransport (LMT)
studies. It is, however, unclear that these chiral anomaly
considerations apply directly in solid state materials since
the nonconservation of the chiral current in the quantum
field theoretic Adler-Jackiw-Bell anomaly crucially de-
pends on the existence of an unbounded linear dispersion
of Weyl fermions44–47, whereas in all solid state systems
the energy dispersion is unavoidably bounded by the nat-
ural lattice cut off. However in a pioneering work Nielsen
and Ninomiya showed that certain gapless semiconduc-
tors accommodating linear touching of valence and con-
duction bands can give rise to LMT arising essentially
from the chiral anomaly physics of current nonconserva-
tion85. In this regard, we must recall that almost thirty
years before the proposal of Nielsen and Ninomiya, Adam
and Argyres demonstrated the generic existence of LMT
for conventional three-dimensional Fermi liquids, i.e., or-
dinary metals and doped semiconductors, without invok-
ing the notion of chiral or axial anomaly86. Their deriva-
tion of LMT solely relies on few generic features of a
three-dimensional electronic system in a strong magnetic
field: (i) the existence of one-dimensional dispersive LLs
since momentum along the applied magnetic field is a
conserved quantity, and (ii) at least one partially filled LL
that cuts Fermi energy at two isolated points (or in gen-
eral even number of points in the Brillouin zone). There-
fore, the existence of LMT in the absence of the classi-
cal Lorentz force (when E and B are parallel) necessar-
ily points toward subtle quantum mechanical effects, but
not necessarily has a direct connection to chiral anomaly.
Specifically, the chiral anomaly implies an LMT through
the Nielsen-Ninomiya mechanism, but the reverse is not
true, i.e., the existence of an LMT does not necessarily
imply a chiral anomaly—LMT is necessary, but by no
means sufficient, for the existence of the chiral anomaly.

Recently Goswami et al. in Ref. [87] have demon-
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FIG. 2: (Color online) Schematic representation of the applied
electric (E) and magnetic (B) fields (always parallel). Quasi-
particle dispersion along z direction is vzkz, while in the xy
plane is proportional to |k⊥|n/2, where k⊥ = (kx, ky). Here,
θ parametrizes the tilting of magnetic field away from the z
direction. Weyl nodes are separated along the z direction.

strated the universal existence of LMT for “a generic
three-dimensional metal”. Obviously, this LMC of
Ref. [87] has nothing whatsoever to do with any chiral
anomaly in the quantum field theoretic sense, demon-
strating that the existence of LMT by itself cannot be
construed to necessarily imply the existence of a chiral
anomaly in the parent material. We here follow the phi-
losophy of Ref. [87] and show that any WSM with ar-
bitrary monopole charge displays LMT when placed in
a strong magnetic field without invoking the physics of
chiral anomaly. For the sake of technical simplicity we
assume that only the manifold of ZLLs is partially filled,
i.e., the system is in the strong-field limit. However, our
analysis can be generalized to demonstrate generic LMT
in Weyl materials even when multiple LLs are partially
filled. The LMT we predict theoretically is a generic
property of impurity scattering in the strong-field limit
as was originally pointed out in Ref. [86] a long time ago
in the context of doped bulk semiconductors. Our cur-
rent work is a generalization of the work of Goswami et
al.87, who considered an ordinary 3D electron gas model
for a simple metal subjected to a strong magnetic field,
whereas we consider a WSM with arbitrary monopole
charge n (= 1, 2, 3) subjected to a magnetic field. Our
results support and further reinforce the conclusion of
Ref. [87], showing that LMC may very well be a generic
property of 3D systems subjected to a strong magnetic
field and impurity scattering.

In the presence of the periodic potential in a solid, aris-
ing from the ionic lattice, quasiparticles perform Bloch
oscillations and consequently the system cannot sustain
any finite steady-state current88. Nevertheless, in the
presence of a momentum relaxation mechanism, which
is naturally offered by impurity scattering, quasiparti-
cles lose the freedom to perform a complete Bloch os-
cillation, and consequently a metallic system can sup-
port finite steady-state current, when the relaxation or
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transport lifetime (τ) is much shorter than the Bloch
oscillation period. (In this work, we focus on the low-
temperature situation where impurity scattering is the
primary scattering mechanism for transport as phonons
are mostly frozen out.) However, in the presence of a
strong magnetic field, i.e. when ωcτ � 1 where ωc is
the cyclotron frequency, the orbit of the carriers is so
curved that the period of completing a cyclotron mo-
tion becomes comparable (or actually much longer than)
to the time between two successive impurity collisions.
Then, the transport/relaxation time acquires a strong
magnetic field dependence and τ = τ(B). In this strong-
field limit, one cannot assume the relaxation time to be
field-independent which is the standard approximation
in metallic transport since in metals one is often in the
weak-field semiclassical limit where ωcτ � 1. Such a field
dependence of τ is extracted here by using the quantum
Boltzmann equation, but omitted in the semiclassical the-
ory (where the transport relaxation time is taken to be
field-independent), which therefore is applicable for ex-
tremely weak magnetic fields (ωcτ � 1). But, for suffi-
ciently weak magnetic fields one needs to account for yet
another pure quantum mechanical effect, the weak local-
ization89,90, which arises from quantum interference of
electron paths—our theory neglects the weak localization
physics since the strong magnetic field completely breaks
the time reversal invariance, suppressing all weak local-
ization effects. Presently it is unknown how to take into
account all of these quantum effects at an arbitrary mag-
netic field in a unified theoretical framework, and restrict-
ing ourselves to the strong-field quantum limit ωcτ � 1
we establish the following theoretically:

1. In the presence of both Gaussian and Coulomb
impurities, we extract the magnetic field depen-
dence of transport lifetime using quantum Boltz-
mann equation, and show that all WSMs manifest
positive longitudinal magnetoconductivity (LMC)
or negative longitudinal magnetoresistivity (LMR),
when the magnetic and electric fields are applied
parallel to each other (see Fig. 2).

2. Due to the carrier-induced screening of Coulomb
potential (arising from finite DOS of LLs), we
mainly focus on Gaussian impurities and show that
when the fields are applied along a high-symmetry
axis separating the Weyl nodes, the LMC increases
linearly with B in all WSMs (see Fig. 8). The
LMC in the presence of only Coulomb impurities
grows as B2, but only in extreme strong field limit
(We believe that the same result applies to screened
Coulomb impurity potential also since screening
renders the Coulomb potential into a short-range
scattering potential similar to the Gaussian case.).

3. Although such a linear increase of LMC is insensi-
tive to the field orientation in single WSMs (with
monopole charge n = 1), LMC develops a nonlin-
ear dependence on the magnetic field in double and

triple WSMs when the magnetic field is tilted away
from the high-symmetry axis (see Figs. 9 and 10).
Thus, the quantitative field dependence of LMC
depends on the WSM monopole charge whereas
the qualitative existence of the negative LMR it-
self (positive LMC) is generic in all WSMs in the
strong-field regime.

We also investigate the role of electronic interaction
on LMT as the temperature (magnetic field) is gradu-
ally decreased (increased). The DOS in a pristine WSM
scales as E2/n and the Weyl nodes are extremely ro-
bust against weak short-range electron-electron interac-
tion. However, due to the Landau quantization induced
by the external magnetic field, the DOS for the emergent
one-dimensional system (along the field direction due to
the quantization of the transverse motion) is constant,
which in turn can trigger various density-wave instabil-
ities even when the electronic interaction is sufficiently
weak. The main interaction effects of interactions can be
summarized as the following:

1. Depending on the microscopic details, ZLLs can un-
dergo a weak coupling (BCS-like) instability in the
charge-density-wave (CDW) or spin-density-wave
(SDW) channel as common in one-dimensional elec-
tron systems. Irrespective of the actual nature
of the ordering the density-wave orders break the
translational symmetry and gap out the ZLLs.

2. When the field is applied along the high-symmetry
axis all n number of ZLLs are expected to undergo
density-wave ordering simultaneously. Thus, below
the transition temperature (Tc) LMC (LMR) be-
comes negative (positive), reversing the trend com-
pared with the normal phase with no density-wave
ordering. However, upon tilting the field away from
the high-symmetry axis, the exact n-fold degener-
acy of ZLLs is lifted, and the system can undergo
a cascade of density-wave transitions with distinct
transition temperatures. Hence, LMC/LMR in a
multi-WSM is expected to display n-fold disconti-
nuity before it becomes negative/positive.

Although such ordering in a clean system (devoid of
any impurity) should take place for arbitrarily weak in-
teraction, disorder naturally reduces the propensity to-
wards such translational symmetry breaking ordering91

(We mention that there is no Anderson theorem here
protecting the symmetry-broken phase against impurity
scattering.). Thus clear signatures of CDW or SDW or-
dering can only be observed in clean systems at suffi-
ciently low temperatures and for strong enough magnetic
fields (and at low enough disorder).

The rest of the paper is organized in the following way.
In Sec. II, we discuss the possibility of realizing Weyl
semimetals with different monopole charge and address
their topological properties (such as bulk-boundary cor-
respondence through degeneracy of Fermi arc). Sec. III
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FIG. 3: (Color online) Vector field plots for the Berry curvature for Weyl fermion, (a) when the Weyl nodes are monopole
(source) and anti-monopole (sink) of Berry curvature, with unit charge. In double and triple WSMs the Weyl nodes are source
and sink of Berry curvature with charge two and three, respectively, and the vector field plots are shown in panel (b) and (c).

is devoted to the demonstration of LL spectra in single,
double and triple WSMs for arbitrary orientation of the
magnetic field. DOS in these systems in the presence of
a strong magnetic field is presented in Sec. IV. Longi-
tudinal magnetotransport for all members of the Weyl
family constitutes the central theme of Sec. V. Effects
of various density-wave ordering on LMT are discussed
in Sec. VI. We summarize the main findings in Sec. VII.
Some technical details are relegated to the Appendices.

II. WEYL SEMIMETALS: A GENERAL
CONSTRUCTION AND TOPOLOGY

A WSM is realized when a three-dimensional solid
state system lacks inversion and/or time-reversal sym-
metry, and the Kramers non-degenerate valence and con-
duction bands touch each other at isolated points in the
Brillouin zone, known as Weyl nodes. The simplest real-
ization (composed of only two Weyl points) arises from
the following tight-binding model in a cubic lattice

H =
∑
k

Ψ†k
[
σ1N1(k⊥)+σ2N2(k⊥)+σ3N3(k)

]
Ψk, (3)

where k⊥ = (kx, ky), Ψ>(k) = (c↑,k, c↓,k) is a two com-
ponent spinor and σi are three Pauli matrices. With the
following choice

N3(k) = −t[2− cos(kxa)− cos(kya)]− t cos(kza) +mz,

where a is the lattice spacing, two Weyl nodes are
located along one of the C4v axes, namely at kz =
± cos−1[mz/(tza)]. Now, if we choose N1(k) =
t sin(kxa) and N2(k) = t sin(kya), two Weyl nodes with
monopole charge ±1 are realized at ±K0, where K0 =
(0, 0, cos−1[mz/(tza)]). The linearized Hamiltonian for

single WSM in the vicinity of the Γ = (0, 0, 0) point is

H1 = ~(vxσ1kx + vyσ2ky)− σ3

~2
(
k2
z + k2

⊥
)

2m
+ ∆, (4)

where vjs are the Fermi velocity of Weyl quasiparticles,
vx = vy = ta, m−1 = ta2, ∆ = mz − t, and the mo-
mentum (k) is measured from the Γ points. In the close
proximity to these two Weyl points the low-energy exci-
tations are respectively described by left and right chi-
ral fermion, constituting source and sink of the Abelian
Berry curvature, respectively. In an appropriate crys-
tallographic environment it is also conceivable to realize
Weyl points with higher monopole charge37,38. In par-
ticular Weyl nodes with monopole charge two and three
can respectively be stabilized when the underlying lat-
tice possesses tetragonal C4v and C6v symmetries, respec-
tively37,38. A double WSM, for example, can be realized
from Eq. (3) by choosing N1(k) = t[cos(kxa)− cos(kya)],
N2(k) = t sin(kxa) sin(kya), while leaving N3(k) un-
changed92. But, in three spatial dimensions it is impos-
sible to realize Weyl nodes with monopole charge larger
than three from an underlying lattice model.

The above construction can also be viewed in the fol-
lowing way that will allow us to identify the topologi-
cal invariant of these systems. Note that WSMs can be
constructed by appropriately stacking two-dimensional
layers of quantum anomalous Hall insulators (QAHI)
in the Brillouin zone along the kz-direction. A two-
dimensional QAHI supports quantized Hall conductiv-
ity σxy = ne2/h, where n represents the number of
one-dimensional chiral edge states. For each kz, satis-

fying −
√

2m∆
~ < kz <

√
2m∆
~ , the pseudospin texture

is skyrmion, with skyrmion number n, and two Weyl
nodes appear as singularities in the Brillouin zone, across
which the skyrmion number jumps by ±n. When stacked
along the kz direction, the chiral edge modes from two-
dimensional layers of QAHI produce the Fermi arc, pos-
sessing an n-fold orbital degeneracy. The topological
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invariant of a WSM can be assessed from the gauge-
invariant Berry curvature defined as93

Ωn,k,a =
(−1)n

4
εabcnk ·

[
∂nk

∂kb
× ∂nk

∂kc

]
, (5)

where nk = Nk/|Nk|, and n = ± corresponds to valence
and conduction band, respectively. Upon evaluating the
components of the Abelian Berry curvature we plot it in
Figs. 3(a), 3(b) and 3(c) respectively for single, dou-
ble and triple WSM. The components of Berry curvature
Ωn,k,x and Ωn,k,y are odd function of kx and ky respec-
tively. Hence, the number of field lines coming in and out
of the xz or yz planes are equal, and the net Berry flux
through these planes is zero. On the other hand, Ωn,k,z
is an even function of k and the net Berry flux through
the xy plane is 2πS(kz), where S(kz) is the Chern num-
ber of effective two-dimensional system for a fixed kz. For

−
√

2m∆
~ < kz <

√
2m∆
~ , S(kz) = n, while S(kz) = 0 when

|kz| >
√

2m∆
~ . Therefore, two Weyl points in a general

WSM act as source and sink of Abelian Berry curvature,
across which the Chern number of the underlying two-
dimensional system jumps by an integer amount n.

In the low-energy limit the Hamiltonian for an WSM,
constituted by Weyl nodes with monopole charge ±n is
compactly written as

H±n =

(
±vz~kz +

~2k2⊥
2m αn (~k⊥)n e−inθk

αn (~k⊥)n einθk ∓vz~kz − ~2k2⊥
2m

)
, (6)

after linearizing the generalized version of the Hamilto-
nian from Eq. (4) for general WSM around ±k0

z , where

k0
z =
√

2m∆. In the above equation, therefore, kz is mea-
sured from ±k0

z . Thus, α1 and α2 respectively bear the
unit of Fermi velocity and inverse of mass.

The majority of the known Weyl materials only break
the inversion symmetry and the Weyl nodes are placed
at different energies. Notice that the WSM arising from
the tight-binding model, defined in Eq. (3), breaks both
time-reversal and inversion symmetries, but the Weyl
nodes are still located at the same energy. With sim-
ple modifications in this tight-binding model, for exam-
ple by adding a term [∆0 +∆ch sin(kzc)]σ0 to Eq.(3), the
Weyl nodes can be placed at different energies, namely
at ∆0 ±∆ch. Here, ∆0 and ∆ch are respectively regular
and chiral chemical potentials. However, our following
discussion on various aspects of Weyl fermions in a strong
magnetic field is qualitatively insensitive to such details
of the system. Next we demonstrate how the underlying
topological invariant of a WSM manifests through the
LL spectrum when the system is subjected to a strong
magnetic field.

III. LANDAU LEVELS

-3 -2 -1 0 1 2 3

-5

0

5

kz

✏

FIG. 4: (Color online) Landau level (LL) spectrum in sin-
gle Weyl semimetal, obtained from Eq. (6) when n = 1. For
details see Appendix A. Here the zeroth LL (red curve) is non-
degenerate, and the energy ε (in units of 2α2

1~2/`2B) is mea-
sured about a reference or zero point energy ~2/(2m`2B). At
half-filling the zeroth LL cuts the Fermi energy (dotted line)
at kz = ±π/(2a) (we set a = 1 for convenience)87. Similar
LL spectrum is found for double and triple Weyl semimet-
als, for which, however, the zeroth LL has two and three fold
degenerate, respectively.

Effects of the magnetic field applied in an arbitrary
direction, can be captured through minimal coupling
k → k − eA ≡ π, where A is the vector potential, e
is electronic charge and the magnetic field is given by
B = ∇ × A. Before delving with the situation when
the magnetic field is tilted away from the z direction
(parametrized by θ, see Fig. 2), let us first focus on
a simpler situation when the field is applied along the
z-direction, i.e. B = (0, 0, 1)B, for which momentum
kz is a conserved quantity. We can analytically obtain
the LL spectrum94,95. For simplicity, we work with the
Landau gauge A = (0, Bx, 0), and define the raising

and lowering operators as a = `(πx − iπy)/(
√

2~) and

a† = `(πx + iπy)/(
√

2~), where ` =
√

~/eB is the mag-
netic length, and [πx, πy] = −i~eB. The low energy
Hamiltonian for a general Weyl semimetal then reads as

Hn,θ=0 =

 ~vzkz αn
(
√

2~a)n

`n

αn
(
√

2~a)n

`n
−~vzkz

 . (7)

We here omit the term ~2k2
⊥/(2m) with respect to kx and

ky for small momentum (near the Weyl nodes), mainly
since inclusion of such term causes an overall shift in the
LL energy at least when B = Bẑ. The LL spectrum can
then be readily obtained, yielding

Es,n,m(kz)

= s

√
v2
z~2k2

z +
2~2α2

1

`2
m, (m ≥ 1)

= s

√
v2
z~2k2

z +
4~4α2

2

`4
m(m− 1), (m ≥ 2) (8)
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FIG. 5: (Color online) (a) Landau level spectrum for double-Weyl semimetals when the magnetic field is B = 1 T and the
direction of applied field is characterized by (i) θ = 3π/100, (ii) θ = π/4, (iii) θ = π/3, and (iv) θ = π/2 for vz = 658.2 meV·nm
and α2 = 500 meV·nm2. (b) Landau level spectrum for triple-Weyl semimetals for same orientations of the magnetic field for
vz = 658.2 meV·nm and α3 = 1782.29 meV·nm3.

= s

√
v2
z~2k2

z +
8~6α2

3

`6
m(m− 1)(m− 2), (m ≥ 3),

for s = ± for single, double and triple WSM, respectively.
For simple WSM the ZLL is comprised of a single branch
with energy En=0(kz) = −~vkz, while for double WSM
En=0(kz) = En=1(kz) = −~vkz and for a triple WSM
En=0(kz) = En=1(kz) = En=2(kz) = −~vkz. Thus, the
ZLL for double and triple WSM enjoys additional two
and three fold orbital degeneracy, respectively. We ob-
tain exactly n number of ZLL in the presence of bounded
dispersion from a lattice model, as shown in Fig. 4 when
B = Bẑ. Details of the calculation are provided in
Appendix A. Thus, the integer topological invariant of
a WSM or monopole charge of the Weyl nodes sets the
orbital degeneracy of the ZLL, at least when the field is
applied along the separation of the Weyl nodes. When the
underlying lattice potential is taken into account, giving
rise to bounded dispersion, the ZLL cuts the zero energy
at kz = ±π/(2a), and in the following we focus near one
such Weyl point.

Next we will show that the orbital degeneracy of ZLL
remains unaffected with the tilting of the magnetic field
away from the z-direction (θ 6= 0), at least within the
continuum description. For concreteness, we take the
following vector potential A = (0, Bx cos θ,−Bx sin θ),
giving rise to B = (0, B sin θ,B cos θ). The commuta-
tion relations between different momentum operators are
given by [πx, πy] = −i~eB cos θ and [πx, πz] = i~eB sin θ.
We can define a pair of raising and lowering operators as

a =
`√
2~

[πx − i(πy cos θ − πz sin θ)],

a† =
`√
2~

[πx + i(πy cos θ − πz sin θ)], (9)

which satisfies the standard commutation relation
[a, a†] = 1. The momentum along the magnetic field,
defined as k0 ≡ ky sin θ + kz cos θ, is a conserved quan-
tity, and we find

πx =
~√
2`

(a+ a†), πy = ~k0 sin θ +
i~√
2`

(a− a†) cos θ,

πz = ~k0 cos θ − i~√
2`

(a− a†) sin θ. (10)

The LL spectrum for an arbitrary orientation of the mag-
netic field (θ 6= 0) for arbitrary monopole charge n can-
not be obtained analytically. The numerically obtained
LL spectra for double and triple WSM are respectively
shown in Fig. 5(a) and Fig. 5(b), for various choices of
θ. For simplicity, we have only shown the LL structure
near one Weyl node, hosting left chiral fermion. A simi-
lar structure is also realized for right chiral fermion, and
all LLs (including the zeroth one) are bounded due to the
underlying lattice. Therefore, when θ 6= 0 the exact de-
generacy among the chiral ZLLs is lifted. However, there
is always n number of chiral ZLL crossing the zero energy.
Such an outcome can be substantiated from the fact that
in the absence of any magnetic field the monopole charge
of the Weyl nodes is ±n, which in turn determines the
orbital degeneracy of the ZLL.

Although the LL spectrum obtained from the contin-
uum description of WSM captures most of the essential
features, a comment in this context is in order. When
the field is tilted from the z direction the two copies of
ZLLs in double WSM cuts the zero energy at momen-
tum ±[π/2 ± δ(θ)]a−1, where δ(θ) is dependent on the
tilting angle, as shown in Fig. 5(a), when the system is
at half-filling. Similarly, in triple WSM the ZLL cuts the
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zero energy at ±[π/2 + jδ(θ)]a−1 for j = −1, 0, 1. In
Figs. 5(a) and 5(b), the conserved momentum k0 is mea-
sured from one of the emergent Weyl nodes in magnetic
fields, located at π/(2a). Next we discuss the resulting
WSM DOS in the presence of a magnetic field.

IV. DENSITY OF STATES

It is instructive to study separately the DOS in single,
double and triple WSM, when placed in a magnetic field,
as it can be directly tested in angle resolved quantum
oscillation measurements42,43. In the presence of strong
magnetic fields the kinetic energy in the plane perpendic-
ular to B is completely quenched, while the LLs remain
dispersive in the one dimension along the applied mag-
netic field. Thus the magnetic field causes an effective
dimensional reduction of the system, and the WSM in
the external magnetic field can be viewed as a collection
of one-dimensional systems with multiple subbands. The
DOS of such a system can be found from the following
definition

D(µ) =
L

2π

∑
m

∫ +∞

−∞
dkδ(Em(k)− µ), (11)

where m labels different subbands, and k is the conserved
momentum of the one-dimensional conducting channel
along the magnetic field direction, and L is the linear
dimension along the field direction.

The DOS for a single WSM can be obtained in a closed-
form. We first note that the dispersion for a single WSM
can be cast in the following form

Em(k) =
√
~2v2

zk
2 + w2, (12)

where w =
√
mε1 and ε1 =

√
2~α1/`. In such a system

each m ≥ 1 LLs crosses the Fermi energy µ twice, at

kc = ±
√
µ2 − w2/(~vz), whereas the m = 0 LL only

cuts the Fermi energy once, at k = −µ/(~vz). Therefore,
the DOS for this single WSM is given by

D(µ) = D0

1 +
∑
m≥1

2µΘ(µ−√mε1)√
µ2 −mε21

 , (13)

where D0 = L/(2π~vz) and Θ(x) is the Heaviside Theta
function.

Similarly we can find the DOS for double WSM analyt-
ically when the field is along the kz direction. The disper-
sion relation is then readily obtained from Eq. (12) after

replacing w by w =
√
m(m− 1)ε2, where ε2 = 2~2α2/`

2,
and the DOS for such a system is given by

D(µ) = D0

2 +
∑
m≥2

2µΘ(µ−
√
m(m− 1)ε2)√

µ2 −m(m− 1)ε22

 , (14)
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FIG. 6: (Color online) DOS for Landau levels in a double-
Weyl semimetal, in units of L/(2π~vz). The parameters are
the same as those in Fig. 5(a). The black curves are the
DOS when the applied magnetic field is along the z direction
(θ = 0), see Eq. (14).

where we have accounted for the two-fold degeneracy of
the ZLL. The above expression for the double WSM is
plotted as black lines in Fig. 6. Similarly, it is easy to
show that when the field is applied along the z direction
the DOS in triple WSM is given by

D(µ) = D0

3 +
∑
m≥3

2µΘ(µ−
√
m(m− 1)(m− 2)ε3)√

µ2 −m(m− 1)(m− 2)ε23

 ,
(15)

where ε3 = (
√

2~)3α3/`
3, as shown by the black lines in

Fig. 7.
For arbitrary orientations of the magnetic field, we

compute the DOS numerically. In Fig. 6 we display the
calculated DOS for three different orientations of the field
in a double WSM. We find that the LL spacing contin-
ues to increase when the field is gradually tilted from 0
to π/2. We also notice that as θ → π/2 an additional
peak in DOS gradually develops within the manifold of
ZLLs, which, however, can be an artifact of the contin-
uum model. A similar result also holds for triple WSM,
as shown in Fig. 7.

The DOS dictates the pattern of quantum oscillation
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FIG. 7: (Color online) DOS for Landau levels in a triple-
Weyl semimetal, in units of L/(2π~vz). The parameters are
the same as those in Fig. 5(b). The black curves are the
DOS when the applied magnetic field is along the z direction
(θ = 0), see Eq. (15).

measurements (through Shubnikov-de Haas effect or De
Haas-van Alphen effect) of all transport and thermody-
namic quantities. Therefore, the proposed anisotropic
structure in DOS for multi-WSM can be detected from
angle resolved quantum oscillations42,43. Such experi-
ments can also test the robustness of the emergent peak
in DOS within the ZLL of double WSM by tilting the
magnetic field from the z direction toward the xy plane.

V. LONGITUDINAL MAGNETOTRANSPORT

As shown in Sec. III, in the presence of strong magnetic
fields the quasiparticle spectrum in any WSMs breaks
into a set of LLs that remains dispersive along the di-
rection of the applied field. Therefore, the application
of an external magnetic field effectively breaks the sys-
tem into a set of one-dimensional conducting wires, which
is responsible for LMT. For the sake of simplicity and
specificity, we assume that the external magnetic and
electric (E) fields are always parallel to each other (see
Fig. 2). When B and E are not parallel, the transport

occurs through both longitudinal and transverse compo-
nents. However, the analysis of the transport properties
for an arbitrary relative orientation of B and E fields
falls outside the scope of the current work. To sustain
a steady-state current, we take into account impurity-
induced backscattering between the magnetic field in-
duced emergent one-dimensional Weyl nodes, while the
forward scattering contributes to the Dingle factor for
quantum oscillations. When such scattering is accounted
for, the LMC (intra-band) can be written as

σ(B) =
∑
α

gα
e2vF,α(B)τα(B)

2π2~`2
, (16)

where the sum is over all partially filled Landau levels
labeled by α, gα is the additional degeneracy due to in-
ternal degrees of freedom (such as spin), vF,α(B) is the
field dependent Fermi velocity obtained by linearizing the
LL spectrum around the emergent one-dimensional Weyl
nodes, and τα(B) is the transport lifetime (obtained from
backscattering, since forward scattering does not con-
tribute to the resistivity). We here use the linearized
Boltzmann equation to compute the lifetime and numer-
ically extract the effective field dependent Fermi velocity
by linearizing the spectrum of the ZLLs around the emer-
gent one-dimensional Weyl nodes. We assume that only
the subspace of ZLLs is partially filled and contributes to
LMT. Generalization of our results is discussed in Sec. ??.
Two sources of elastic scattering are taken into account:
(i) Gaussian disorder with

U (G)(q⊥, qz) = U0e
−R2

0(q2⊥+q2z)/2, (17)

where R0 is the range of the impurity potential, and (ii)
long-range ionic impurity scattering characterized by the
screened Coulomb potential

U (C)(q⊥, qz) =
Uc

q2
⊥ + q2

z + q2
TF

, (18)

where Uc ' 4πe2/κ is the strength of the Coulomb im-
purity, and qTF is the Thomas-Fermi wave vector qTF,

qTF(B) =
e√

2π2~vF (B)`2B
, (19)

which is also a function of the magnetic field. Therefore
with an increasing magnetic field, the screened Coulomb
impurity potential gets more and more short-ranged as
qTF increases. The increase in screening with increasing
magnetic field follows from the enhancement of the DOS
by the magnetic field. Note that in the extreme strong
field limit the screened Coulomb potential becomes very
small as qTF diverges.
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A. Linearized Boltzmann equation

The transport lifetime τα(B) can be obtained from the
linearized Boltzmann equation, which reads as87

1 =
∑

β,k′y,k
′
z

W (ky, kz, α; k′y, k
′
z, β)

[
τα(kz)−

vβ(k′z)
vα(kz)

τβ(k′z)

]
,

where the impurity matrix element squared is given by

W (ky,kz, α; k′y, k
′
z, β) =

2πni
~

∫
d3q

(2π)3
|U(q)|2 (20)

× |〈ky, kz, α|eiq·r|k′y, k′z, β〉|2δ[εα(kz)− εβ(k′z)].

After some involved algebra, the linearized Boltzmann
equation can be cast in the following compact form

~2

ni`2B
= τα(kF,α)

[
2|Uα,α(2kF,α)|2
|vα(kF,α)| +

∑
β 6=α

|Uα,β(kF,α + kF,β)|2 + |Uα,β,(kF,α − kF,β)|2
|vβ(kF,β)|

]

+
∑
β 6=α

τβ(kF,β)

|vα(kF,α)|

[
|Uα,β(kF,α + kF,β)|2 − |Uα,β(kF,α − kF,β)|2

]
, (21)

where kF,α > 0 is the magnitude of the one-dimensional
Fermi momentum in Landau level α, vα is the corre-
sponding Fermi velocity and ni is impurity density. The
effective one-dimensional interaction potential Uα,β(qz)
has the following form

|Uα,β(qz)|2 =

∫
d2q⊥

(2π)2`2B
|U(q⊥, qz)|2 |Sα,β(q⊥)|2 , (22)

where U(q⊥, qz) is the impurity potential, and Sα,β(q⊥)
satisfies the relation

〈ky, kz, α|eiq·r|k′y, k′z, β〉 (23)

≡ Sα,β(q⊥)δ(ky − k′y + qy)δ(kz − k′z + qz).

One can then solve the coupled equations in Eq. (21) and
obtain the transport lifetime τα for each LL contributing
to LMC.

We can obtain the analytical expression for effective
one-dimensional potentials from Eq. (22), when the field
is applied along the z direction (along which the Weyl
nodes are separated in the absence of magnetic field). Let
us first consider only the Gaussian impurity potential, for
which the effective one-dimensional potential in a single
WSM is given by

|U (G)
0,0 (qz)|2 =

U2
0 e
−R2

0q
2
z

2π`4B

1

1 + 2λ
, (24)

where λ = R2
0/`

2
B . However, with additional branches

within the subspace of ZLLs, such as in double WSMs,
supporting two ZLLs, there are the following two addi-
tional components for the effective potential

|U (G)
1,1 (qz)|2 =

U2
0 e
−R2

0q
2
z

2π`4B

4λ2 + 1

(2λ+ 1)3
, (25)

|U (G)
0,1 (qz)|2 =

U2
0 e
−R2

0q
2
z

2π`4B

1

(2λ+ 1)2
, (26)

which respectively describes scattering potential within
the N = 1 ZLL and that between N = 0 and N = 1
ZLLs. The above formalism can immediately be general-
ized for triple WSMs, supporting three copies of ZLL.

Similarly the effective one-dimensional potential aris-
ing from Coulomb impurities is given by

|U (C)
α,β (qz)|2 =

U2
c

2π

∫ ∞
0

rdr
|Sαβ(r)|2
(r2 + η2)

2 , (27)

where η2 = Q2`2B ≡ (q2
z + q2

TF)`2B . In single WSM

|U (C)
0,0 (z)|2 =

U2
c

8π
eyΓ(−1, y), (28)

where y = η2/2 and Γ(s, z) is the upper incomplete
Gamma function. For double WSMs, the two additional
components of the one-dimensional potential are

|U (C)
1,1 (qz)|2 =

U2
c

8π

[
ey(y + 1)(y + 3)Γ(−1, y)− (1 + 2y−1)

]
,

|U (C)
0,1 (qz)|2 =

U2
c

8π

[
−ey(y + 1)Γ(−1, y) + y−1

]
, (29)

where the subscript notations are the same as that for
Gaussian impurities. Note that in the extreme strong
field limit, i.e., y →∞, all three effective potentials have

an identical asymptotic form |U (C)
0,0 (qz)|2 = |U (C)

0,1 (qz)|2 =

|U (C)
1,1 (qz)|2 ' U2

c /(8πy
2). For an arbitrary orienta-

tion of the magnetic field, we extract the effective one-
dimensional potentials numerically. Next we discuss the
LMC in single, double and triple WSM separately.
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FIG. 8: A comparative plot of longitudinal magnetoconduc-
tivity (LMC) in single (black), double (red) and triple (blue)
Weyl semimetals in the presence of only Gaussian impuri-
ties. The field is applied along the axis separating the Weyl
nodes in pristine system (the z direction). In the shaded re-
gion Landau level are not sharp and one needs to account
for weak localization effects. In this region the semiclassical
theory for magnetotransport may also be applicable. Here,
σ0 = e2~v2z/(2πniU

2
0 ), and for discussion see Eq. (30).

B. Magnetotransport in a single Weyl semimetal

To set the stage, we begin with the discussion of LMT
in single WSM. In the presence of only Gaussian impu-
rities, the scattering lifetime in single WSM is given by

τ
(S)
G =

2π~2`2B |vF |
2niU2

0 IRR
=
π~2|vF |`2B
niU2

0

(1 + 2λ)e4π2R2
0/a

2

,

and the corresponding LMC is

σ
(S)
G =

e2|vF |
2π2~`2B

τG = σ0 (1 + 2λ) e4π2t2 , (30)

where σ0 = e2~v2
z/(2πniU

2
0 ) and t = R0/a. We have used

the fact that the Fermi wave vector for backscattering in a
single WSM is qz = π/a. Therefore, LMC in single WSM,
subject to only Gaussian impurities, increases linearly
with the magnetic field, as shown in Fig. 8 (black curve).

The scattering lifetime due to Coulomb impurities in
a single WSM is given by

τ
(S)
C =

~2|vF |
2ni`2B |U

(C)
0,0 (2kF )|2

=
~2|vF |

2niU2
c `

2
B

8πe−yc

Γ(−1, yc)
, (31)

where yc =
[
(2kF )2`2B + q2

TF`
2
B

]
/2. Therefore, the total

scattering lifetime (τ) in the presence of both Gaussian
and Coulomb impurities is given by

τ−1 = τ−1
G + τ−1

C , (32)

following the Matthiessen’s rule which is well-valid at low
temperatures. Thus the total LMC in a single WSM is

σ(S) =
e2~v2

F

2πnia4U2
c

Z2

[
eyc

4
Γ(−1, yc) +

Z2Ae−4π2t2

(1 + 2t2Z)

]−1

,

(33)
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FIG. 9: A plot of longitudinal magnetoconductivity (LMC)
in double Weyl semimetal for various orientations of the ap-
plied magnetic field (captured by the parameter θ). We here
only account for Gaussian impurities. In the shaded region
weak localization effect dominates the LMC, where our analy-
sis is qualitatively inapplicable. Here, σ0 = e2~v2z/(2πniU

2
0 ),

and for discussion see Eq. (30).

where Z = a2/`2B ∝ B. Notice that in the presence
of only Coulomb impurities the LMC grows as B2 in
the extremely strong field limit. However, in the strong
magnetic field limit Gaussian impurities dominate the
LMT (since typically τC � τG) and from here onward we
only take into account the scattering lifetime arising from
Gaussian impurities since the screened Coulomb disorder
induced magnetoresistance vanishes in the strong-field
limit as 1/B2.

C. Magnetotransport in a double Weyl semimetal

For a double WSM at half filling, the coupled equations
in Eq. (21) can be simplified since the Fermi velocities of
the two ZLLs are exactly the same by symmetry. As a
result the two coupled equations for the transport lifetime
can be rewritten as

~2|vF |
ni`2B

= τR

[
2IRR + I(−)

RL + I(+)
RL

]
+ τL

[
I(+)
RL − I

(−)
RL

]
,

= τL

[
2ILL + I(−)

LR + I(+)
LR

]
+ τR

[
I(+)
LR − I

(−)
LR

]
, (34)

where vF represents the same Fermi velocity for the two
ZLLs, which we label R and L, as shown in Fig. 5(a).
The backscattering potentials can be written as

IRR = |UR,R(2kF,R)|2 , I(±)
RL = |UR,L(kF,R ± kF,L)|2 ,

ILL = |UL,L(2kF,L)|2 , (35)

where Ui,j(x) is defined in Eq. (22) and by symmetry

I(±)
LR = I(±)

RL . Therefore, one of the scattering lifetimes is

τR = (36)
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ILL + I(−)

RL

) (
~2|vF |/ni`2B

)
(IRR + ILL)

(
I(+)
RL + I(−)

RL

)
+ 2

(
IRRILL + I(+)

RL I
(−)
RL

) ,
and τL is obtained after taking L ↔ R in the above
expression. Since the Fermi velocities of the two ZLLs
are identical at half-filling, the total transport lifetime is
τL + τR and the LMC assumes the form

σG(B) =
e2~

πniU2
0

v2
F (B)KG(B, θ), (37)

where KG(B, θ) is a dimensionless quantity, which for
θ = 0 reads as

KG(B, 0)

=
e4π2t2

2

(2λ+ 1)2[4λ2 + 2λ+ 1 + e4π2t2(2λ+ 1)]

2λ+ 4λ2(λ+ 1) + 1 + e4π2t2(1 + 2λ+ 2λ2)
,

' e4π2t2

2

{
1 + 4λ λ� 1,

2 + 4λ λ� 1.
(38)

We display σG(B) for θ = 0 in Fig. 8 (red curve). Thus
for zero-range (R0 = 0) impurities the LMC is constant,
whereas for Gaussian impurities it increases monotoni-
cally and linearly with magnetic field B, thus giving rise
to positive LMC. Also notice that in the limit t� 1 (cor-
responding to fat Gaussian impurities) or λ � 1 (corre-
sponding to strong magnetic field) the LMC for a double
WSM is exactly twice that of a single-Weyl semimetal
[see Eq. (30) and Fig. 8], since the scattering between
two Landau levels with different indices “L” and “R” will
be suppressed in comparison to that within the same LL.
Thus in the strong field limit (λ � 1) or fat Gaussian
impurity (t � 1) limit the two ZLLs become effectively
decoupled and conduct independently.

For general orientations of the magnetic field we can-
not obtain the LMC analytically and we have to resort to
a numerical approach. The results are shown in Fig. 9.
It is interesting to notice that when θ 6= 0, LMC de-
velops nonlinear dependence on the field, and only at
sufficiently strong fields the B-linear LMC is recovered.
Such non-trivial dependence on magnetic field and tilted
angle should be experimentally observable in transport
measurements. For LMC in double WSM in the presence
of only Coulomb or ionic impurities see Appendix B.

D. Magnetotransport in a triple Weyl semimetal

Finally we discuss LMC in triple WSM by restricting
ourselves to Gaussian impurities. Unlike double WSM,
the Fermi velocities of the three ZLLs (at and near half
filling) are no longer equal: in general we have vL = vR 6=
vC , where “L”, “C”, and “R” are the labels for the three
branches of ZLL, shown in Fig. 5(b). The LMC then
assumes the following form,

σ(B) =
e2~vL
πniU2

0

[vL(τL + τR) + vCτC ]
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FIG. 10: A plot of longitudinal magnetoconductivity (LMC)
in triple Weyl semimetal for various orientations of the applied
magnetic field (captured by the parameter θ). We here only
account for Gaussian impurities. In the shaded region weak
localization effect dominates the LMC, where our analysis is
qualitatively inapplicable. Here, σ0 = e2~v2z/(2πniU

2
0 ), and

for discussion see Eq. (30).

= σ0

{
v2
L(B)

v2
z

[
τ̃L + τ̃R + w−1τ̃C

]}
, (39)

where w = vL/vC and τ̃i = niU
2
0 τi/(2π`

2~2vL) is a di-
mensionless quantity.

The LMC in a triple WSM can be obtained analytically
when the magnetic field is applied along the z direction
(θ = 0), see Fig. 8 (blue curve). Notice all three Fermi
velocities are then equal (w = 1). For sufficiently strong
magnetic fields (λ � 1) or fat Gaussian impurity po-
tential (t � 1), three ZLLs again behave as decoupled
one-dimensional wires and the LMC in a triple WSM is
three times that of a single WSM; compare black and
blue curves in Fig. 8.

For arbitrary orientations of the magnetic field, we
compute various scattering elements, shown in Eq. (39),
numerically. In particular, notice that three Fermi vec-
tors for backscattering have the magnitudes of π/a, and
π/a±kc, respectively, where kc is again a function of the
direction and strength of the applied magnetic field. The
resulting LMC in triple WSM is shown in Fig. 10. Similar
to the situation in double WSM, the LMC in triple WSM
also exhibits an anisotropic angular dependence on the
field orientations. In particular, as the tilting angle θ in-
creases LMC displays a smooth and monotonic crossover
from B-linear to nonlinear in B dependence, but LMC
always remains positive.

The magnetotransport results presented in this sec-
tion are valid only when the WSM remains in its normal
‘Fermi liquid’ phase, i.e., there is no symmetry-breaking
transition induced by interactions. Any quantitative in-
teraction effects can be included in the theory simply
by reinterpreting each parameter (e.g. Fermi velocity,
DOS) as the corresponding renormalized quantity within
a Fermi liquid type many-body renormalization without
any quantum phase transition. In particular, the the-
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ory of this section would not apply in the presence of
any field-induced density wave ordering transition which
might happen because of electron-electron interactions.
Next we will discuss the effect of various density-wave
ordering within the manifold of ZLLs and its effects on
LMT.

VI. ELECTRONIC INTERACTION AND
DENSITY-WAVE ORDERINGS

The DOS in a WSM, constituted by Weyl nodes
with monopole charges ±n, vanishes as E2/n as one ap-
proaches the Weyl points. Here the energy E is measured
from the Weyl points. Therefore, any weak electron-
electron interaction (restricting ourselves to Hubbard-like
local interactions, as appropriate for tight-binding lattice
models) is an irrelevant perturbation around the nonin-
teracting Gaussian fixed point, and Weyl semimetals de-
scribe an infrared stable fixed point in the language of
renormalization group. However, a strong magnetic field
quenches the quasiparticle dispersion into a set of dis-
crete LLs, all of them dispersing along the applied mag-
netic field. The DOS for such effective one-dimensional
systems is constant, significantly enhancing the effects
of electron-electron interaction. Therefore, sufficiently
strong magnetic fields can hybridize the emergent Weyl
nodes and gap them out through the formation of a
density-wave order that breaks the translational symme-
try. This density wave ordering arises from the system
minimizing the interaction energy at the cost of kinetic
energy which is quenched by the magnetic field. Such
a mechanism of developing density-wave order remains
operative in any interacting three-dimensional electronic
system in the presence of a strong external magnetic
field94,96–98, and is akin to the density wave ordering in
effective one-dimensional electron systems. In the con-
tinuum limit the CDW or SDW order breaks an emer-
gent continuous U(1) translational symmetry94,99–101,
and disorder can couple to density-wave order as random
field. The Imry-Ma argument then prohibits such an or-
der from acquiring a true long-range order91. However, in
the presence of an underlying lattice, the density-wave or-
ders only break discrete translational symmetry. Hence,
our proposed density-wave order (CDW or SDW) can ex-
hibit a true long range ordering and may be observable at
moderately strong magnetic fields. For the sake of sim-
plicity, we here assume that only the manifold of ZLLs are
partially filled, and concomitantly, density-wave ordering
develops within this manifold. The following discussion
can easily be generalized when multiple LLs are partially
filled, but the quantitative details will be different with
the density wave ordering trend being suppressed as more
LLs participate in the energetics. The actual nature of
the density-wave ordering (CDW or SDW) within ZLLs
depends on the microscopic details of the Weyl system,
as we discuss below.

To capture the low energy physics in such WSMs we

appropriately define a four component spinor as Ψ>(~k) =

[ΨL(~k),ΨR(~k)], where ΨX(~k) are two component spinors
for left (L) and right (R) chiral fermions, organized as

Ψ>X(~k) = [ΨX,↑(± ~Q + ~k),ΨX,↓(± ~Q + ~k)] for X = L,R.

In this notation, Weyl nodes are located at ± ~Q and ↑, ↓
are the Kramers partners or two spin projections. Let
us first focus on the low energy Hamiltonian for WSMs,
shown in Eq. (6), which can be written compactly as

H0,n = τ0 ⊗ [σ1 cos θk + σ2 sin θk]αnk
n
⊥ + τ3 ⊗ σ3vzkz,

(40)

where θk = tan−1(ky/kx). For such Weyl systems
~Q = Qẑ, hence the Weyl nodes are along the z direction.
Notice that two distinct types of density-wave orders,
namely the CDW and SDW, can gap out the Weyl nodes
at the cost of the translational symmetry. Respectively
the effective single-particle Hamiltonian in the presence
of these two orderings are

HC/S = ∆C/S (τ1 ⊗ cosφ+ τ2 ⊗ sinφ)⊗ σ0/3. (41)

In the continuum description φ is a continuous vari-
able, and these two ordered phases break continuous
U(1) chiral symmetry generated by Uc = τ3 ⊗ σ0, rep-
resenting the generator of translational symmetry94, and
[H0,n, Uc] = 0, whereas {Uc, Hx} = 0 for x = C and
S. But, the underlying lattice potential lifts such con-
tinuous symmetry and prefers certain locking angle for
the order parameter. Therefore, the ordered phase is not
accompanied by true massless Goldstone mode, similar
to the situation with underlying valence bond solid or
superconductor in two-dimensional graphene102.

Even though both CDW and SDW orders gap out the
ZLLs, a subtle competition between these two orders may
ultimately determine the actual pattern of the symmetry
breaking. Notice that {H0,n, HS} = 0 and the SDW or-
der stands as a chiral symmetry breaking mass for Weyl
fermions. Thus, when SDW order sets in, besides gap-
ping out the ZLLs, it also pushes down all filled LLs,
following the spirit of magnetic catalysis103,104. Hence,
the SDW order appears to be energetically favored over
CDW, when Weyl nodes are located along one of the C4v

axes of a cubic system, for example kz.
It is also conceivable to realize the Weyl semimetals for

which the low energy Hamiltonian is given by

H0,n = τ3 ⊗ [αn k
n
⊥ [σ1 cos θk + σ2 sin θk] + σ3vzkz] , (42)

when the Weyl nodes are located along (1,1,1) direction

in a cubic system, for example, and ~Q = Q(1, 1, 1)/
√

3.
Once again both CDW and SDW orders can generate a
spectral gap within the manifold of ZLLs. However, the
role of the CDW and SDW orders is now reversed; CDW
representing a chiral symmetry breaking mass. Hence, in
a WSM for which the Weyl nodes are placed along one
of the C3v axes of a cubic system and the low energy
Hamiltonian assumes the form in Eq. (42), the CDW
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FIG. 11: A schematic variation of longitudinal magnetoconductivity (LMC) upon accounting for density-wave instabilities
(either CDW or SDW) within the subspace of the zeroth Landau levels (ZLLs). (a) Qualitative variation of LMC is shown for
any WSMs (constituted by Weyl nodes with monopole charge n) when the field is applied along the z direction, and therefore
n number of ZLLs are exactly degenerate in a WSM. LMC becomes positive when B > B∗. Qualitative variation of LMC in
(b) double and (c) triple Weyl semimetals when the field is tilted away from the z direction (assuming the Weyl nodes are
separated along the z direction in the absence of magnetic field). Separate discontinuities in LMC arise since the n ZLLs are
no longer degenerate when θ 6= 0. Each discontinuity is associated with the density-wave ordering in separate branches of the
ZLLs, before LMC become negative when all ZLLs are gapped out.

order is energetically favored over the SDW one. Thus
the nature of the density-wave ordering crucially depends
on the microscopic details of the system. However, the
signature of such translation symmetry breaking ordering
on LMT is qualitatively insensitive to its actual nature
since in both cases gaps open up in the spectrum.

As shown in the previous section, due to partially filled
subspace of ZLLs, all WSMs manifest positive LMC or
negative LMR, when these systems are placed in a strong
magnetic field. On the other hand, electronic interaction
can be conducive for translational symmetry breaking
CDW or SDW order that produces a spectral gap within
the ZLL. With the onset of such insulating ordering there
is no partially filled LL in the system and LMR (LMC)
can now manifest an upturn (downturn) and become pos-
itive (negative) in a strong magnetic field. Although such
an instability occurs for an infinitesimal strength of inter-
action (as appropriate for the effective one-dimensional
nature of the WSMs in the strong magnetic field) in a
clean system for T < Tc, with Tc being the transition
temperature that scales as Tc ∼ exp[−1/(gD(B))], where
g is the strength of interaction responsible for density-
wave ordering and D(B) is the DOS of ZLLs (following
the BCS scaling law), the presence of disorder may hinder
its onset. This can be seen most easily by realizing that
the DOS D(B) is suppressed by impurity scattering (e.g.
Dingle temperature effect) leading to a strong suppres-
sion of Tc

97. Thus only for sufficiently strong magnetic
fields and at low temperature these orderings can set in
and the system can display an upturn in LMR. Also, the
system is more likely to manifest the density wave insta-
bility for larger interaction strengths since increasing g
enhances Tc. When the magnetic field is applied along
z direction, all ZLLs are degenerate in double and triple
WSM (in a single WSM there is always only one ZLL);
hence they simultaneously undergo manybody instability
toward the formation of a density-wave order as temper-

ature is gradually lowered below Tc. Concomitantly, all
WSMs display negative LMC or positive LMR above a
unique strength of magnetic field B > B∗, when the field
is applied along the z direction. The periodicity of such
density-wave ordering is 2 × π/(2a). However, the situ-
ation changes dramatically when the field is tilted away
from the z direction in double and triple WSMs.

As shown in Sec. III, when the magnetic field is tilted
away from the z direction, the exact degeneracy among
the ZLLs in double and triple WSM is lifted. As a re-
sult, the density-wave ordering in each ZLL is charac-
terized by different transition temperatures, even though
the degeneracy of the ZLL does not change with the field
orientation, which can be qualitatively understood in the
following way. For the sake of simplicity we can assume
that short-range interactions arise from its long range
Coulomb tail, which in three spatial dimensions scales
as V (q) ∼ q−2. Then it is natural to assume that elec-
tronic interaction is stronger for density-wave ordering
with smaller wave vectors since V (q) increases for smaller
q. Therefore, in double WSMs, as the temperature (mag-
netic field) is gradually lowered (increased) the Fermi
points marked by “R” get gapped out first, followed by
the ones marked by “L” [see Fig. 5(a)]. The periodicity
of density-wave ordering in the “R” and “L” channels
is respectively 2 [π/2± δ(θ)] /a where δ(θ) depends on
the orientation of the magnetic field. Similarly, in triple
WSM, the mass generation first takes place among the
“R” points, followed by the “C” points and finally the
“L” points, see Fig. 5(b). The periodicity of density-wave
ordering in these three channels are 2 [π/2 + j δ(θ)] /a,
for j = −1, 0, 1 respectively for “R”, “C” and “L” chan-
nels. Thus as the temperature is gradually lowered in
double and triple WSMs (with field tilted away from the
z direction), they undergo a cascade of transitions into
density-wave phases with different periodicity, and be-
low each such transition temperature the LMC displays
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discontinuity and its rate of growth decreases, before
it becomes negative when all ZLLs are gapped out, as
shown in Fig. 11 (b) and (c). In other words, in single
WSM the LMR becomes positive once the density-wave
ordering sets in, while in double (triple) Weyl semimetal
LMR should display a two (three) stage transition toward
a positive value. The separation among the transition
temperature or onset magnetic field (B∗j ) among vari-
ous density-wave transitions (hence the distance among
various discontinuities in LMC/LMR) gets bigger as the
magnetic field is gradually tilted away from the z direc-
tion, since the emergent one-dimensional Fermi points
gets further separated with increasing tilting of the mag-
netic field away from the axis separating two Weyl nodes
[see Figs. 5(a), 5(b)]. Such steps in LMR can possibly be
detected in experiments and may serve as an indication
for density-wave ordering in the system.

VII. SUMMARY AND DISCUSSION

To summarize, we here address several important as-
pects of Weyl semimetals when these systems are placed
in a strong magnetic field. In the absence of magnetic
fields, three-dimensional Weyl semimetals are constituted
by Weyl nodes that can be classified according to the
monopole charge n = 1, 2 and 3. The integer monopole
charge (n) determines the topological invariant of a Weyl
semimetal, and the surface Fermi arc in such systems
possesses an additional n-fold orbital degeneracy. When
placed in a magnetic field, the underlying topological
invariant manifests itself through the number of chi-
ral zeroth Landau levels. Thus double and triple Weyl
semimetals respectively support two and three copies of
the zeroth Landau level while a regular or single Weyl
semimetal does not have any additional degeneracy when
the magnetic field is applied in the z direction, along
which the Weyl nodes are separated in the momentum
space. The same conclusion also follows from a calcula-
tion based on a lattice model as shown in Appendix A.
Within the framework of the continuum description of
these system, we always find n zeroth Landau levels, ir-
respective of the direction of the applied magnetic field,
although their exact degeneracy breaks down when the
field is tilted away from the z direction. Also the den-
sity of states in the presence of Landau levels displays
a strong angular dependence which can be observed in
angle resolved quantum oscillation experiments.

We also show that the formation of Landau levels in
Weyl materials can lead to longitudinal magnetotrans-
port. To obtain the WSM magnetoconductivity we use
the relaxation mechanism arising from the backscatter-
ing by impurities and taking into account two sources of
elastic scattering (a) Gaussian impurity and (b) Coulomb
impurity. However, due to finite density of states, the
scattering potential in the effective one-dimensional Lan-
dau levels is always short ranged, and we mainly focus

on the Gaussian disorder since the Coulomb disorder is
screened by the carriers. Assuming that (i) the system
is in the quantum limit (ωcτ > 1), and (ii) only the sub-
space of zeroth Landau level is partially filled, we calcu-
late the magnetic field dependence of transport lifetime
in the presence of strong backscattering using the quan-
tum Boltzmann equation, showing that the longitudinal
magnetoconductivity increases linearly with the applied
magnetic field when the field is applied along the sep-
aration of Weyl nodes in the pristine system. Within
the low-energy approximation, we find that such linear-
B dependence of the longitudinal magnetoconductance
in double and triple Weyl semimetals smoothly crosses
over to a nonlinear B dependence when the field is tilted
away from the z direction, which can be tested exper-
imentally. The longitudinal magnetoconductivity in all
Weyl semimetals scales as B2 when the magnetic field is
applied along the separation of two pristine Weyl nodes,
in the presence of Coulomb/ionic impurities, but in the
extremely strong field limit.

In order to verify our predictions of LMC in sys-
tems dominant by Gaussian (short-ranged) and Coulomb
(long-ranged) impurities, as well as the crossover between
them, one can systematically introduce short-ranged or
long-ranged impurities in a given sample, and vary their
concentrations in a controlled way. The Gaussian and
Coulomb disorder could arise from neutral and charged
impurities/defects respectively, which are often invari-
ably present in electronic materials anyway. For exam-
ple, long-range disordered potentials can be generated by
dopant charged impurities, while short-range disordered
potentials can be introduced by radiation damage. Such
an experimental technique provided the key evidence in
finding out the relative importance of long-range versus
short-range disorder potentials in the transport proper-
ties of graphene105–108. A similar technique could in prin-
ciple be used in WSMs to test our predictions with re-
spect to longitudinal magnetotransport.

Our current work on the magnetotransport properties
of 3D WSMs, along with the earlier work of Goswami et
al.87 on magnetotransport in ordinary 3D metals which
we follow, reinforce the point that positive longitudi-
nal magnetoconductance may be a generic behavior in
3D systems subjected to a strong magnetic field and
quenched disorder (i.e. impurity scattering). Much cau-
tion should therefore be used in interpreting the mere
observation of a positive LMC as evidence in support of
a chiral anomaly. While the chiral anomaly indeed im-
plies positive LMC, the reverse is not true. Indeed, recent
experiments79,84 find the presence of LMC in various 3D
systems subjected to external magnetic fields where chi-
ral anomalies are not expected to be operational.

Finally, we also address the effects of electron-electron
interaction on longitudinal magnetotransport in Weyl
semimetals. Due to their finite density of states of effec-
tive one-dimensional system, Weyl fermions are suscepti-
ble to various types of translational symmetry breaking
density-wave ordering (charge or spin depending on mi-
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croscopic details) even for infinitesimal strength of in-
teraction in the presence of strong external magnetic
fields. Since a single Weyl semimetal hosts one zeroth
Landau level, the onset of a density wave order imme-
diately gives rise to positive longitudinal magnetoresis-
tance. Such upturn in LMR can be observed below the
transition temperature for sufficiently strong magnetic
fields. A similar situation arises in double and triple
Weyl semimetals when the field is applied along the z
direction, since all zeroth Landau levels are exactly de-
generate. However, the situation changes dramatically
as the applied field is gradually tilted away from the z
direction. Since, the two/three zeroth Landau levels in
double/triple Weyl semimetals are no longer degenerate,
they respectively undergo two and three transitions into
density-wave phases, characterized by different periodic-
ity as well as transition temperature. Thus, as the tem-
perature is gradually lowered in the presence of a strong
magnetic field (applied at a finite angle with respect to
the z direction), the decrease of the longitudinal magne-
toresistance with magnetic field gets slower across each
such transition, before it finally becomes positive when
all members of the zeroth Landau level are gapped out
by density-wave orderings. Thus future experiments in
various members of Weyl semimetals, when placed in a
magnetic field, can display intriguing confluence of Lan-
dau quantization, longitudinal magnetotransport (possi-
bly manifesting one-dimensional chiral or axial anomaly),
and interaction driven charge/spin-density-wave order-
ing. We note that the density wave ordering, particu-
larly any charge density wave ordering, should also gen-
erate a lattice Peierls instability in the WSM through the
electron-phonon coupling, which could in principle be di-
rectly observed in a neutron scattering experiment in an
external magnetic field.
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Appendix A: Landau levels in a general Weyl
semimetal from a tight-binding model

In this appendix we show the derivation of LL spec-
trum for single, double and triple WSM from a lattice
model (bounded dispersion), when the magnetic field is
applied along the separation of Weyl nodes, i.e. along
the z direction. Let us begin with the following model
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FIG. 12: A plot of longitudinal magnetoconductivity (LMC)
in double Weyl semimetal for various orientations of the ap-
plied magnetic field (captured by the parameter θ). We here
only account for Coulomb impurities. In the shaded region
weak localization effect dominates the LMC, where our anal-
ysis is qualitatively inapplicable.

for a general WSM

H =
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x + ~2k2
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2m

]
σz

+

(
0 αn(~kx − i~ky)n

αn(~kx + i~ky)n 0

)
, (A1)

where n is the monopole charge. If the applied magnetic
field is along the z direction, the Landau level spectrum
of this model can be expressed in a closed form. For
example, for a single WSM (n = 1) we have for N ≥ 1

E = ±
√[

εz +
~2

2m`2B
(2N + 1)

]2

+
2α2

1~2

`2B
N, (A2)

where εz = tz cos(kz) − mz, and N is the Landau level
index. The energy dispersion for double (n = 2) and
triple (n = 3) WSM can be similarly obtained as follows,

EN,m(kz) (A3)

= ±
[[
εz +
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2m`2B
(2N + 1)

]2
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4~4α2

2

`4
N(N − 1)

] 1
2

,

= ±
[[
εz +

~2

2m`2B
(2N + 1)

]2

+
8~6α2

3

`6
N(N − 1)(N − 2)

] 1
2

,

which is valid for N ≥ 2 and N ≥ 3, respectively. The
resulting LL spectrum for single WSM has already been
displayed in Fig. 4. The energy of the ZLL (respectively
one, two and three fold degenerate in single, double and
triple WSM) is

E0(kz) = tz cos(kz)−mz +
~2

2m`2B
, (A4)
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and throughout we measured the energy from the refer-
ence value or zero point energy ~2/(2m`2B).

Appendix B: Magnetoconductivity by Coulomb
impurities

In this appendix we want to briefly discuss the LMC
in double WSMs only in the presence of Coulomb im-
purities. The results are displayed in Fig. 12 for vari-

ous field orientations. We note that typically the trans-
port lifetime due to Coulomb impurities are much longer
than that for Gaussian impurities. Thus according to the
Matthiessen’s rule, shown in Eq. (32), the transport life-
time is dominated by Gaussian impurities. However, in
the complete absence of Gaussian impurities, one can ex-
pect to observe the LMC shown in Fig. 12. We also want
note that LMC driven by Coulomb impurities will show a
B2 dependence only in the limit of B →∞. We also find
similar field dependence of LMC in the presence of only
Coulomb impurities in single as well as triple WSMs.
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