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5Department of Applied Physics, Stanford University, CA 94305, USA
(Dated: October 28, 2016)

We present a combined experimental and theoretical study of the evolution of the low-temperature
Fermi surface of lead telluride, PbTe, when holes are introduced through sodium substitution on the
lead site. Our Shubnikov-de-Haas measurements for samples with carrier concentrations up to 9.4⇥
1019cm�3 (0.62 Na atomic %) show the qualitative features of the Fermi surface evolution (topology
and e↵ective mass) predicted by our density functional (DFT) calculations within the generalized
gradient approximation (GGA): we obtain perfect ellipsoidal L-pockets at low and intermediate
carrier concentrations, evolution away from ideal ellipsoidicity for the highest doping studied, and
cyclotron e↵ective masses increasing monotonically with doping level, implying deviations from
perfect parabolicity throughout the whole band. Our measurements show, however, that standard
DFT calculations underestimate the energy di↵erence between the L-point and ⌃-line valence band
maxima, since our data are consistent with a single-band Fermi surface over the entire doping
range studied, whereas the calculations predict an occupation of the ⌃-pockets at higher doping.
Our results for low and intermediate compositions are consistent with a non-parabolic Kane-model
dispersion, in which the L-pockets are ellipsoids of fixed anisotropy throughout the band, but the
e↵ective masses depend strongly on Fermi energy.

I. INTRODUCTION

Lead telluride, PbTe, is a widely known thermoelec-
tric material and a narrow-gap semiconductor, which can
be degenerately doped by either Pb (hole-doping) or Te
(electron-doping) vacancies, or by introduction of accep-
tor or donor impurities1–3. Such impurity dopants have
been shown to enhance the thermoelectric figure of merit,
zT , from 0.8 to 1.4 for the case of sodium doping4–6, and
to 1.5 for doping with thallium4,7. Tl is also the only
dopant known to date that leads to a superconducting
ground state in PbTe; remarkably its maximum critical
temperature of Tc=1.5 K is almost an order of magni-
tude higher than other superconducting semiconductors
with similar carrier density8–12. Understanding the phys-
ical origin of these enhanced properties and their depen-
dence on the choice of dopant chemistry requires a de-
tailed knowledge of the electronic structure, in particular
its evolution with changes in dopant and carrier concen-
trations.

The valence band of PbTe has two maxima, located
at the L point and close to the mid-point of the ⌃ high-
symmetry line (we call this the ⌃m point) of the Brillouin
Zone (see Fig. 1). The enhancement of zT with doping
has been recently suggested to be at least in part as-
sociated with a decrease in the e↵ective dimensionality
of parts of the Fermi surface as the ⌃m pockets con-
nect (Fig. 2)13. For the case of superconductivity, an
increase of the density of states at the Tl concentration
for which superconductivity emerges, as a consequence
of the appearance of an additional band, has been in-

voked as a possible explanation for the enhanced Tc
9.

Such hypotheses can be tested by a direct experimen-
tal determination of the Fermi surface topology and its
evolution with carrier concentration. To date, such stud-
ies have been limited to quantum oscillation measure-
ments performed in the low carrier concentration regime
(p  1.1⇥ 1019cm�3 for full topology)14,15, although the
enhanced thermoelectric and superconducting properties
occur at considerably higher carrier concentrations. A
direct measurement of the Fermi surface characteristics
for these higher carrier densities is clearly needed.

In this paper we present the results of a detailed com-
putational and experimental study of the fermiology of
p-type Na-doped PbTe (Pb

1�xNaxTe), with carrier con-
centrations up to 9.4 ⇥ 1019cm�3, obtained via density
functional theory (DFT) calculations of the electronic
structure, and measurements of quantum oscillations in
magnetoresistance for fields up to 35 T. These measure-
ments enable a direct characterization of the Fermi sur-
face morphology and quasiparticle e↵ective mass for val-
ues of the Fermi energy that far exceed those available
by self-doping from Pb vacancies. Our main findings are:
(i) At low temperatures, the Fermi surface is formed from
eight half ellipsoids at the L points (the L-pockets) with
their primary axes elongated along the [111] directions.
The Fermi surface is derived from a single band up to the
highest carrier concentration measured, 9.4⇥ 1019cm�3.
(ii) The L-pockets are well described by a perfect el-
lipsoidal model up to a carrier concentration of 6.3 ⇥
1019cm�3. For a carrier concentration of 9.4⇥1019cm�3,
subtle deviations from perfect ellipsoidicity can be re-
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FIG. 1. (Color online) Energy dispersion for stoichiometric
PbTe along the high symmetry directions of the FCC Bril-
louin zone, calculated in this work using density functional
theory (DFT) (for details see text). A direct gap, underesti-
mated compared with experiment as is usual in DFT calcula-
tions, is observed at the L point, and a second valence band
maximum occurs along the ⌃ high-symmetry line. A repre-
sentative Fermi surface, which emerges as the Fermi energy is
shifted into the valence band by Pb vacancies or hole-dopant
impurities, is shown in the inset. For the choice of Fermi level
shown (green-dashed line), the Fermi surface contains eight
half-ellipsoids (shaded in red) centered at the L-point and
oriented along the [111] directions (L-pockets), and twelve ⌃-
pockets (shaded in blue) centered close to the mid-point of
the [110] ⌃ line and oriented along the [100] directions.

solved. These deviations are qualitatively consistent with
those predicted by the band structure calculations.
(iii) The e↵ective cyclotron masses increase monotoni-
cally with carrier concentration for all high-symmetry di-
rections, implying that the L band is not well described
by a perfect parabolic model for any carrier density. This
evolution is also consistent with the predictions from our
band structure calculations.
(iv) Although the qualitative evolution of the Fermi sur-
face topology with carrier concentration is correctly pre-
dicted by band structure calculations, these calculations
underestimate the band o↵set (between the top of the
L-band and the top of the ⌃m-band).

Before detailing our experiments, we emphasize that
our measurements are made in the low temperature
regime and caution should be exercised before extrapolat-
ing the results to di↵erent temperature regimes. Quan-
tum oscillations characterize the low-temperature prop-
erties of a material, and due to the exponential damp-
ing factor, they cannot be observed above approximately
60 K in Na-doped PbTe. Hence, we do not claim that
our first three findings outlined above necessarily remain
valid at higher temperatures. In particular, earlier exper-

imental studies, based on magnetoresistance and Hall co-
e�cient measurements16, have indicated an appreciable
temperature dependence of both the band gap and the
band o↵set (between L and ⌃ band maxima) in PbTe.
Additionally, recent angle resolved photo emission spec-
troscopy (ARPES) experiments have provided evidence
for the convergence of the top of these two bands at high
temperatures, becoming degenerate at⇠ 800 K17–19. The
current measurements provide a definitive determination
of the morphology of the bulk Fermi surface at low tem-
peratures, and hence provide an important point of com-
parison for band structure calculations, but additional
measurements based on a technique that is less sensitive
to the quasiparticle relaxation rate, such as ARPES, are
required in order to determine whether the ⌃-pocket re-
mains unoccupied at higher temperatures for the carrier
concentrations studied here.

II. FIRST-PRINCIPLES CALCULATIONS

To provide a baseline with which to compare our ex-
perimental data, we first show density functional theory
(DFT) calculations of the electronic structure of PbTe
with and without doping. An accurate description of
this compound within DFT is very challenging; in par-
ticular, the computed band structure is highly sensi-
tive to the choice of volume, the exchange-correlation
functional, and whether or not spin-orbit coupling is
included. A change in lattice constant of 1%, for ex-
ample, can both change the band o↵set by 60% and
generate a ferroelectric instability. Moreover, when
spin-orbit coupling is included, an unusually fine k-
point mesh is needed to converge the phonon frequen-
cies, forces and Fermi energy. This unusual sensitiv-
ity to the input parameters in the calculation is of
course related to the many interesting properties of PbTe,
which is on the boundary between various competing
structural (incipient ferroelectricity20,21) and electronic
(superconductivity10–12 and topological insulator22,23)
instabilities. Interestingly, we show in Appendix C that
the volume does not significantly a↵ect the computed
evolution with doping of the cyclotron masses and the
frequencies of quantum oscillations. Therefore, experi-
mental variations in volume, as occur for example with
temperature, do not a↵ect our conclusions.

A. Computational details

Our calculations were performed using the PAW
implementation24,25 of density functional theory within
the VASP package26. After carefully comparing struc-
tural and electronic properties calculated using the local
density approximation (LDA)27, PBE28 and PBEsol29

with available experimental data, we chose the PBEsol
exchange-correlation functional as providing the best
overall agreement. We used a 20 ⇥ 20 ⇥ 20 �-centered
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FIG. 2. (Color online) Upper panel: Fermi surface of hole-doped PbTe calculated in this work using the rigid band approxi-
mation. Lower panel plots: The corresponding (110)-plane angle evolution of the cross-sectional areas (in frequency units) of
the calculated Fermi surface pockets. The four columns correspond to monovalent impurity concentrations of: (a) x = 0.02%
(pL = 0.27 ⇥ 1019cm�3 and p

⌃

= 0); (b) x = 0.81% (pL = 3.5 ⇥ 1019cm�3 and p

⌃

= 8.6 ⇥ 1019cm�3); (c) x = 1.56%
(pL = 6.1 ⇥ 1019cm�3 and p

⌃

= 17.4 ⇥ 1019cm�3); and (d) x = 2.61% (ptotal = 36.2 ⇥ 1019cm�3). The frequencies of the
L-pockets are shown in red, and compared with those expected in a perfect ellipsoidal model shown as black lines. The evo-
lution of the ⌃-pockets is shown in blue. These pockets appear at a dopant concentration of x = 0.11% (pL ⇡ 1019cm�3). In
column (d), the ⌃ and L-pockets have merged, forming a cube-shape Fermi surface; cross-sections that can not be identified
separately with ⌃ or L are shown in purple. We plot frequencies up to 600 T, noting, however, that frequencies up to 8 kT
occur, corresponding to the large-square Fermi surface orbits. As described in the main text, our quantum oscillation studies
reveal that for carrier densities up to at least 9.4⇥ 10�19cm�3 value, the maximum studied in this report, the Fermi surface is
found to only comprise L-pockets (shown in red), implying a larger band o↵set between the L- and ⌃-pockets than predicted
by these and other DFT calculations.

k-point mesh and to ensure a convergence below 0.1 µeV
for the total energy used a plane-wave energy cuto↵ of 600
eV and an energy threshold for the self-consistent calcula-
tions of 0.1 µeV. We used valence electron configurations
5d106s26p2 for lead, 5s25p4 for tellurium, and 2p63s1 for
sodium. Spin-orbit coupling was included. The unit cell
volume was obtained using a full structural relaxation
giving a lattice constant of 6.44 Å(to be compared with
the experimental 6.43 Å20 at 15 K). Kohn-Sham band
energies were computed on a fine (140⇥140⇥140) three-
dimensional grid covering the entire Brillouin zone and
used as an input for the SKEAF code30 which allows for
extraction of extremal cross-sectional areas of the Fermi
surface in di↵erent spatial orientations.

B. Rigid-band approximation

First, we computed the Fermi-surface evolution as a
function of doping (shown in Fig. 2) by rigidly shifting
the Fermi energy in the pure PbTe structure and assum-
ing one hole per dopant. This rigid-band approximation
allows very fine samplings of the Brillouin zone, which
are necessary to characterize the tiny Fermi surface of
hole-doped PbTe at low doping. We discuss its valid-
ity here, by comparing with calculations in which a Pb
ion is substituted explicitly with a Na ion. Many first-
principles studies31–36 have already been carried out to
determine the e↵ect of di↵erent dopant atoms on the elec-

tronic properties of PbTe, with some of them explicitly
assessing the validity of the rigid band approximation
in Na-doped PbTe: Takagiwa et al.

35 confirmed from
KKR-CPA calculations that the density of states (DOS)
behaves as in a rigid band model, whereas Hoang et al.

37

and Lee and Mahanti 36 showed that a lifting of degen-
eracy occurs at the top of the valence band with explicit
Na doping (at a concentration of 3.125%), with the conse-
quence that the rigid band approximation overestimates
the thermopower36. Here we study how sodium impuri-
ties a↵ect the band structure of PbTe close to the Fermi
energy for the lower concentrations that we use in our
experiments (x .1%).

We show here results for a 4 ⇥ 4 ⇥ 4 supercell of the
primitive cell containing 128 atoms (x ⇡ 1.6%), with one
lead ion substituted by sodium. The unit cell volume was
kept the same as in pristine PbTe (it would be changed
by less than 0.1% by a full structural relaxation). We
checked also that our conclusions are qualitatively un-
changed for a larger 216 atom supercell (3⇥ 3⇥ 3 of the
conventional cubic cell) in which one or two lead ions are
substituted by sodium (x ⇡ 0.9% or x ⇡ 1.6%). The k-
point mesh was accordingly scaled down and spin-orbit
coupling was not included because of computational cost;
the other computational settings were left unchanged.

Figure 3 (a) shows the partial density of states in the
region of the Fermi level from the sodium impurity for
x ⇡ 1.6%. Note the small value on the y axis indicating
that the contribution from the Na atom is very small. It
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FIG. 3. (Color online) Sodium contribution to the calculated
band structure around the Fermi energy for the 128-atom
supercell. (a) Sodium projected density of states (pDOS). (b)
Di↵erence in the total DOS with and without the impurity,
�DOS = DOS

with Na

� DOS
undoped

. Note the drop in DOS
just below the top of the valence band (set to 0 eV), consistent
with a lifting in degeneracy of the highest valence bands (see
also Fig. 4).

does, however, have an influence on the electronic band
structure which can be seen in Fig. 3 (b), where we plot
the di↵erence in density of states with and without the
impurity. Here we see a distinct drop in the DOS (note
the higher values on the y axis) just below the top of the
valence band (set to 0 eV) due to band shifts caused by
the presence of the Na atom; we analyze these next.

In Fig. 4 we compare the calculated electronic band
structure with and without the sodium impurity. In
Fig. 4 (a) we show both band structures on the same
y axis with the zero of energy set to the top of the va-
lence band. We see that the two band structures are
close to identical, except for a lifting of the eight-fold
degeneracy at the top of the valence band, indicated by
black arrows, in the case of the explicit Na doping. A
consequence of this shift in one of the valence bands is a
shift of the Fermi energy to lower energy relative to its
position in the rigid band approximation. We illustrate
this in Fig. 4 (b) where we set the zero of energy to be
the Fermi energy for each case. In contrast with earlier
calculations at a larger doping36,37, the lifted band does

contribute to the Fermi surface and a↵ects the quanti-

tative evolution of Shubnikov-de Haas frequencies with
hole density, giving rise to a more complex Fermi sur-
face having L-pockets with di↵erent sizes. The folding of
wave vectors and states in the supercell makes an esti-
mation of the di↵erent ellipsoidal axes di�cult. In any
case, the amplitude of the quantum oscillations for the
“lifted-degenerate” pockets would be weaker. From these
considerations we are confident that our rigid-band calcu-
lations can be used to make qualitative predictions about
the evolution of the Fermi surface with Na doping. Quan-
titative predictions are anyway di�cult because of the
previously discussed sensitivity on the parameters used
for the calculations.
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FIG. 4. (Color online) Calculated band structure with and
without sodium impurity for the 128-atom supercell (x ⇡
1.6%). (a) The zero of energy was set at the top of the va-
lence band for both cases. Note the lifting of the degeneracy
of the top valence bands (marked by arrows); apart from this,
the bands coincide almost perfectly. (b) The carrier density
for both cases was fixed to a concentration corresponding to
x = 1.6%. The Fermi energy is moved more into the va-
lence band than expected from the rigid band approximation
because of the lifting of degeneracy.

C. Calculated Fermi surface evolution and angle
evolution of Shubnikov-de Haas frequencies

Our calculated energy dispersion for PbTe, along the
high symmetry directions of the FCC Brillouin zone, is
plotted in Fig. 1. As discussed above, we obtain a direct
gap at the L-point, followed by a second valence band
maximum at the ⌃m-point, 70 meV below the top of
the valence band. Figure 2 shows our calculated Fermi
surfaces, as well as the (110)-plane angle dependence of
the Fermi surface pocket cross-sectional areas, or equiv-
alently, Shubnikov-de Haas (SdH) frequencies (see Ap-
pendix A), for four impurity concentrations. The (110)
plane is a natural plane to study the angle evolution of
the SdH frequencies for this material, given that, in a
perfect ellipsoidal scenario, it allows the determination
of all the extremal cross-sectional areas of both, L- and
⌃-pockets. For low impurity concentrations, the Fermi
surface is formed only by L-pockets, which follow the an-
gle dependence expected for a perfect ellipsoidal model.
At intermediate concentrations, the ⌃-pockets appear,
and clear deviations from the perfect ellipsoidal model
for L-pockets (and ⌃-pockets) are observed. For impu-
rity concentrations above x = 1.8%, ⌃- and L-pockets
merge together to form the Fermi surface shown in Fig.
2(d). At this point, very high frequency (⇡ 8 kT, cor-
responding to the large-square Fermi surface pieces) and
very low frequency features are expected, and a whole
new variety of cross-sectional areas coming from di↵er-
ent sections of the Fermi surface make the tracking of
continuous angle dependence curves more challenging.

For the L-pockets, we observe a progressive evolution
to non-ellipsoidicity, characterized by three main features
in the angle dependence plots: (i) an increasing split-
ting in the low frequency branch, indicative of deforma-
tions of the L-pockets around the semi-minor axis region;
(ii) a shifting to lower values of the angle at which the
maximum cross-sectional area (maximum frequency) is
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FIG. 5. (Color online) Evolution of three calculated cross-sectional areas (in frequency units) with density of holes in the

L-pockets (pL). The dashed curve in all the plots shows the functional dependence of p2/3L expected for a perfect ellipsoidal
model. The dotted vertical line indicates the L-pocket hole density above which the ⌃-pockets start to be populated. (a)
Frequency associated with the L-pockets minimum cross-sectional area, fmin; (b) Frequency associated with the L-pockets’
cross-sectional area in the [100] direction, f

[100]

; (c) Frequencies associated with the L-pockets’ maximum cross-sectional area.
The green circles correspond to the orbits in the longitudinal direction of the L-pocket (fk) – for perfect ellipsoidal L-pockets
they would correspond to the largest possible frequencies; the blue triangles correspond to the orbits associated with the largest
cross-sectional area f

max

, which for large concentrations do not correspond anymore to longitudinal orbits on the L-pockets. The
inset shows two representative orbits (fk in green and f

max

in blue) on the distorted L-pocket (shown in red) for a concentration
x = 1.56% (pL = 6⇥ 1019 cm�3).
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FIG. 6. (Color online) Evolution of calculated cyclotron ef-
fective masses (Eq. A5) as a function of density of holes in
the L-pocket (pL) at three high symmetry directions: k or
in the longitudinal direction of the L-pocket, in the [100] di-
rection, and ? or in the transverse direction of the L-pocket
(corresponding to a magnetic field oriented along the [111]
direction). The variation with pL provides striking evidence
for the non-parabolicity of the bands.

found, indicative of L-pocket deformations around the
semi-major axis region, and due to the formation of the
tips that will eventually join with the ⌃-pockets at high
enough dopant concentration; (iii) some distortions of
the dispersion branch that goes from the [100] frequency
value to the maximum frequency value at 90�, generating
a cusp at 90�.

Figure 5 shows our calculation of three extremal cross-
sectional areas with density of holes in the L-pockets
(pL) computed from the Kohn-Sham band energies. The

dashed curves indicate the expected p
2/3
L behavior for

perfect ellipsoidal pockets. Deviations of the computed
cross-sectional areas from the perfect ellipsoidal depen-
dence become noticeable close to hole densities in the
L-pockets above which the ⌃-pockets start to be popu-
lated, which is indicated by the vertical dotted lines in
Fig. 5. These deviations are characterized by a shift to-
ward lower frequencies from that expected in the perfect
ellipsoidal model. Additionally, Fig. 5(c) highlights the
distortions in the L-pockets, which cause the shift in the
maximum frequency from 35� (fk) towards smaller an-
gles in the angle-evolution curves shown in Figs. 2(b)
and 2(c).
Figure 6 shows our calculated evolution of cyclotron

e↵ective masses (Eq. A5) at three high symmetry direc-
tions as a function of the carrier content of the L-pockets.
A monotonic increase of cyclotron masses with carrier
concentration is observed, implying a non-parabolicity of
the L-band even at the top of the band. It is interesting
to note that although deviations from perfect ellipsoidic-
ity as seen in the calculated angle evolution (Fig. 2(a))
and the calculated SdH frequencies (Fig. 5) are close to
zero for the low carrier concentration regime, the vari-
ation of the e↵ective masses at the lowest doping levels
already points to the non-parabolicity of the highest va-
lence band. Note that this was already taken into ac-
count in some transport studies of PbTe to compute its
thermoelectric properties38,39.
In summary, our density functional calculations of the

evolution of the Fermi surface of PbTe with doping pro-
vide some guidelines for identifying signatures of devi-
ations from perfect ellipsoidicity and perfect parabolic-
ity in our quantum oscillation experiments, to be pre-
sented in the coming sections. As we mentioned previ-
ously, the main signatures in the angular dependence of
cross-sectional areas of L-pockets are:
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(i) An increasing splitting in the low frequency branch,
indicative of deformations of the L-pockets around the
semi-minor axis region;
(ii) A shifting to lower values of the angle at which the
maximum cross-sectional area (maximum frequency) is
found, indicative of L-pocket deformations around the
semi-major axis region, and due to the formation of the
tips that will eventually join with the ⌃-pockets at high
enough dopant concentration;
(iii) Some distortions of the dispersion branch that goes
from the [100] frequency value to the maximum frequency
value at 90�, generating a cusp at 90�;
(iv) A monotonic increase of the cyclotron e↵ective mass
of holes as a function of carrier concentration.

Our computational findings (i)-(iii) will be used in the
next section in interpreting deviations from perfect ellip-
soidicity in our experimental data.

Finally, we note that, although we find that doping
slightly increases the unit cell volume (see Appendix B
- Table AI) our calculations show that our conclusions
above are largely una↵ected: as shown in Appendix C,
even if the band-structure parameters are influenced by
volume, the evolution of SdH frequencies and cyclotron
masses with doping are almost una↵ected.

III. EXPERIMENTAL TECHNIQUES

A. Sample preparation

Pb
1�xNaxTe single crystals were grown by an un-

seeded physical vapor transport (VT) method, simi-
lar to that described in Ref. 11, by sealing in vac-
uum polycrystalline pieces of the already doped com-
pound, with (or close to) the desired final stoichiome-
try. The polycrystalline material was obtained by mix-
ing high purity metallic lead (99.999%, Alfa Aesar),
tellurium (99.999+%, Alfa Aesar) and sodium (99.9%,
Sigma Aldrich) in the appropriate ratios. The source ma-
terials were placed in alumina crucibles, sealed in evac-
uated quartz tubes, and heated up to 1000 �C, holding
this temperature for 7 hours, followed by a rapid quench
in water. A subsequent sinter at 700 �C for 48 hours
was performed with the material contained in the same
evacuated tube40. After this process, the material was re-
moved from the crucible, ground into fine powders, and
then cold-pressed into a pellet. The pellet was sealed in a
quartz tube, with a small argon pressure to prevent mass
transport. The pellet was then sintered again at 500 �C
for 24 hours, and finally it was broken into small pieces
to be used in the VT stage. After the VT, mm-size single
crystals, with clear cubic facets, were obtained. The final
sodium content was estimated through the determina-
tion of the carrier concentration via Hall coe�cient (pH)
measurements (at T =1.5 K), assuming one hole per Na
dopant. Direct determination of the dopant concentra-
tion is challenging for the low Na concentrations studied
in this work (< 0.62%) which are below the weight %

resolution of the available electron microprobe analysis
tools.

B. Magnetoresistance measurements

High-field magnetoresistance measurements of
Pb

1�xNaxTe single crystal samples with di↵erent x
values between 0 and 0.62% (carrier concentrations
up to pH = 9.4 ⇥ 1019cm�3) were taken at the DC
facility of the National High Magnetic Field Laboratory
(NHMFL), in Tallahassee, FL, USA, for magnetic fields
up to 35 T. Pb

1�xNaxTe single crystals were cleaved in
rectangular shapes with faces along the [100] directions.
Typical sizes of the resulting crystals were 1 mm in the
longest side. Four gold pads were evaporated on one of
the faces in order to improve electrical contact with the
crystal. Gold wires were attached to each of the pads
using silver epoxy, and the other end of each wire was
pasted to a glass slide. Twisted pairs coming from the
rotator 8-pin dip socket were connected to the glass slide,
with special care taken to minimize the loop areas of
the wires. Four-point resistance curves for di↵erent field
orientations and temperatures were taken for plus and
minus field sweeps (in order to extract the symmetric
component of the magnetoresistance) with temperature
and field orientation held constant. In order to vary
the sample orientation with respect to the magnetic
field, samples were mounted on a stepping-motor driven
single-axis rotator, which allows in-situ rotations with
resolution of 0.1�. Samples were mounted in the rotator
with their (100) faces along di↵erent directions with
respect to the rotator axis, depending on the desired
plane of rotation. Field-sweep data was taken each 5� or
7.5�, going in one direction to prevent rotator backlash
problems.

IV. EXPERIMENTAL RESULTS

We divide the results section into two parts: In sub-
section A we show the angle dependence of the mag-
netoresistance as the magnetic field is rotated within a
high symmetry crystallographic plane, and temperature
is held fixed at (1.5± 0.2) K. This allows us to obtain in-
formation about the topology of the Fermi surface and its
evolution with carrier concentration. In subsection B we
present measurements of the temperature dependence of
the amplitude of oscillations in magnetoresistance along
di↵erent high symmetry directions, in order to extract in-
formation about the e↵ective cyclotron masses, and their
evolution with carrier concentration.

A. High-field magnetoresistance measurements

All data presented in this section were taken at a
temperature of (1.5 ± 0.2) K. For all the samples mea-
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FIG. 7. (Color online) Magnetoresistance measurements for Pb
1�xNaxTe samples of di↵erent Na concentrations (row (a) x =0,

row (b) x =0.13%, row (c) x =0.26%, row (d) x =0.4% and row (e) x =0.62%) as a function of magnetic field rotated along
the (110) plane. The first column shows the measured resistivity as a function of applied magnetic field. The second column
shows the background-free resistivity, obtained as explained in the main text, as a function of inverse field. The third column
shows the amplitude of the normalized FFT, represented by the color scale, as a function of the angle of the magnetic field from
the [100] direction (horizontal axis), and the frequency (vertical axis). The last column replots column three, with a comparison
to a perfect ellipsoidal model calculation superimposed (solid-lines for fundamental frequencies, and dashed-lines for higher-
harmonics). The parameters used for the perfect ellipsoidal model calculation for each set of data are summarized in Table I.
For samples with x =0.13%, 0.4% and 0.62%, small deviations from the (110) plane of rotation are evidenced in the splitting of
the angle evolution of the intermediate branch, and they were considered in the perfect ellipsoidal model comparison. For the
two highest concentrations, combination frequency terms due to magnetic interaction e↵ects are observed. These are identified
in the fourth column plots by the light-blue dotted-lines (sum of fundamental branches) and gray dotted-lines (di↵erence of
fundamental branches).
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FIG. 8. (Color online) (a) Longitudinal magnetoresistance for a Na-doped PbTe sample with x =0.4% and Hall number
pH = 6.3⇥1019cm�3, for di↵erent directions of the applied magnetic field, with respect to the [100] crystalline axis, as the field
is rotated in the (100) plane. (b) As in (a), as a function of inverse magnetic field, after eliminating the background, therefore
only preserving the oscillatory part. (c) The color scale in both plots represents the amplitude of the Fourier transform of the
data shown in (b), as a function of the angle from the [100] direction (horizontal axis), and the frequency (vertical axis). For
these plots, the field is rotated in the (100) plane. The right hand side figure replots the figure in the left, but with a perfect
ellipsoidal model calculation superimposed on the data, up to the third harmonic (black lines). For the model, the plane of
rotation is o↵set by 5.5� (about the [100] axis). The parameters used for the calculations are the same as those used for the
(110) plane of rotation data in Fig. 7(d): fmin = 81.4T and fmax = 307T.

FIG. 9. (Color online) FFT of the background-free resistivity
data of Fig. 7(e), as a function of the angle from the [100]
direction and the frequency. A perfect ellipsoidal model calcu-
lation has been superimposed on the data, up to the third har-
monic (black lines). In order to better guide the comparison
with the perfect ellipsoidal model, the exact frequencies of the
local maxima of the FFT for each angle (labeling only FFT
peaks with amplitude 1% or more of the largest peak for each
angle) are indicated by black-dots. The parameters used in
the perfect ellipsoidal model for each plot are: (a) fmin = 97
T, fmax = 370 T; and (b) fmin = 97 T, fmax = 460 T. For
both plots, an o↵set of 4o from the (110) plane of rotation
(about the [110] axis) is considered, to account for the split-
ting seen in the middle branch. Additionally, the combination
frequency terms are shown in light-blue-dotted lines (sum of
fundamental branches) and gray-dotted lines (di↵erence of
fundamental branches). None of the fits presented here give
a satisfactory description of the data, suggesting deviations
from perfect ellipsoidicity.

sured, large Shubnikov-de Haas (SdH) oscillations in
magnetoresistance were observed starting at a field of
approximately 4T for most samples. The first column of
Fig. 7 shows symmetrized measurements of resistivity,
⇢, as a function of magnetic field for Pb

1�xNaxTe with
(a) x=0 (pH = 1.9 ⇥ 1018cm�3), (b) x=0.13% (pH =
2.1 ⇥ 1019cm�3), (c) x=0.26% (pH = 4.1 ⇥ 1019cm�3),
(d) x=0.4% (pH = 6.3 ⇥ 1019cm�3) and (e) x=0.62%
(pH = 9.4 ⇥ 1019cm�3), for di↵erent field orientations
in the (110) plane. As mentioned in section IIC, the
(110) plane is a natural plane to study the angle evolu-

tion of the SdH frequencies for this material, given that,
in a perfect ellipsoidal scenario, it allows the determi-
nation of all the extremal cross-sectional areas of both
L- and ⌃-pockets. The second column of Fig. 7 shows
the oscillating component of the respective magnetore-
sistance curves, as a function of inverse field, extracted
after the following background elimination procedure: for
such low carrier densities, which imply low frequencies
of oscillation, the determination of the frequencies and
the tracking of their evolution with angle is challenging,
given that only a few periods of oscillations are observed
for the field range used, and additionally, several artifacts
coming from background subtractions have characteris-
tic frequencies that are comparable to the frequencies
of interest. In our data analysis, several methods for
background subtraction were tested. The method that
generated the best resolution in the fast Fourier trans-
form (FFT) for all the Na-doped samples, and that we
use here, was a cubic-spline fitting of the non-oscillating
component. For the self-doped x=0 sample, which is the
sample with the lowest characteristic frequencies (as low
as 8 T), the method that allowed the best resolution of
the evolution of fundamental frequency branches was the
computation of the first derivative.

The evolution with angle of the frequencies of oscilla-
tion is shown in the contour plots of the third and fourth
columns of Fig. 7. The color scale for these plots rep-
resents the amplitude of the FFT of the corresponding
curves in the second column, normalized by the maxi-
mum value of the FFT at each angle, as a function of
the angle from the [100] direction, and frequency. For all
samples, the fundamental frequency of the three expected
branches of frequency evolution is clearly observed, and
for some of the branches, the second and third harmonic
can be identified. For the x=0 sample, the second har-
monic seems to be stronger in amplitude than the funda-
mental, for all three branches. This e↵ect is likely associ-
ated with the di�culty of resolving low frequency signals.
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TABLE I. Fermi surface parameters for Na-doped PbTe, obtained from comparison between our measured data and a perfect
ellipsoidal model. pH is the Hall coe�cient obtained though Hall measurements (at T =1.5 K); f

min

and f

max

are the transverse
and longitudinal cross-sectional areas of the L-pockets, respectively; K = (f

max

/f

min

)2 is the anisotropy of L-pockets (see
Appendix D); pFS�V ol is the carrier concentration computed using Luttinger’s theorem (see section VA).

x(at.%) pH(⇥1019cm�3) fmin (T) f
[100]

(T) fmax (T) K pFS�V ol (⇥1019cm�3)
0 0.19 ± 0.001 8 ± 1 12.5 ± 2 25 ± 2 10 ± 4 0.16 ± 0.02

0.04 0.75 ± 0.01 17 ± 5 34 ± 7 - - -
0.13 2.09 ± 0.01 39 ± 4 63 ± 5 145 ± 7 14 ± 3 2.1 ± 0.2
0.26 4.1 ± 0.06 60 ± 8 97 ± 10 230 ± 7 15 ± 4 4.0 ± 0.3
0.4 6.3 ± 0.6 81 ± 4 132 ± 13 307 ± 6 14 ± 2 6.3 ± 0.2
0.62 9.4 ± 0.6 97 ± 12 157.5 ± 16 370 ± 90 15 ± 8 8.3 ± 2.1

For all samples, the branch that lies in the low frequency
region for all angles contributes the dominant frequency
in the magnetoresistance, which is associated with its
higher mobility with respect to the other two branches.
For the higher concentration samples, the high frequency
contributions are weaker, and a logarithmic scale in the
contour plots is used in order to highlight their angle
evolution. In order to determine the characteristic fre-
quencies of oscillation, and the possible deviations of the
Fermi surface from a perfect ellipsoidal model, a com-
parison of these plots with the frequency evolution for
a Fermi surface containing eight half-ellipsoids at the L
points (perfect ellipsoidal model) is shown in the fourth
column plots of Fig. 7. The fundamental frequencies, as
well as the second and third harmonics are shown for each
sample. The splitting seen in the intermediate frequency
branch for most of the samples can be successfully ac-
counted for by a small o↵set in the plane of rotation. For
the x=0 sample, an o↵set of 12� about the [001] axis was
considered in the perfect ellipsoidal model. For samples
with x =0.13%, the o↵set is 3� about the [110] axis; and
for x =0.4% and 0.62%, the o↵set is 4� about the [110]
axis.

The parameters of minimum and maximum cross-
sectional areas (fmin and fmax) used in the perfect el-
lipsoidal model comparison for each sample are summa-
rized in Table I. The minimum cross-sectional area of the
L-pockets, associated with fmin, can be determined very
accurately from the value of the fundamental frequency
of oscillation at 55� from the [100] direction in the (110)
plane, which is clearly observed for all the samples mea-
sured. Additionally, the maximum cross-sectional area of
the L-pockets, associated with fmax, can be directly ob-
served in the FFT plots of samples with Na concentration
up to 0.4%. Also, up to this concentration, the matching
between the angle evolution of the frequencies of oscilla-
tion with that expected for a perfect ellipsoidal model is
satisfactory. Nevertheless, for this last concentration, the
maximum frequency of the ellipsoids is resolvable close to
90� from [100], but becomes blurred close to 35�. There-
fore, although the value of the maximum frequency can
be determined from the 90� area, possible deviations from
ellipsoidal model that could be identified around 35� can-
not be resolved. However, given the round shape of the

upper-branch around 90�, we can say that features asso-
ciated with possible departures from the ellipsoidal model
are not observed (see Fig. 2(c)). This last statement is
confirmed by magnetoresistance measurements in an ad-
ditional sample of the same batch as the field is rotated
along the (100) plane, as shown in Fig. 8. The compari-
son of the FFT angle evolution and the perfect ellipsoidal
model, using the same extremal cross-sectional area pa-
rameters as for the measurements with field along the
(110) plane, confirms the matching of the data with the
perfect ellipsoidal model for samples of this Na composi-
tion (x=0.4%). For the highest Na concentration sample
measured, x=0.62%, possible deviations from perfect el-
lipsoidicity are observed, and will be discussed later in
this section.
As can be seen in the third and fourth columns of Figs.

7(d) and (e), additional features in the angle dependence
plots occur for the two highest Na-doped samples. Nev-
ertheless, all of these features can be identified as the
sum and di↵erence of the fundamental frequencies of the
L-pockets, as can be observed in the light-blue and gray
curves in the fourth column plots of Figs. 7(d) and 7(e).
The presence of such combination frequencies can be at-
tributed to magnetic interaction e↵ects, expected when
the amplitude of the oscillating component of the magne-
tization, M̃ , is comparable to H2/f , in such a way that
the total magnetic field ~B = ~H + 4⇡ ~M , and not just
~H, needs to be considered in the Lifshitz-Kosevich (LK)
formalism of quantum oscillations41 (see Appendix A).
As was suggested above, the sample with the highest

Na concentration studied in this work, x =0.62%, shows
possible indications of deviations from perfect ellipsoidic-
ity. For this sample the high frequency components of the
oscillations are blurred, and the evolution of the di↵er-
ent branches can be observed only up to 400 T. As we
mentioned previously, the determination of fmin for all
samples has a very low uncertainty, particularly for this
sample, given that we can clearly observe up to the third-
harmonic of the lower branch (see Fig. 7(e)). Fixing this
value to fmin = 97 T, Fig. 9 shows a comparison be-
tween the angle evolution of the frequencies of oscillation
for this sample, and a perfect ellipsoidal model using two
di↵erent values of fmax. In order to better guide the
comparison, both plots in this figure show the exact fre-
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quency positions of the maxima of the FFT peaks for all
angles (in black-filled circles). Around the angle of 90�

we observe some weight in the FFT (yellow color) around
350-370 T, which we could interpret as an indication of
the value of fmax. This value is the one used in the per-
fect ellipsoidal model in Fig. 9(a) (as well as Fig. 7(e)).
In this figure, we can see that the matching between the
data and the perfect ellipsoidal model is not satisfactory,
especially close to the 0� area of the plot. Interestingly,
the 90�-370 T area overlaps with the region at which the
third harmonic of the lower branch passes. This could in-
dicate that the weight observed at this region belongs to
this third harmonic, and not to fmax. Figure 9(b) shows
a comparison between the data and a perfect ellipsoidal
model using the same fmin = 97 T, but now using a
larger value of fmax = 460 T. These values provide a
better matching between the data and a perfect ellip-
soidal model for the region of 0�. However, the combina-
tion frequency terms, due to magnetic-interaction e↵ects,
suggest that this fit is not satisfactory, as the evolution
of the combination frequency data points around 60�-350
T seems to be less steep, being better matched by the fit
using fmax = 370 T, as shown in Fig. 9(a). The lack
of a satisfactory perfect ellipsoidal model to describe the
data can be interpreted as deviations from perfect el-
lipsoidicity of the L-pockets for this Na concentration.
The mismatch of the data and the ellipsoidal model is
observed in the intermediate branch, which is consistent
with the guidelines given by the DFT calculations.

For all the measured samples, all features observed in
the angle evolution of the frequencies of oscillations come
from the L-pockets. Furthermore, the carrier concentra-
tion calculated from Luttinger’s theorem and the vol-
ume in k-space of the L-pockets (obtained through the
comparison of the FFT evolution and the perfect ellip-
soidal model), pFS�V ol, matches perfectly (within the
error bars) the Hall number (equivalent to the carrier
concentration for a single band compound) for all Na-
doped samples up to x =0.4%, as shown in Table I: the
L band contributes solely to conduction up to this Na
concentration. Moreover, the small mismatch between
the L-pocket Luttinger volume and the Hall number for
the highest Na concentration sample, x =0.62% presum-
ably comes from deviations from perfect ellipsoidicity, as
previously discussed.

B. Temperature dependence of Quantum
Oscillations

In order to determine the evolution of e↵ective cy-
clotron masses of holes in Na-doped PbTe with carrier
concentration, we measured the temperature dependence
of the oscillation amplitude for samples of di↵erent Na
concentrations, with the field oriented along or close
to high symmetry crystallographic directions. To accu-
rately determine the cyclotron e↵ective masses for such a
low carrier-density material, we simultaneously fitted all

FIG. 10. (Color online) Temperature dependence of the am-
plitude of the oscillating component of magnetoresistance for
Pb

1�xNaxTe samples, with magnetic field along the [111] di-
rection (55� from the [100] direction, in the (110) plane). The
left-column plots show the background-free data at di↵erent
temperatures. The right-column plots show the fits of the
data to the LK-formula in Eq. 1, using the four most dom-
inant frequencies observed in the FFT of the lowest temper-
ature curve. From this fit, the values of cyclotron e↵ective
mass and Dingle temperature, for each frequency term, are
obtained. The values obtained for the transverse cyclotron
mass and Dingle temperature are summarized in Table II.

magnetoresistance curves to the Lifshitz-Kosevich (LK)
formula (in SI units)41:
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TABLE II. Cyclotron e↵ective masses for Pb
1�xNaxTe samples along di↵erent high symmetry directions. These parameters

were obtained through fitting of the curves in Figs. 10, 11 and A3 to the LK-formula in Eq. 1.

x(at.%) pH(⇥1019cm�3) ⇥D,? (K) mcyc
? /me mcyc

[100]

/me mcyc
k /me

0.04 0.75 ± 0.007 - - 0.098 ± 0.001 -
0.13 2.09 ± 0.006 9 ± 4 0.068 ± 0.007 0.085 ± 0.001 -
0.26 4.1 ± 0.06 10 ± 3 0.089 ± 0.002 0.15 ± 0.01 0.29 ± 0.04
0.4 6.3 ± 0.6 9.9 ± 0.2 0.14 ± 0.03 0.172 ± 0.004 -
0.62 9.4 ± 0.6 9.5 ± 0.8 0.13 ± 0.02 0.225 ± 0.006 -

FIG. 11. (Color online) Temperature dependence of the am-
plitude of the oscillating component of magnetoresistance for
a Pb

1�xNaxTe sample with x =0.24%, and magnetic field
oriented close to 35� from the [100] direction, along the
(110) plane. For this orientation, the cross-sectional area of
two of eight L-pockets corresponds to the maximum cross-
sectional area of the ellipsoids. The left-column plot shows the
background-free data at di↵erent temperatures. The right-
column plot shows the fit of the data to the LK-formula in
Eq. 1, using the five most dominant frequencies observed in
the FFT of the lowest temperature curve. From this fit, the
values of cyclotron e↵ective mass and Dingle temperature, for
each frequency term, are obtained.

where the sum is over each frequency observed in the
data, and for which a separate cyclotron e↵ective mass,
mcyc

i /me, and Dingle temperature, ⇥D,i, can be ob-
tained. For low frequency oscillations, the number of
periods observed in the given field range is limited, re-
sulting in FFTs with amplitudes highly dependent on
windowing e↵ects, variations in field range or variations
in signal sampling. In contrast to the fitting of the FFT
amplitudes to the LK formula – the method widely used
for the determination of e↵ective masses of higher car-
rier concentration metals – the values of e↵ective masses
obtained through a direct fitting of the data to the LK
formula are robust to such variations.

Figure 10 shows the temperature dependence of
the oscillating component of magnetoresistance for
Pb

1�xNaxTe samples of di↵erent Na concentrations, for
field oriented along the [111] direction, providing direct
access to the transverse cyclotron e↵ective mass, mcyc

? ,
which is associated with the minimum cross-sectional
area of the L-pockets. Least-squares fits to Eq. 1, in-
cluding up to the fourth strongest frequency component,
for each Na doping, and for a field range of 5 T to 34 T,
are shown in the right-column plots of this figure. The

cyclotron masses and Dingle temperatures obtained for
the fundamental frequency, i.e., mcyc

? and ⇥D,?, as a
function of carrier concentration, are summarized in Ta-
ble II, and plotted in Figs. 16 and 17, in the discussion
section.
Additionally, Fig. 11 shows magnetoresistance curves

at di↵erent temperatures for a sample with Na concen-
tration of 0.26%, with the magnetic field oriented close to
35� from the [100] direction in the (110) plane. For such
field orientation, one of the Fermi surface cross-sectional
areas corresponds to the maximum cross-sectional area
of the ellipsoids (in a perfect ellipsoidal model), which
is associated with the longitudinal cyclotron mass, mcyc

|| .
The value obtained for this mass is presented in Table II.
From our measurements, we can also obtain cyclotron

masses along intermediate directions; these are presented
in Fig. 15 of the discussion section.

V. DISCUSSION

A. Fermi surface topology

Having presented the data and the analysis performed
to obtain the various Fermi surface parameters for dif-
ferent Na-doping levels, we now summarize them and
present their evolution as a function of depth in the va-
lence band. The parameters obtained in the previous
section are summarized in Table I, where we also include
data from an additional Na composition (x = 0.04%) for
which measurements in a more limited field range (up to
14 T) were taken.
Figure 12 shows the L-pockets’ Luttinger volume as a

function of Hall number for the Na-doped PbTe samples
studied, plus self-doped (by Pb vacancies) samples mea-
sured in previous SdH studies by other groups14,15. For a
single-parabolic-band model, these two quantities are ex-
pected to exactly match with each other, and to lie on the
dashed line shown in the figure. This is indeed the case
for all the samples studied, including the self-doped ones.
The deviations seen for the largest Na doping can be at-
tributed to deviations from perfect ellipsoidicity of the
pockets, as discussed in previous sections. The matching
between the L-pockets’ Luttinger volumes and Hall num-
bers implies that PbTe, up to a carrier concentration of
pH = (9.4± 0.6)⇥ 1019cm�3, is single band, that is, all
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FIG. 12. (Color online) Carrier concentration calculated from
Luttinger’s theorem and the volume of the L-pockets ex-
tracted from the comparison between the data and a perfect
ellipsoidal model, as a function of the Hall number, for Na-
doped PbTe (black squares), and obtained using the ellipsoid
parameters from previous studies in Refs. 14 and 15 (blue
stars). The dashed line shows the expected behavior for a
single-parabolic band, for which the carrier density enclosed
by the Fermi surface, as determined through Luttinger’s the-
orem, matches the carrier density measured using the Hall
e↵ect. All the measured samples lie on this line, and the
deviations seen for the highest Na doping (gray square) are
attributed to deviations from perfect ellipsoidicity.

the carriers contributing to conduction belong to the L
band. This result implies that the band o↵set between
the L and ⌃ valence band maxima is underestimated in
our DFT calculations, as well as all previously published
band-structure calculations8,13,33,34,42–46, which predict
the appearance of the ⌃ band at a hole concentration of
the order of p ⇡ 1⇥ 1019cm�3.

The evolution of the three high symmetry L-pocket
cross-sectional areas, in frequency units (fmin, fmax and
f
[100]

), with Hall number is plotted in Fig. 13. For a
perfect ellipsoidal model, all the cross-sectional areas are

expected to scale with carrier concentration as p2/3H . This
is in fact the functional form followed by most cross-
sectional areas in Fig. 13, as shown by the dashed line.
The last Na-doped sample deviates from this line, con-
firming the departure from perfect ellipsoidicity of the
pockets for this high carrier concentration. However, for
carrier concentrations below pH = 6.3⇥1019cm�3, we can
conclude that the L-pockets are well described by a per-
fect ellipsoidal model, within the experimental resolution.
For the highest Na concentration studied, the deviation
from the perfect ellipsoidal behavior follows the expected
trend predicted by our DFT calculations, as presented in
Fig. 5.

Additionally, the anisotropy of the L-pockets, K =
(fmax/fmin)2, is approximately constant with carrier
concentration (K = 14.3 ± 0.4), for the range of carrier

concentrations of interest, as shown in Fig. 14. The ob-
servation of a constant anisotropy of the L-pockets with
carrier concentration confirms previous results by Burke
et al.15 for p-type self doped PbTe with carrier concen-
trations below 1⇥ 1019cm�3 (shown as blue stars in Fig.
14), and contrasts the results by Cu↵ et al.47 in self-doped
samples with carrier concentrations up to 3⇥1018cm�3,
in which a decrease in K with increasing carrier concen-
tration is observed. The K values reported by Burke et
al. are slightly less than the average value of 14.3±0.4
found in this work. However, as discussed previously,
an accurate estimation of the Fermi surface parameters
for the low carrier concentration regime is challenging
given the few periods of oscillation observed in a limited
field range. This could be the reason for the lower K
value obtained for the x = 0 sample measured in this
work. A constant value of K with carrier concentration
is expected in a perfect parabolic band model, in which
the L-pocket anisotropy is equivalent to the band mass
anisotropy, K = mk/m?, where mk is the e↵ective band
mass along the ellipsoidal L-pocket semi-major axis (lon-
gitudinal band mass), and m? is the e↵ective band mass
along the ellipsoidal L-pocket semi-minor axis (transverse
band mass) (in terms of the cyclotron e↵ective masses,
K = (mcyc

k /mcyc
? )2, as shown in Appendix D). However,

a constant K value can also be obtained for specific mod-
els with dispersion relations in which corrections for non-
parabolicity of the band are considered, as we will present
in the next section.

B. E↵ective cyclotron masses and relaxation time

As we presented in section IVB, e↵ective cyclotron
masses along di↵erent high symmetry directions were ob-
tained through direct fitting of the curves shown in Figs.
10, 11 and A3 to the LK-formula in Eq. 1. For all the
Na compositions studied, the cyclotron masses along the
transverse direction, mcyc

? , and [100] direction, mcyc
[100]

,
were determined through this method. Additionally, for
samples with a Na concentration of x = 0.26%, the lon-
gitudinal cyclotron mass, mcyc

|| , was also found. Supple-
mentary to these highly symmetric masses, others along
less symmetric directions of the ellipsoid can be found
from the di↵erent frequency terms in the measurements.
Figure 15 shows the cyclotron e↵ective masses found for
all frequency terms taken into account in the LK fits
of the x = 0.26% sample (Figs. 10(b), 11 and A3(c)),
as a function of the angle from the L-pocket longitudi-
nal direction. The corresponding angle for the mass of
each frequency term, with respect to the longitudinal di-
rection of the ellipsoids, was found by identifying each
frequency in the angle dependence curves, such as that
presented in Fig. 7(c). Figure 15 also shows the expected
angular dependence of the cyclotron e↵ective mass (fun-
damental and higher harmonics) in a perfect ellipsoidal
model (for more details, see Appendix D), using the av-
erage K value from Fig. 14 (K = 14.3 ± 0.4, which
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FIG. 13. (Color online) Evolution of the characteristic frequencies of the L-pockets with Hall number, for Na doping, as
determined from this study, and for self-doped samples from the works in Refs. 14 and 15: (a) Frequency associated with the
L-pockets’ minimum cross-sectional area, fmin, (b) Frequency associated with the L-pockets’ cross-sectional area in the [100]
direction, f

[100]

, and (c) Frequency associated with the L-pockets’ maximum cross-sectional area, fmax. The blue-star symbols
are data points obtained by previous quantum oscillation studies from other authors14,15, in self-doped PbTe with di↵erent
levels of Pb vacancies (the last star in fmin, in green, was obtained by Na doping). The fmax data point for the highest Na
concentration is represented by a gray square, in order to emphasize that deviations from perfect ellipsoidicity seen in this
sample result in a less accurate determination of fmax. The dashed line in all the plots is the functional dependence of p2/3H

expected for a perfect ellipsoidal model with fixed anisotropy.
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FIG. 14. Anisotropy parameter of the L-pockets, K =
(fmax/fmin)

2, extracted from the data, as a function of the
Hall number for Na-doped samples, as determined from this
study (black squares, and gray square for the highest Na com-
position), and for self-doped samples from the works in Refs.
14 and 15 (blue-stars). The horizontal gray-line shows the av-
erage value of K = 14.3±0.4 for this range of concentrations.

gives mcyc
k /mcyc

? =
p
K = 3.78±0.05). Most data points

lie on this curve, confirming the good agreement of the
topology of the Fermi surface with the perfect ellipsoidal
model for this Na concentration.

In spite of the good agreement of the anisotropy of
the cyclotron e↵ective mass with the perfect ellipsoidal
model, intriguingly, the masses are not constant through-
out the band: Fig. 16 shows the evolution of the longi-
tudinal, transverse and [100] direction cyclotron e↵ec-

tive masses with carrier concentration. All of them show
a monotonic increase with increasing carrier concentra-
tion, consistent with the predictions of the DFT band-
structure calculations presented in section IIC. Previous
SdH measurements in p-type self-doped PbTe by Burke
et al.14,15 (pH < 1 ⇥ 1019 cm�3), and by Cu↵ et al.47

(pH < 6 ⇥ 1018 cm�3), found a similar tendency for the
transverse cyclotron mass. The observation of a varying
e↵ective mass with carrier concentration implies devia-
tions from perfect parabolicity, starting from the top of
the band.

A Kane model dispersion relation has been proposed
before to describe the valence band of PbTe33,48–51. In
this model the non-parabolicity of the band is introduced
as E �! �(E) = E(1+E/Eg) in the dispersion relation,
where Eg is the band gap. For such a model, the longi-
tudinal and transverse e↵ective masses depend on energy
in the same way49, implying that, although the e↵ective
masses evolve as the Fermi energy is changed, the band
anisotropy parameter, K = (Ak/A?)2 = (mcyc

k /mcyc
? )2,

is constant. Additionally, in this model, the constant
energy surfaces for any Fermi energy are ellipsoids of
revolution49, which is consistent with our observations
for carrier concentrations up to p = 6.3⇥1019cm�3. The
Kane model has been successful at describing the band
structure near the gap of small band-gap semiconduc-
tors, for which the relevant Fermi energies are smaller
than or of the same order as the band gap52. Our ex-
perimental results are in line with the predictions of the
Kane model, ruling out other proposed models such as
the Cohen model49,53,54, at least for the low temperature
regime.

Additional to the cyclotron e↵ective masses, we have
found the Dingle temperature in the transverse direction,
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FIG. 15. (Color online) Cyclotron e↵ective mass, mcyc, along
di↵erent directions with respect to the (L-pocket) ellipsoid
semi-major axis, for a Pb

1�xNaxTe sample with x =0.24%.
The data points were obtained through fits to the LK-formula
of the oscillating components of magnetoresistance along
three di↵erent crystallographic directions: [111] (Fig. 10(b)),
(100) (Fig. A3(d)), and 35� from [100] in the (110) plane
(Fig. 11). The dashed-lines represent the angle dependence
of the cyclotron mass (fundamental and higher harmonics) for
a perfect parabolic dispersion and perfect ellipsoidal model,
as presented in Eq. D7, and using an anisotropy parameter
K = 14.3± 0.4 (which implies m

cyc
k /m

cyc
? =3.78±0.05). The

shadowed region around the dashed lines represents the error
bar in m

cyc(✓) estimated from propagation of errors in K, ✓
and m

cyc
? .

⇥D,?, through a fitting of the data to the LK-formula,
as presented in section IVB. In contrast to the cyclotron
mass, finding this quantity along directions other than
the transverse direction of the L-pocket ellipses is chal-
lenging, given that the oscillatory part of magnetoresis-
tance is dominated by the lowest frequency component.
For this dominating part of the signal, the exponential
damping in 1/H is the only one strong enough to re-
sult in a Dingle temperature as a strong fitting param-
eter. Figure 17 shows the Dingle temperature associ-
ated with the transverse direction, ⇥D,?, as a function
of carrier concentration. This quantity is constant for the
range of concentrations studied, with an average value of
⇥D,?=(9.7±0.4) K. This average value of ⇥D,? results
in a value of the carrier relaxation time along the trans-
verse direction of ⌧? = ~/2⇡kB⇥D,? =(0.125±0.005) ps.
It is interesting to note that although the RRR value for
Pb

1�xNaxTe decreases by approximately 20 times from
undoped PbTe to the highest Na-doping studied, sug-
gesting a considerable increase of scattering e↵ects, the
transverse relaxation time found in this work is constant
with carrier concentration. However, as suggested by the
progressive decrease of the Fourier intensity of the higher
frequency components as doping is increased, as can be
observed in Fig. 7, the enhanced scattering could be
reflected in a significant decrease of the longitudinal re-
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FIG. 16. (Color online) E↵ective cyclotron mass, mcyc, along
three high symmetry directions for Pb

1�xNaxTe samples, as a
function of the Hall number. Cyclotron e↵ective masses were
determined through fitting the curves in Figs. 10, 11 and A3
to the LK-formula in equation 1. m

cyc
? is the cyclotron mass

in the transverse direction of the L-pocket ellipsoid, or [111]
direction (red-solid-squares); mcyc

[100]

is the cyclotron mass in

the [100] direction of the crystal lattice (gray-solid-circles);
and m

cyc
k is the cyclotron mass in the longitudinal direction of

the L-pocket ellipsoid (blue-solid-diamond). The red-dashed
line represents a guide to the eye for the trend observed in
the longitudinal cyclotron mass. The blue-dashed line is the
trend expected for the longitudinal cyclotron mass given the
anisotropy parameter of mcyc

k /m

cyc
? =

p
K = 3.78. The small

open-triangles show the L-pocket e↵ective cyclotron masses
determined through our DFT calculations, as shown in Fig.
6. The agreement between the calculated masses and the
experimental values for the transverse and [111] direction is
outstanding.

laxation time. Unfortunately, a reliable determination of
the longitudinal Dingle temperature, resulting in a lon-
gitudinal relaxation time, was not possible.

VI. SUMMARY AND CONCLUSIONS

In summary, we have presented a computational and
experimental study of the low-temperature (1.5 K to
60 K) topology and properties of the Fermi surface of
Pb

1�xNaxTe, and its evolution with carrier concentra-
tion, for Na dopings up to x=0.62%. We have found
that:
(i) Although the band o↵set is underestimated by the
DFT calculations, all the qualitative features of the evo-
lution of the Fermi surface topology and e↵ective mass
are correctly predicted by our calculations. The under-
estimation of the band o↵set is related to the high sen-
sitivity of the resulting band structure to variations of
parameters in the calculation, such as lattice spacing or
spin-orbit coupling. This fact is presumably related to
the fact that PbTe is on the boundary between vari-
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FIG. 17. (Color online) Dingle temperature in the transverse
direction, ⇥D,?, obtained through fitting of the curves in Fig.
10 to the LK formula in Eq. 1, as a function of carrier concen-
tration pH . We find that the Dingle temperature is indepen-
dent of carrier concentration, with a value of ⇥D,?=(9.7±0.4)
K, indicated by the dashed-gray line. This value of ⇥D,? re-
sults in a value of ⌧ =(0.125±0.005) ps for the carrier relax-
ation time along the transverse direction.

ous competing structural (incipient ferroelectricity20,21)
and electronic (superconductivity10–12 and topological
insulator22,23) instabilities.
(ii) Up to a carrier concentration of p = 9.4⇥ 1019cm�3

(x = 0.62% - maximum studied) the Fermi surface of
Pb

1�xNaxTe is formed solely by eight half ellipsoids at
the L-points. The ⌃-pockets predicted to contribute at
such high carrier concentrations in our calculation and
those of other groups13,42,55–57, are not observed. Ad-
ditionally, the measured Hall number and the Luttinger
volume of the L-pockets calculated from our quantum
oscillation measurements match exactly, indicating that
this is the only set of pockets that contribute to conduc-
tion in this compound at low temperatures.
(iii) The topology of the Fermi surface, formed by eight
half pockets at the L-points, is well described by a per-

fect ellipsoidal model for carrier concentrations up to
p = 6.3⇥ 1019cm�3 (x = 0.4%). Deviations from perfect
ellipsoidicity were resolved for the highest carrier concen-
tration studied, p = 9.4⇥ 1019cm�3 (x = 0.62%).
(iv) The anisotropy of the L-pockets is constant for the
range of concentrations studied, and has an average value
of K =14.3±0.4.
(v) The anisotropy of the cyclotron e↵ective mass of the
L-pockets follows the angular dependence expected in a
perfect ellipsoidal model.
(vi) The e↵ective cyclotron masses along all high sym-
metry directions increase monotonically with increasing
carrier concentration, implying deviations from perfect
parabolicity of the band. The observation of constant
geometric and mass anisotropy with carrier concentra-
tion, but an increasing e↵ective mass, is consistent with
a Kane model of non-parabolic dispersion relation for the
valence band of PbTe.

Our experimental determination of the low-
temperature Fermi surface and band structure pa-
rameters of PbTe is an important piece of information
which needs to be considered in models that aim
at explaining the evolution of a variety of electronic
properties at high doping levels in PbTe, including
superconductivity and thermoelectric properties.

ACKNOWLEDGMENTS

The high-field magnetoresistance measurements were
performed at the National High Magnetic Field Lab-
oratory (NHMFL), which is supported by NSF DMR-
1157490 and the State of Florida. PGG, PW, HJS and
IRF were supported by AFOSR Grant No. FA9550-09-1-
0583. BS, MF and NAS acknowledge support from ETH
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APPENDIX

Appendix A: Quantum oscillations formalism

In this section we briefly outline the concepts needed
to understand quantum oscillation experiments in met-
als. For a detailed treatment see the excellent book by
Shoenberg 41 . It is well known that in a magnetic field
H the allowed electronic states lie on quantized tubes in
k-space (Landau tubes). The tube quantization is de-
scribed by the Onsager equation

a(En,kH
, kH) =

✓
n+

1

2

◆
2⇡eH/~c , (A1)

where a is the cross-sectional area of the Landau tube
in a plane perpendicular to H, and n is an integer. As
a consequence, an oscillatory behavior with the inverse
magnetic field 1/H can be observed in, for example, the
magnetization – the de Haas-van Alphen e↵ect – or the
resistance – the Shubnikov-de Haas e↵ect. The period of
such oscillations, �

1/H , is given by

�
1/H = 2⇡e/(~cA) , (A2)

A being an extremal cross-sectional area of the Fermi
surface in a plane perpendicular to H. One can also
define a frequency for these oscillations as

f = 1/�
1/H = (c~/2⇡e)A . (A3)

By determining the oscillations in, e.g., the resistivity for
varying orientations of the magnetic field one can even-
tually reconstruct the Fermi surface.
In the semi-classical picture the electrons move along

(open and closed) orbits on the Fermi surface in a plane
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perpendicular to H. The time taken to traverse a closed
(cyclotron) orbit is given by

tc =
2⇡

!c
=

~2c
eH

@a

@E
, (A4)

where one can rewrite the cyclotron frequency !c in terms
of a cyclotron mass

mcyc =
~2
2⇡

@a

@E
. (A5)

For a free-electron gas the cyclotron mass is equal to the
electron mass. Experimentally the cyclotron masses are
extracted using the Lifshitz-Kosevich (LK) formula (in
SI units)

⇢(H)� ⇢
0

⇢
0

=
X

i

Ci

⇢
exp

✓
�14.7(mcyc

i /m
0

)⇥D,i)

H

◆�

⇥
⇢

T/H

sinh (14.7(mcyc
i /m

0

)T/H)

�

⇥ cos


2⇡

fi
H

+ �i

�
(A6)

as presented in Eq. 1.

Appendix B: Temperature and Na-composition
dependence of the lattice constant

In this section we present an experimental determina-
tion of the cubic lattice parameter of Pb

1�xNaxTe sam-
ples with di↵erent Na content, and its temperature de-
pendence. This determination will be necessary to study
the sensitivity of the DFT band-structure calculations to
realistic variations in lattice constant, which we present
in the next section.

The peak positions of several di↵raction peaks with
high 2✓ values were determined for di↵erent tempera-
tures (from 300K down to 80K), using the 2D detector
of a commercial Bruker-D8-Venture single crystal X-ray
di↵ractometer. In order to minimize systematic errors,
the lattice parameters at each temperature were deter-
mined through a linear fit of the calculated lattice spac-
ing for each peak (a = dhkl

p
h2 + k2 + l2) vs. 2✓, and

the extrapolation of this fit to 2✓ = 180�. These mea-
surements were done for two Na-doped PbTe samples
with Na concentrations of x =0.26% and 0.62%. The
temperature dependence of the lattice parameter of the
measured samples, as well as data by Bozin et al.

20 for
undoped PbTe, are shown in Figure A1. Below 150K,
the data for x =0.26% exhibit a greater scatter than
those for x =0.62%, reflecting poorer experimental con-
ditions for that measurement. However, the overall trend
of the temperature dependence for both compositions is
similar. In order to obtain a sensible extrapolation of
our data down to zero-temperature, Bozin’s data for un-
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FIG. A1. (Color online) Lattice parameter of the cubic unit
cell of Pb

1�xNaxTe samples with di↵erent Na content, as a
function of temperature. Filled symbols represent the exper-
imentally determined values, and the solid lines represent a
fit to a low order polynomial, as explained in the text, from
which the zero-temperature lattice parameter can be extrap-
olated.

TABLE AI. Zero-temperature extrapolated lattice parameter
(aT=0K) of Pb

1�xNaxTe samples with di↵erent Na content.
This extrapolation was done through a low-order polynomial
fit of the temperature dependence of the lattice parameters,
as explained in the text.

x (Na at.%) pH(⇥1019cm�3) aT=0K [Å]
0 – 6.4311(1)

0.26 4.1 ± 0.06 6.436(3)
0.62 9.4 ± 0.6 6.4429(7)

doped PbTe samples, which goes down to much lower
temperatures than ours, was fitted with a low order poly-
nomial (solid-black line in Fig. A1). For the Na-doped
samples, the data was fitted by keeping all the polyno-
mial coe�cient found for the undoped sample, except the
zero-power term (vertical o↵set), which represents the
zero-temperature lattice parameter for these Na-doped
samples. The values obtained for the zero-temperature
lattice parameter of these three compositions are sum-
marized in Table AI. The temperature variation of the
lattice parameter, from zero temperature to room tem-
perature, of the samples studied here, is of the order of
0.5%, whereas the compositional variation, from undoped
PbTe to 0.62% Na-doped PbTe, is of the order of 0.2%.

Appendix C: Volume dependence of DFT results

In this section we comment on the volume dependence
of the band-structure and quantum-oscillation parame-
ters in our DFT calculations. Table AII shows the vol-
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FIG. A2. (Color online) Evolution of SdH frequencies (a) and cyclotron masses (b) as a function of density of holes in the
L-pocket, pL, for two di↵erent volumes: 6.50 Å (open symbols and superscript l) and 6.44 Å (filled symbols and no superscript).
The larger volume corresponds also to a larger band o↵set – 120 meV vs 74 meV. The dashed vertical lines indicate the L-pocket
hole density above which the ⌃-pockets start to be populated.

TABLE AII. Volume dependence of band-structure param-
eters in DFT. The volume range is chosen to cover the ex-
perimental range of (un)doped samples at T = 0 K. a is the
lattice constant, and m

⇤ are the e↵ective masses (curvature)
at the top of the valence band.

a [Å] Band o↵set [meV] |m⇤
?| [me] |m⇤

k| [me]

6.43 71 0.016 0.368
6.44 74 0.014 0.305
6.45 84 0.011 0.224

ume dependence of the band o↵set and e↵ective masses
for the range of experimental volumes of (un)doped sam-
ples at T = 0 K (see Fig. A1 and Table AI).

An increase in volume is accompanied by an increase
in band o↵set (in contrast to the behavior expected from
experiments, where thermal expansion leads to a de-
crease of the band o↵set17–19), and a decrease in e↵ective
masses. The latter indicates that the L-pocket becomes
narrower, but is not able alone to predict an apprecia-
ble change in the evolution of SdH frequencies and cy-
clotron masses, because, as mentioned in the main text,
the band is non-parabolic. To check the influence of vol-
ume on SdH frequencies and cyclotron masses, we com-
puted their evolution with doping for two di↵erent vol-
umes (figure A2), the DFT-lattice constant 6.44 Å – with
a band o↵set of 74 meV – and a representative larger one
6.50 Å (noted with an l-superscript in the figure) – with
a band o↵set of 120 meV.

No appreciable di↵erences in the doping dependence
for the two di↵erent volumes can be observed: in fact,
if the L-pocket is narrower it becomes filled faster, or,
the shift in Fermi energy to obtain a given density of
holes is larger. The concentration at which the ⌃-pockets
start contributing is also not much di↵erent for the same
reason.

We conclude that unit-cell volume changes of the order
of those found experimentally (due to temperature and
compositional variation) do not a↵ect significantly our
DFT results.

Appendix D: Cyclotron e↵ective mass anisotropy

For a given dispersion relation one can, in principle,
find the relation between the geometric anisotropy of
the Fermi surface and the anisotropy of the cyclotron
e↵ective mass. For a perfect parabolic band, the general
anisotropic dispersion relation is given by,

~2k2x
2mx

+
~2k2y
2my

+
~2k2z
2mz

= E (D1)

where mx, my and mz are the band masses. For an
ellipsoidal Fermi surface with the semi-major axis of the
ellipse oriented along the z-axis, the band masses are
mx = my = m? (prolate ellipsoid) and mz = mk.
For such systems, the minimum and maximum cross-
sectional areas are

A? = ⇡k2x,y

����
kz=0

=
2⇡m?
~2 E (D2a)

Ak = ⇡kx,y

����
kz=0

kz

����
kx,y=0

=
2⇡

~2
p
m?mkE (D2b)

and the ratio of maximum-to-minimum cross-sectional
areas is

Ak

A?
=

f
max

f
min

=

r
mk

m?
=

p
K (D3)
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whereK = mk/m? is defined as the ratio of band masses,
and it directly represents the anisotropy of the ellipsoidal
pocket. As our experiment is a direct probe of cyclotron
masses, we can find a relation between K and the ex-
tremal cyclotron masses. For a perfect parabolic band,
with dispersion of the form given in Eq. D1, the cyclotron
e↵ective mass, mcyc = e| ~B|/~!c, for a magnetic field of
the general form ~B = Bxx̂ + By ŷ + Bz ẑ can be found
from the dynamic equations and the dispersion relation,
resulting in the expression

mcyc =

vuut
mxmymz

mx

⇣
Bx

|B|

⌘
2

+my

⇣
By

|B|

⌘
2

+mz

⇣
Bz

|B|

⌘
2

(D4)

For an ellipsoid of revolution, therefore, the transverse
and longitudinal cyclotron e↵ective masses, in terms of
the band masses, are

mcyc
? = m? (D5a)

mcyc
k =

p
m?mk . (D5b)

And with this,

mcyc
k

mcyc
?

=

r
mk

m?
=

p
K . (D6)

For the case of Pb
1�xNaxTe, in which K =14.3±0.4

for a wide range of dopings, mcyc
k /mcyc

? =3.78±0.05. Ad-
ditionally, from Eq. D4, we can find a general expres-
sion for the angle dependence of cyclotron mass of an
ellipsoid of revolution, with respect to the main axis of
the ellipsoid, and as a function of the transverse cy-
clotron mass, by writing the components of the mag-
netic field in spherical coordinates as Bx = | ~B| sin ✓ cos',
By = | ~B| sin ✓ sin' and Bz = | ~B| cos ✓:

mcyc (✓)

mcyc
?

=

s
K

(K � 1) cos2 ✓ + 1
(D7)

Appendix E: E↵ective cyclotron mass along the
[100] orientation

Figure A3 shows the temperature dependence of
the oscillating component of magnetoresistance for
Pb

1�xNaxTe samples of di↵erent Na concentrations, for
field oriented along the [100] direction, which provides di-
rect access to the mcyc

[100]

cyclotron e↵ective mass. Least-
squares fits to Eq. 1, including up to the second strongest
frequency component, for each Na doping, and for a field
range of 3-5 T to 14 T, are shown in the right-column

plots of this figure. The obtained [100] cyclotron masses
are summarized in Table II, and plotted as a function of
carrier concentration in Fig. 16, in the discussion section.

FIG. A3. (Color online) Temperature dependence of the am-
plitude of the oscillating component of magnetoresistance for
Pb

1�xNaxTe samples, with magnetic field oriented in or close
to the [100] direction. The left-column plots of each composi-
tion show the background-free data at di↵erent temperatures.
The right-column plots show the fits of the data to the LK-
formula in Eq. 1, using the two most dominant frequencies
observed in the FFT of the lowest temperature curve (three
most dominant for the x=0.62% sample). From these fits, the
values of cyclotron e↵ective mass and Dingle temperature, for
each frequency term, are obtained.


