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Recent theoretical and experimental work has suggested the tantalizing possibility of opening a
topological gap upon driving the surface states of a three-dimensional strong topological insulator
(TI) with circularly polarized light. With this motivation, we study the response of TIs to a driving
field that couples to states near the surface. We unexpectedly find coherent oscillations between
the surface and the bulk and trace their appearance to unavoidable resonances caused by photon
absorption from the drive. We show how these resonant oscillations may be captured by the Demkov-
Osherov model of multi-level Landau-Zener physics, leading to non-trivial consequences such as the
loss of adiabaticity upon slow ramping of the amplitude. We numerically demonstrate that these
oscillations are observable in the time-dependent Wigner distribution, which is directly measurable
in time-resolved ARPES experiments. Our results apply generically to any system with surface
states in the presence of a gapped bulk, and thus suggest experimental signatures of a novel surface-
bulk coupling mechanism that is fundamental for proposals to engineer non-trivial states by periodic
driving.

The recent emergence of topological physics in bulk
materials has brought to bear an important connection
between topology in the bulk and novel surface states.
These surface states manifest a variety of interesting
properties, such as exhibiting anomalous behavior that is
impossible in a purely two-dimensional theory. The sim-
plest example of this is the one-dimensional chiral edge
states in the quantum Hall effect1–4, and the same con-
cept applies to helical surface states and isolated Dirac
cones in two- and three-dimensional topological insula-
tors respectively5–11, as well as more exotic cases like
Fermi arcs in Weyl and Dirac semimetals12–17. Indeed,
an ever-expanding zoo of surface states is continuously
being discovered18–29.

These surface states are particularly amenable to de-
tection by a host of modern experimental methods, such
as scanning tunneling microscopy (STM)30–35 and angle-
resolved photoemission spectroscopy (ARPES)11,15–17,26.
These probes preferentially excite electrons near the sur-
face and are thus able to measure and distinguish surface
and bulk states. A more recent development in ARPES
as well as similar photon-in photon-out experimental se-
tups is time-resolved pump-probe spectroscopy, in which
the system is be excited far from equilibrium and the
state detected during the relaxation process36–44. This
gives much richer insight into both the static and dy-
namic properties of the quantum system and has also
given rise to a recent re-emergence of theory for such
far-from-equilibrium systems. In particular, there is an
active search for examples of drive-induced topological
phases45–47 and significant theoretical progress towards
their classification48–53.

One important development in the field has been a
recent experiment41 in which a time-reversal-invariant
topological insulator (TI) was irradiated with a pulse
of light and imaged via pump-probe ARPES. The Dirac
cone on the surface of these materials is a seed of new
topological physics, and the experiment sees a gap open
in the Dirac cone upon applying circularly polarized light.

This gap is predicted to be topological in the sense that
it realizes a half-integer quantum Hall effect.54,55

Motivated by this development, in this paper we ex-
plore the non-equilibrium dynamics of a topological in-
sulator in the presence of a short pulsed drive. The pulse
breaks the perfect periodicity of the drive, yet we nu-
merically see Floquet-Bloch sidebands as in the exper-
iments. However, we find an unexpected oscillation in
the intensity of these sidebands, which we identify as a
novel bulk-surface coupling induced by the local drive
at the surface. We show that this coupling leads to
coherent oscillations between the surface and the bulk
that survive in the thermodynamic limit, which gener-
ically arise through a simple many-level Landau-Zener
picture that depends on Floquet resonances. This model
yields several non-trivial predictions, including reversing
the meaning of adiabaticity its traditional non-resonant
behavior: faster ramps appear more “adiabatic” because
they see the resonances for less time, and thus decreas-
ing the ramp rate leads to stronger bulk-surface oscil-
lations. We find that these resonant oscillations are not
only visible in the Wigner distribution, a non-equilibrium
observable measurable in pump-probe ARPES, but are
completely generic to periodically-driving the surface of
any material with surface states inside a gapped bulk.
This provides a measurable signature of this non-trivial
surface-bulk resonance that should play a major role in
Floquet engineering of driven surface states.

The paper is organized as follows. In Section I we
introduce the idea of Floquet-Bloch states and a non-
equilibrium observable – the Wigner distribution – that
can be used to measure them. We then discuss the be-
havior of these states at constant amplitude of drive for
the simplest single-Dirac-cone model of TI surface states
followed by a more complicated model in which coupling
is allowed to the bulk. In Section II we see how the
Floquet-Bloch states are modified by turning the drive
on and off non-adiabatically via a Gaussian pump pulse.
One important effect that we see is resonance between
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FIG. 1. Illustration of the setup that we consider. A pulsed
periodic electric field is incident on the surface of a topological
insulator and decays with some characteristic length scale ξ
into the bulk. Also shown the band structure of a topological
insulator (TI). The bulk appears to be a gapped semiconduc-
tor, but the difference in the topological Z2 invariant between
the TI and the surrounding vacuum leads to Dirac cone sur-
face states.

the surface and bulk, which we proceed to describe us-
ing a many-level generalization of Landau-Zener tunnel-
ing known as the Demkov-Osherov model. Finally, in
Sec. III, we analytically derive other leading corrections
to the adiabatic Floquet-Bloch signal using the Floquet
generalization of adiabatic perturbation theory.

I. FLOQUET-BLOCH STATES FOR CONSTANT
AMPLITUDE DRIVE

A schematic setup used in many contemporary con-
densed matter experiments is illustrated in Fig. 1. A
laser pulse illuminates the sample, driving the electrons
out of equilibrium. The non-equilibrium electrons are
then measured via one of a number of methods, e.g., opti-
cal response, photoemission, tunneling, etc. This type of
setup is particularly interesting in the case of topological
insulators, whose surface states may be readily excited
by the drive. In addition, as the bulk states have some
(weak) overlap with the drive, they also are excited. This
is precisely the effect that is used in pump-probe exper-
iments of high-temperature superconductors and other
materials, where the non-equilibrium (bulk) population
in excited states is seen to decay as a probe of the mate-
rial’s physics.

We will examine the response of topological insulators
to this type of drive. These materials have a gapped bulk
and conducting Dirac-like surface states, as illustrated in
Fig. 1. The surface states have been probed through
a number of techniques including pump-probe ARPES.
However, due to their gapped nature, understanding the
connection between the surface and the bulk states has
remained relatively unexplored area. In this paper we
will show that an interesting connection exists and dis-
cuss its observable consequences.

A. Driving surface states of TIs

The simplest model of a TI surface state is a single
Dirac cone with Hamiltonian9

HSS = −v(kxσ
x + kyσ

y), (1)

for a surface perpendicular to ẑ. The Pauli matrices of-
ten correspond to physical spin (Sx, Sy) = (σy,−σx)/2
which is locked perpendicular to the momentum k‖ via

Rashba spin-orbit coupling56–58, though more generally
σ could denote spin/orbital indices. Our units are set
by velocity v = 1, as well as ~ = 1 throughout the
paper. Consider driving this Hamiltonian by a laser
perpendicular to the surface, with electric field E =
Ex cos(Ωt + ϕx)x̂ + Ey sin(Ωt + ϕy)ŷ of constant ampli-
tude. This drive allows arbitrary polarization, but we will
focus on the case of linearly y-polarized light and phase
ϕy = 0. Coupling this periodic drive to the surface states
is achieved by the minimal substitution k‖ → k‖ − eA,
where we pick the gauge E = −∂A/∂t. Then the Hamil-
tonian becomes time-dependent:

H(t) = HSS(k‖ − eA(t)) . (2)

We first consider the case of constant drive amplitude,
Ey = ΩAy, but later we will return to the case where
this amplitude in turn varies slowly as in the case of a
pulsed laser (cf. Fig. 2b). Note that we are assuming the
drive is uniform over the entire sample such that the in-
plane momentum k‖ remains a conserved quantity even
in the presence of the drive.

1. Non-equilibrium observables: Wigner distribution and
Floquet-Bloch states

Acting on the Hamiltonian in Eq. 1 with a periodic
drive yields a fundamentally non-equilibrium problem.
Floquet’s theorem states that the full time evolution
U(t) = T exp[−i

´
H(t)dt] (T = time ordering) can be

decomposed as

Uk‖(t) =Pk‖(t)e
−iHF (k‖)t, (3)

where Pk‖(0) = 1 and Pk‖(t) = Pk‖(t + 2π/Ω). P is a

periodic operator often called the micromotion and H
k‖
F

is an effective static Hamiltonian - the Floquet Hamil-
tonian - that describes the behavior over many cycles.
This is the temporal analogue of Bloch’s theorem, in ad-
dition to which we have used the usual Bloch’s theorem
in noting that k‖ is conserved. The eigenstates of H

k‖
F

satisfying HF (k‖)|nF (k‖)〉 = εnF (k‖)|nF (k‖)〉 are known

as Floquet-Bloch states41,59,60. A system prepared in one
of these Floquet-Bloch states at time t = 0 will return
to the same state stroboscopically at times t = nT for
integer n, where T = 2π/Ω is the driving period.

For such a non-equilibrium system, one of the most
natural observables to consider is the probability to be in
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each of the Floquet-Bloch eigenstates. This is naturally
described by the non-equilibrium generalization of the
occupation number, namely the Wigner distribution:

fαβ(k‖, ω, tav) = −iG<αβ(k‖, ω, tav)

= −iFtr
[
〈c†β(tav + tr/2)cα(tav − tr/2)〉

]
,

where α and β denote spin/orbital indices and F is
the Fourier transform. To ensure basis-independence
we will be interested in its trace, f(k‖, ω, tav) ≡∑
α fαα(k‖, ω, tav).
The Wigner distribution naturally describes equi-

librium or non-equilibrium occupation of energy
eigenstates61. The simplest example of this is to consider

evolution of the state |ψ〉 = c†0|vac〉 under a static single-

particle Hamiltonian, where c†0 creates a single fermion
in the energy eigenvalue E0 of H. Then a straightfor-
ward calculation confirms that f is just a single peak at
frequency E0:

f(tr, tav) = 〈ψ|
∑
n

c†n(tav + tr/2)cn(tav − tr/2)|ψ〉

=
∑
n

〈ψ|
(
eiH(tav+tr/2)c†ne

−iH(tav+tr/2)

eiH(tav−tr/2)cne
−iH(tav−tr/2)

)
|ψ〉

= eiEψtr
∑
n

〈ψ|c†ne−iHtrcn|ψ〉 = eiE0tr

f(ω, tav) = 2πδ(ω − E0). (4)

Similarly, if we start with many electrons, |ψ〉 =

c†0 · · · c
†
N−1|vac〉, then a similar calculation shows that

f is just a sum of peaks at each electron’s energy:

f(ω) = 2π
∑N−1
j=0 δ(ω − Ej). Thus the Wigner distribu-

tion gives information about not only the occupation via
the amplitude of the delta-function peaks (2π per elec-
tron), but also about their time-evolution via the peak
frequency.

These ideas are particularly useful in driven Floquet
systems as they are out-of-equilibrium from the get go.
Before deriving the Wigner distribution of a system in
a Floquet eigenstate, let’s start by considering the more
generic case where one starts in an eigenstate of some
static H at time t0 but then turns on an arbitrary driv-
ing H(t). As long as the Hamiltonian remains non-
interacting, by Wick’s theorem the Wigner distribution
will remain the sum over occupied eigenstates of the
single-particle f . So if we start from some single-particle
state |ψn(t0)〉 ≡ c†n|vac〉 and then turn on arbitrary drive,
it is readily confirmed that f is simply given by

fn(tr, tav) = 〈ψn(tav + tr/2)|ψn(tav − tr/2)〉, (5)

where |ψn(t)〉 = U(t, t0)|ψn(t0)〉 is the state obtained
by full time evolution starting from |ψn(t0)〉. For N
occupied single particle states one simply sums over
n = 0, 1, . . . , N − 1.

Now consider a Floquet-Bloch eigenstate |nF (k‖)〉. As
we work with translationally-invariant drives throughout
this paper, we will occasionally suppress the k‖ depen-
dence. Associated with a given Floquet eigenstate are a
time-periodic family of wave functions,

|nF (t)〉 ≡ P (t)|nF 〉, (6)

which describe how |nF 〉 evolves during a cycle. Note
that by our convention for P , |nF (0)〉 = |nF 〉. As this
state is periodic, we may Fourier decompose it:

|nF (t)〉 =
∑
`

ei`Ωt|n(`)
F 〉. (7)

These Floquet modes |n(`)
F 〉 play an important role in the

theory. In particular, if we plug the Floquet eigenstate
into Eq. 5, we see that

fn(tr, tav) = 〈ψn(tav + tr/2)|ψn(tav − tr/2)〉

=
∑
``′

ei(`−`
′)Ωtavei[ε

n
F−(`+`′)Ω/2]tr〈n(`′)

F |n
(`)
F 〉,

where |ψn(t)〉 = e−iε
n
F t|nF (t)〉 accounts for time evolu-

tion due to both micromotion and the Floquet Hamilto-
nian (see Eq. 3). This expression simplifies even further
in an important limit, namely when we average over the
“measurement time” tav. This naturally emerges in a
number of physically-relevant situations. For instance, if
we put back in the phase of the drive, which enters the
previous expression as Ωtav → Ωtav + ϕ, then averag-
ing over the often experimentally-uncontrolled phase is
equivalent to averaging over tav. Equivalently, one often
finds that there is experimental imprecision on the time
of measurement and/or the relative phase of the pump
and the probe. If this imprecision is long compared to the
drive period, again the averaging emerges. Denoting this
so-called Floquet non-stroboscopic (FNS62) averaging by
an overline, we see that63,64

fn(tr) =
∑
`

ei(ε
n
F−`Ω)tr〈n(`)

F |n
(`)
F 〉

fn(ω) = 2π
∑
`

δ(ω − εnF + `Ω)〈n(`)
F |n

(`)
F 〉.

So each electron state is “split” into Fourier modes at

frequency εnF −`Ω with amplitude pn` = 〈n(`)
F |n

(`)
F 〉. Note

that these peaks sum up to 1 total electron,
∑
` pn` = 1,

by the normalization of |nF 〉. So we see that the Wigner
distribution again provides insight on the frequency of
these sidebands as well as the probability to occupy them.

Let us now apply these ideas to driving the surface
states of the TI, described by the Hamiltonian in Eq. 1.
As we have shown, the signal at each k‖ is just the sum
over the signals from each of the occupied states. In Fig.
2a we plot the Wigner distribution in the Floquet eigen-
states with both branches of the Dirac cone occupied for
distinct (but constant in time) drive amplitude. For the
remainder of the paper, we focus on linearly-polarized
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FIG. 2. Driving Dirac surface states of a TI model (Eq. 1) without any bulk states. (a) Wigner distribution of “equilibrium”
Floquet-Bloch states with varying drive strength Ay, as derived in Eq. 8, showing hybridization of the surface states. The
chemical potential µ > 0 is chosen such that both surface states are occupied. Delta-function peaks corresponding to Floquet-
Bloch states have been broadened by a Gaussian of width τpr = 24 for clarity. (b) Illustration of the pulsed drive that we will
consider. For the driven Dirac model, both states in the Hilbert space are occupied, so in the slow-ramp limit (τpump � T ) there
are no additional excitations due to the ramp. This is illustrated in (c) by plotting the amplitude in the ` = 1, 2 sidebands for
kx = 1, which show no difference between the instantaneous Floquet-Bloch eigenstates (dashed red) and the full time evolution
during the ramp (blue). Data is for a linearly-polarized pump perpendicular to the momentum, with parameters τpump = 60,
A0
y = 1.09, and Ω = 1.

light whose polarization direction (ŷ) is orthogonal to the
momentum (ky = 0). Other choices of polarization and
momentum give qualitatively similar results. As noted
in the plots and seen elsewhere45,47,59,65,66, anti-crossings
between the surface states occur open up near the reso-
nance between the branches. This is the first example we
will see of Floquet resonance, here between two surface
states. These Floquet resonances, and in particular more
complicated ones between the surface and the bulk, will
play a starring role in the remainder of the paper.

As we will discuss in more detail later, actual experi-
ments involve a pulsed rather than fixed drive, as illus-
trated in Fig. 2b. In the slow ramp limit, τpump � T ,
which we always restrict ourselves to, the drive is ap-
proximately periodic at any point in time and we might
expect the system to adiabatically follow the instanta-
neous Floquet-Bloch eigenstates. In general, if we ramp
too fast, we expect non-adiabatic effects as we fail to
adiabatically follow these eigenstates. However, we note
that because both bands are occupied, there are no non-
adiabatic effects in this purely surface state model no
matter how short the pulse. The reason is simply that
both states in the two-level system are filled, and there is
simply nowhere else in the Hilbert states for the electrons
to go. This is seen in Fig. 2c, where the `th sidebands of
the Wigner distribution of the Floquet-Bloch eigenstates
are compared to those of the full time evolution, showing
no difference for τpump � T .

We are primarily interested in non-adiabatic effects in
the periodically-driven system due to the pulse. We will
show that such novel behavior can occur when coupling
these states to an empty bulk conduction band. There-
fore, let us now consider the presence of the bulk and see
how it affects this story.

B. Driving surface and bulk states of TIs

To understand the relevance of the bulk, we want to
start by constructing a simple tight-binding model of a
three-dimensional topological insulator. We consider one
of the simplest such bulk models54, namely the lattice
regularization of (k · σ)τz +mτx:

Hbulk TI = (σx sin kx + σy sin ky + σz sin kz)τ
z +

(m+ 3− cos kx − cos ky − cos kz)τ
x, (8)

where σ and τ are two sets of Pauli matrices correspond-
ing to, e.g., spin and orbital degrees of freedom. We again
assume that the electric field couples via the minimal
substitution, but now with the caveat that the electric
field strength decays into the bulk with length scale ξ,
as in Fig. 1. Choosing the surface of interest to again be
perpendicular to ẑ, k‖ = (kx, ky) remain good quantum
numbers. For more details of the hopping Hamiltonian
in the z-direction, please see Appendix A.

In the absence of drive, this model gives a topological
insulator for −4 < m < 0 and a trivial insulator other-
wise. In the presence of drive, we can solve this Floquet
problem and calculate its Wigner distribution. The re-
sults are shown in Fig. 3a. Similar to the simple surface-
only model, the surface states are strongly dressed by
the drive, although details of the signal depend heavily
on microscopic details of the model. At strong driving
strength Ay = 0.25, this “Floquet equilibrium” (i.e., con-
stant drive amplitude) data already shows how coupling
to the bulk changes the story, resulting in ` = 3 and 4
sidebands that are stronger than ` = 2 due to resonant
surface-bulk hybridization. In the next section we will see
that this surface-bulk coupling has a strong effect when
we consider a pulsed drive.
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II. NON-ADIABATIC EFFECTS OF THE
PULSED DRIVE

While the previous section considered the response in
Floquet eigenstates, which would come for example from
the steady-state of a continuous-wave laser, it is often
more experimentally practical to use pulsed sources. This
has undesirable effects such as losing perfect periodicity,
but the ability to change the pulse length can also be
a powerful tool to prevent heating and target a unitary
response of the system. Therefore, in this section we will
concern ourselves with the question of how finite pulse
width affects the non-equilibrium observables of driven
topological insulators.

A pulsed laser may be modeled by simply multiplying
the periodic drive by a slow envelope, such as a Gaussian:
A(t) = [A0

x cos(Ωt)x̂ + A0
y sin(Ωt)ŷ] exp(−t2/2τ2

pump).67

The envelope breaks periodicity and thus renders this no
longer an exact Floquet problem, though in the limit of
a long pulse it is approximately periodic at any given
point in time. One might then expect that the system
will adiabatically track the Floquet eigenstates, yielding
Wigner distributions similar to Figs. 2a and 3a. This is
almost correct but, as we will now see, only part of the
story.

A. Coherent bulk-surface oscillations

We now simulate the coupled bulk-surface model of
a TI under such pumped drive. We start deep in the
past with the drive turned off and the chemical potential
set such that all bulk valence band and surface states
are occupied.69 Then the exact dynamics are simulated
and the Wigner distribution f(ω, tav) computed. This
function is strongly peaked in ω and highly oscillatory
in tav so we smooth out the results by convolving f by
a Gaussian of width τpr in both the frequency and time
direction:

I(ω, tav) =

ˆ
dω′dt′ave

−(ω−ω′)2τ2
pre−(tav−t′av)2/τ2

prf(ω′, t′av).

(9)
We refer to the result as the signal and/or intensity at
frequency ω and time tav, which will be justified in Sec.
II C by showing its connection to ARPES. If the “probe
width” τpr is much greater than the drive frequency, this
convolution has the additional advantage of averaging
over the drive phase, such that f may be replaced by
f in Eq. 9.

One striking difference between the equilibrium and
non-equilibrium case is that, even after the drive has been
turned off, population remains in the bulk conduction
states, as seen in Fig. 3d. This phenomenon is specific
to the coupled bulk/surface model, and we do not see it
in the simpler Dirac cone model of Sec. I A. Decay of
excited surface states into the bulk has been anticipated
in the presence of phonons40, but note that this decay
mechanism does not exist in our model. Therefore, the

population transferred to the bulk may only come from
coherent non-adiabatic processes.

In addition to tunneling into the bulk, we see coher-
ent oscillations in the Wigner distribution of the surface
states. This is shown in Fig. 3b and c, where the signal
in the `th sideband is given by weight in the `th peak at
fixed kx and tav normalized by the sum over all peaks.
Together, these results suggest that we are seeing co-
herent oscillations of the population between the surface
and the bulk states. We have varied the microscopic pa-
rameters over a wide range of values and found that the
existence of these oscillations are remarkably robust, al-
ways appearing in tandem with an irreversible “leaking”
into the bulk. We now seek to understand this in terms
the physics of Floquet resonances.

B. Floquet resonances and Landau-Zener physics

Resonances have long been known to play a major
role in Floquet systems70–73. Mathematically, they come
from the fact that the drive introduces a new energy scale
Ω such that energies are only defined modulo Ω. For
a many-body system of linear size L in d dimensions,
the bare spectrum is extensive, scaling as Ld. However,
Hone et al.73 argued that folding by Ω in the thermo-
dynamic limit leads to a denser and denser set of quasi-
energy levels as the system size is increased. This in turn
leads to a dense set of weakly-avoided crossings such that
even simple ideas like tracking a single quasi-energy level
to achieve an adiabatic limit becomes ill-defined. Thus
the weakly-avoided crossings, which we call Floquet res-
onances, lead to a fundamental absence of adiabaticity
in Floquet systems. Furthermore, they have been sug-
gested to lead to heating effects74 and the breakdown of
high-frequency expansions75, which are two of the most
important and active topics in the field of Floquet engi-
neering.

As seen in Fig. 3a, Floquet resonances between the sur-
face and the bulk states inevitably occur in systems such
as ours, where the driving frequency Ω is less than the
bandwidth. However, there are a number of subtleties
that we must consider in comparing this to the Hone et
al. result. Most notably, they were considering coupling
between bulk states due to the drive, whereas here we are
interested in coupling between the bulk and the surface
state. Since the drive primarily couples to the surface
states and only weakly to the bulk, one naive guess would
be that the matrix elements between these states would
scale as the spatial overlaps between them, ξ/L, vanish-
ing in the thermodynamic limit. This indeed seems to be
the case, but one must counterbalance it against the fact
that the (one-dimensional) density of states at fixed k‖
scales as L. Thus these two effects conspire to create an
order-1 gap in the quasi-energy spectrum which depends
sensitively on various microscopic properties. Therefore,
we expect that the strength will differ significantly from
model to model, e.g., between our simple model TI and
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FIG. 3. Driving surface plus bulk states of a model TI (see Eq. 8 and following text). (a) Wigner distribution of Floquet-Bloch
eigenstates as a function of driving amplitude. The undriven energy spectrum is shown in blue. The surface states appear
similar to Fig. 2a, though in this figure the color plot is on a logarithmic scale to make higher harmonics visible. We also
see that starting at approximately ` = 3, the surface-state harmonics appear in the bulk. (b,c) Signal in the ` = 1, 2 surface
sidebands for kx/2π = 0.056, indicated by the red line in (a). Unlike the driven Dirac model, there is a noticeable difference
between the Floquet-Bloch states (dashed red) and the exact time evolution (blue). The intensity in the `th harmonic at time
tav is given by integrating the signal I(ω, tav) from ω = εF (λ(tav))+(`−1/2)Ω to εF (λ(tav))+(`+1/2)Ω while the “equilibrium”
value is estimated by manually removing resonances68. (d) Signal in the bulk bands as a function of tav, given by integrating
the signal for all ω > Ebulk. (e) Final probability to occupy the bulk states after the ramp is finished (t → ∞) as a function
of system size showing the existence of a well-defined thermodynamic limit. All data are for kx/2π = 0.056, ky = 0, Ax = 0,
Ay = 0.25, m = −0.8, Ω = 0.2, τpr = 5T = 10π/Ω, and L = 100 unless otherwise specified.

a real material. Nevertheless, the existence of order 1
Floquet resonances should be robust by the above ar-
gument, and thus the phenomena we describe are com-
pletely generic.

As seen in Fig. 4a, Floquet resonances lead to a se-
ries of anti-crossings between quasienergies of the bulk
and surface states. As expected, the quasienergy of
the surface state depends strongly on driving ampli-
tude, while the bulk states are nearly independent of the
drive. We also confirm that as L increases the num-
ber of anti-crossings increases as well, while the strength
(i.e., the gap) of the anti-crossings decreases. This situa-
tion, where a single dispersing level passes through many
parallel non-dispersing ones is known in the non-Floquet
case as the Demkov-Osherov (D-O) model76–78, and is
an analytically tractable many-level generalization of the
Landau-Zener (L-Z) model79,80. The scattering matrix
of the D-O model in the long-time limit is remarkable
because interference between the various avoided cross-
ings is absent. Thus, the D-O scattering problem reduces
to Nc independent L-Z transitions, where Nc is the num-
ber of bulk levels that the dispersing level surface state
crosses. In our case, Nc ∼ L at fixed k‖ because we
effectively have a one-dimensional problem.

For slow ramps, one expects that the dynamics of a
Floquet system will be dominated by resonant effects,
which are captured within the appropriately-folded ef-
fective Hamiltonian HF . Therefore, we should be able to
able to treat the Floquet D-O model identically to the un-
driven case. Assume the surface state is ramped through
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FIG. 4. Floquet resonances between the surface and bulk. (a)
Floquet eigenspectrum of the TI model as a function of drive
strength using the same parameters as Fig. 3b with L = 100
and 200. The size of the dots is proportional to the proximity
of the Floquet eigenstate to the top surface such that the sur-
face state appears larger than the bulk states. (b) Illustration
of the Demkov-Osherov model of the Floquet eigenspectrum.
A single surface state passes through a continuum of bulk
states. As L increases, the increase in the density of states
is offset by the decrease in the matrix elements coupling sur-
face and bulk. The system may be approximated by a single
Landau-Zener crossing with effective gap ∆eff that controls
both excitation of the bulk and oscillation frequency of the
surface state. See text for details.
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FIG. 5. Scaling of surface oscillations and bulk occupation with pump time τpump, confirming predictions of the Demkov-
Osherov model. (a-c) Oscillations of the signal in the ` = 2 surface sideband as a function of τpump, showing an increase in
amplitude but no apparent change in the characteristic frequency. (d) Final occupation in the surface state, which decreases
exponentially with τpump as the electrons resonantly tunnel into the bulk (see details). The decay rate into the bulk does not
depend on system size. All data are for the same parameters as Fig. 3b.

Nc bulk states during the first half of the pump pulse by
increasing Ay from 0 to A0

y such that the surface state
quasienergy increases at a constant velocity v = dε/dt.
As each crossing may be treated independently, the final
probability to be in the surface state is just the product
of the individual probabilities:

pAss = exp

−2π

Nc∑
j=1

∆2
j/v

 . (10)

This looks exactly like the L-Z problem for a single

avoided crossing with matrix element ∆eff =
√∑

j ∆2
j ,

as illustrated in Fig. 4b. In the thermodynamic limit, we
expect these gaps to scale as ∆j ∼ ∆0/

√
L from the scal-

ing of the overlap of bulk and surface eigenstates. Thus
the dynamics of our model is expected to have a con-
sistent L → ∞ limit, which is confirmed numerically in
Fig. 3e. In addition to the final bulk occupation, this ef-
fective gap also controls the time scale of the oscillations
in the surface state sidebands. Thus we see that both the
incoherent transition to bulk states and coherent bulk-
surface oscillations survive in the thermodynamic limit
with dynamics set by the same emergent energy scale.

In addition to giving a physical picture for both the
surface-bulk oscillations and the non-adiabatic tunnel-
ing of electrons into the bulk, the Demkov-Osherov
model provides a handle for understanding how these
should change with the various parameters, such as the
experimentally-controllable τpump. One important up-
shot is the meaning of “adiabaticity” reversed from what
we expect in the absence of resonances. Normally one
expects the adiabatic limit to correspond to slow ramp-
ing, such that the system tracks the instantaneous Flo-
quet eigenstate. However, it is clear for the resonant
case that ramping the field too slowly will cause the en-
tire population to transfer into the bulk. Therefore, to
“adiabatically” track the surface state, one must instead
use a fast ramp, though still sufficiently slow to prevent
direct non-resonant excitations to the bulk.73,75,81 More
explicitly, we expect that the population remaining in
the surface state at the end of the ramp should scale as

pfss = e−4π∆2
eff/v ∼ e−(4π∆2

eff/∆ε)τpump ≡ e−2Γτpump , where

the additional factor of two compared to Eq. 10 comes
from ramping up to A0

y then back down to 0. This depen-
dence is consistent with the data, as shown in Fig. 5d. By
a similar token, increasing τpump increases the size of the
resonant bulk-surface oscillations, as seen in Fig. 5a-c. It
is interesting to note that a similar “ghost” surface state
has been found in static models of topological materials
coupled to a trivial bulk82,83, which may be solved by
modeling it with the well-known Fano model84. Ours is
the natural Floquet generalization of these ideas, leading
to fundamentally non-equilibrium phenomena such as co-
herent bulk-surface oscillations and Floquet resonances.
Further discussion of the Demkov-Osherov model and its
application to surface-driven systems may be found in
Appendix B.

C. Applications to time-resolved ARPES

Before concluding this section, we note that our re-
sults our directly applicable to time-resolved ARPES ex-
periments. Time-resolved pump-probe ARPES works by
driving the system at frequency Ω with a Gaussian en-
velope (the pump) which excites that electrons in the
sample but does not cause it to photoemit. Then, at
variable times during the pump, a weak probe pulse at
much higher frequency and much shorter width τpr is
shone on the sample, which excites the driven electrons
above the work function of the material. These electrons
are then (photo)emitted by the sample and subsequently
detected. By measuring the energy and momenta of the
photoemitted electrons, the detector is able to map out
the material’s band structure during the probe pulse, in-
cluding any non-equilibrium effects given by the pump.

Theoretically, the time-resolved ARPES signal for an
arbitrary driven Hamiltonian H(t) is given by66,85

I(ω, tav) = Im

[ ˆ
dt1dt2spr(tav − t1)spr(tav − t2)

eiω(t1−t2)TrG<
(
t1 − t2,

t1 + t2
2

)]
(11)

if one ignores that matrix elements between the electrons
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in the material and the photoemitted states. A brief
discussion of the effect of non-trivial matrix elements is
found in Appendix C. If one uses a Gaussian probe,
spr(t) = exp(−t2/2τ2

pr), then Eq. 11 reduces to Eq. 9.
Thus, all of the results we have shown so far can be sim-
ply interpreted as the signal of a time-resolved ARPES
experiment with a Gaussian pump and probe, and our
results serve as an important experimentally-accessible
signature of this novel bulk-surface coupling.

III. LEADING CORRECTIONS IN FLOQUET
ADIABATIC PERTURBATION THEORY

We have seen that, for slow pulses, non-adiabatic cor-
rections to the Wigner distribution are dominated by res-
onances between the bulk and the surface. In this sec-
tion, we will consider the other potential source of exci-
tations, namely direct excitations to the bulk due to fast
ramping of the drive. We will theoretically describe the
leading corrections using Floquet adiabatic perturbation
theory81, placing the Wigner distribution on the same
footing as static observables (cf.75). We will also use this
to understand the short pump pulse limit, which remains
relatively unexplored experimentally.

A. Basics of Floquet adiabatic perturbation theory
(FAPT)

Adiabatic perturbation theory (APT) is a technique
to derive leading corrections to the adiabatic limit for a
system with a parameter λ that is ramped slowly with
time86–90. Floquet APT (FAPT) extends this idea to a
periodically driven system, which is relevant for our setup
with parameter λ = Ay ramped slowly during the pump
pulse. Consider as before the case where the system
starts with drive turned off in the single particle eigen-
state |0〉 of undriven Hamiltonian H(λ(t0)). Turning on
the drive slowly, the full time evolution is captured in
the wave function |ψ(t)〉. We can approximately solve the
problem by doing a unitary rotation to the moving frame:
|ψ̃〉 = V †|ψ〉, where V (λ(t), t) = P (λ, t)Ud(λ) is a unitary
that maps the Floquet eigenstates |nF (λ, t)〉 (see Eq. 6)
to a fixed basis |en〉. In particular if we were to imag-
ine turning on λ infinitely slowly in a gapped Floquet
system, then the initial state |0〉 would just adiabatically
track to the Floquet eigenstate |ψ(t)〉 = |0F (λ, t)〉 and
V † would act to map this to a time and λ-independent
state |ψ̃〉 = |e0〉. For a generic time evolution λ(t), the
effective Hamiltonian in this moving frame is given by

Hm = U†dHFUd − iλ̇V †∂λV ≡ Hd
F − λ̇ÃF , (12)

where Hd
F is a diagonal matrix whose entries corre-

spond to the Floquet quasienenergies and AF (λ, t) =

V ÃFV
† is the natural Floquet generalization of the

Berry connection operator, with matrix elements

〈mF (λ, t)|AF |nF (λ, t)〉 = i〈mF (λ, t)|∂λnF (λ, t)〉. In the

adiabatic limit (λ̇→ 0), off-diagonal elements of the sec-
ond term in Eq. 12 are unable to cause transitions, which
yields the adiabatic loading of the Floquet eigenstates as
we just discussed.

Floquet APT consists of solving leading corrections to
adiabaticity induced by the second term in Eq. 12. As
this term is small due to the slow ramp rate λ̇, it can
be treated perturbatively. In particular, one may note
that at fixed λ, ÃF is a periodic operator with Fourier

series ÃF =
∑
` Ã

(`)
F ei`Ωt and similarly for V . Then Eq.

12 yields a Floquet problem which we can approximately
solve using static perturbation theory. Expanding the
wave function |ψ(t)〉 =

∑
n cn|nF (λ(t), t)〉, the coeffi-

cients at leading order in adiabatic perturbation theory
are given by81

c0 ≈ e−iΘ0(t)

cn ≈ e−iΘ0(t)λ̇(t)
∑
`

〈en|Ã(`)
F (λ(t))|e0〉

εFn (λ)− εF0 (λ) + `Ω
ei`Ωt . (13)

The phase Θ0 that the wave function picks up during the
ramp consists of a dynamical and a Berry phase:

Θ0(t) =

ˆ t

t0

[
εF0 (λ(t′))− λ̇(t′)〈e0|ÃF (λ(t′), t′)|e0〉

]
dt′.

This phase is usually neglected in most APT calcula-
tions of single-time observables, but is crucial to situa-
tions like ARPES where non-equilibrium observables are
measured.

B. Application of FAPT to Wigner distribution

One can now use the approximate wave function
|ψ(t)〉 derived above to obtain the Wigner distribution,
f(tav, tr) = 〈ψ(tav + tr/2)|ψ(tav − tr/2)〉. For this Flo-
quet problem, time enters in two ways: in the periodic
part of the Floquet eigenstates, and in the slow time-
dependence of λ. In the spirit of FAPT, we expand
this slow dependence about the measurement point tav,
λ(tav± tr/2) = λ(tav)± trλ̇(tav)/2 +O(λ̇2), and solve for

the signal I keeping all terms to order λ̇. This calcula-
tion is done in detail in Appendix D, with the following
result:

I(ω, tpr) ≈
∑
`

[
(I

(`)
0 + ∆I(`))e−[ω−ω(`)

0 −∆ω(`)]2τ2
pr

]
(14)

∆ω(`) = λ̇

(
∂λϕ

(`) −
∑
`′

p0`′∂λϕ
(`′)

)
∆I(`)

I
(`)
0

= λ̇
∑
n,`′

(
〈e0|V (−`)†V (−`−`′)|en〉〈en|Ã(`′)

F |e0〉
εFn0 + `′Ω

)
where all expressions are evaluate at time tpr, the sum
is taken for all pairs (n, `′) 6= (0, `), and notations are
explained in the following paragraph.
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The effects of these leading corrections to adiabaticity
on the ARPES signal are illustrated in Fig. 6. Both the

intensity I
(`)
0 = p0` = 〈0(`)

F |0
(`)
F 〉 and the frequency ω

(`)
0 =

εF0 − `Ω of the Floquet sideband |0(`)
F 〉 defined in Eq. 7

are modified by an amount proportional to the ramp rate
λ̇. The intensity shift ∆I(`) results from virtual excita-

tions of |0(`′)
F 〉 to |n(`+`′)

F 〉, which is a relatively standard
prediction of adiabatic perturbation theory. Much more
surprising are the frequency shifts, as they turn out to
come from Berry phase effects. If we isolate the Berry

phase sidebands as |0(`)
F 〉 = eiϕ

(`)(λ)|0̃(`)
F (λ)〉 such that

|0̃(`)
F 〉 has vanishing Berry connection, then ∆ω(`) gives

the difference of the Berry connection in sideband ` from
the average Berry connection across all sidebands. This
object seems somewhat bizarre if for no other reason than
the fact that the Berry connection is not gauge-invariant.
However, this difference of Berry connections is gauge in-
variant and leads to a Berry phase-dependent shift of the
frequency of the sidebands.

Interestingly, while we think of adiabatic perturbation
theory as primarily holding in the limit of small veloc-
ities, the results above actual hold in the limit of large
(but not too large) velocities in which resonances can be
neglected. Similar to the results found earlier in the res-
onant limit, these corrections in FAPT will lead to an
asymmetry in the intensity signal with respect to time
t = 0, even though the Gaussian pulse is symmetric with
respect to t = 0. Unlike the resonant case, these correc-
tions get smaller as the velocity decreases, or equivalently
the pump time τpump increases, and the excitations that
they describe are virtual, meaning that no real popula-
tion will remain in the bulk. Combining this with our
previous results, we see that as τpump is increased from
zero, we get crossovers between various regimes, which
are

1. τpump � 1/J, 1/∆: Non-universal physics related
to microscopic details.

2. 1/J, 1/∆ � τpump � 1/∆res: Virtual excitations
described by Floquet adiabatic perturbation the-
ory.

3. 1/∆res � τpump: Real excitations due to surface-
bulk resonances.

In the low-frequency weak-drive limit, we expect these
regimes to be well separated48, but whether such a sep-
aration of scales occurs in general is an important open
question.

IV. DISCUSSION AND CONCLUSIONS

We have computed the Wigner distribution function
for a driven topological insulator with bulk- surface cou-
pling and study the effects of a pump pulse that weakly
breaks the periodicity. If the drive is fixed, the Floquet
states are well defined. However, the slow turn on and

FIG. 6. Illustration of the effects of non-adiabaticity on the
Floquet-ARPES signal with the FAPT approximation, lead-
ing to shifts in both the peak frequency and height propor-
tional to the ramp rate λ̇.

off of the drive breaks this periodicity and the Floquet
states are no longer solutions of the Schrödinger equa-
tion. This leads to non-adiabatic population transfer
from the surface states to the bulk. We track the ori-
gin to the existence of bulk-surface avoiding crossings in
the the quasienergy spectrum, a signature of which are
oscillations in the ARPES signal of a pump-probe type
of experiment.

Finally we computed, using perturbation theory on the
ramp rate of the drive amplitude, leading corrections to
the “adiabatic” Floquet states. We showed that there
are shifts of the resonances in the quasienergy spectrum.
The shifts are a measure of the generalization of the Berry
connection to periodically driven systems and can theo-
retically be seen in the ARPES spectrum.

These novel surface-bulk coupling effects are a very in-
teresting paradigm to explore in future research. Many
probes involve this basic setup, including ARPES, vari-
ous types of scanning tip microscopy, photon-in photon-
out scattering experiments, and many others. In systems
with interesting topological surface states, or even tradi-
tional non-topological ones, this bulk/surface coupling
upon resonant drive should yield interesting physically-
measurable effects.

Topological insulators are rather weakly-correlated
materials91,92, so our treatment of them as non-
interacting is well-justified. Generally, one expects
this story to hold up against weak experimental re-
alities such as interactions or disorder as long as the
timescales associated with these processes are slower than
those of the coherent bulk-surface oscillations. A more
experimentally-relevant concern are phonons, which gen-
erally have a much stronger effect on bulk states than
surface states40. This could have the potentially interest-
ing effects of preferentially dephasing or relaxing higher
harmonics of the surface states due to the presence of
nearby in energy bulk states coupled by bulk phonons,
while having a much weaker effect on surface harmon-
ics that remain in the bulk gap. The effects of these
experimentally-relevant factor remains an open topic for
future research.

Finally, we note that driving the surface states of TIs
and other materials was spurred by the search for novel
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topological states45–47 and rapidly expanded to other
contexts93–102. In particular, it was proposed that driv-
ing a Dirac cone by circularly-polarized light could open
a topological gap, yielding a Floquet Chern insulator.
These proposals formally utilize the limit where Ω is
much larger than the band gap, but experiments prac-
tically work in the opposite limit. The interesting open
question is then what aspects of this topological charac-
ter remain. There have been a number of recent studies
that explored the interplay of bulk and surface states
in systems driven at low frequencies21,29,48,49, in which
novel topological invariants were discovered that explic-
itly depend on the Floquet structure. However, those
papers consider bulk driving of an initially trivial sys-
tem, whereas our paper considers surface driving of an
initially non-trivial system. We find seemingly unavoid-
able surface-bulk coupling which seems to close the Flo-

quet gap and break down this topological classification
for such driving. However, topological protection can
also extend to gapless systems13,103, so we leave the open
question of how this surface driving affects the topologi-
cal classification of the TI for future work.
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mann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang,
Science 318, 766 (2007).

8 J. E. Moore and L. Balents, Phys. Rev. B 75, 121306
(2007).

9 L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98,
106803 (2007).

10 L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).
11 D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava,

and M. Z. Hasan, Nature 452, 970 (2008).
12 S. Murakami, New Journal of Physics 9, 356 (2007).
13 X. Wan, A. M. Turner, A. Vishwanath, and S. Y.

Savrasov, Phys. Rev. B 83, 205101 (2011).
14 Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng,

D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai,
Z. Hussain, and Y. L. Chen, Science 343, 864 (2014).

15 S.-Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W.
Krizan, I. Belopolski, M. Neupane, G. Bian, N. Ali-
doust, T.-R. Chang, H.-T. Jeng, C.-Y. Huang, W.-F. Tsai,
H. Lin, P. P. Shibayev, F.-C. Chou, R. J. Cava, and M. Z.
Hasan, Science 347, 294 (2015).

16 S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane,
G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-
C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez,
B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin,
S. Jia, and M. Z. Hasan, Science 349, 613 (2015).

17 L. Lu, Z. Wang, D. Ye, L. Ran, L. Fu, J. D. Joannopoulos,
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49, 309 (1989).
72 J. S. Howland, Ann. Inst. Henri Poincaré Phys. Theor.
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Appendix A: Further details of boundary-driven bulk TI model

In this appendix we briefly provide a more concrete definition of the Hamiltonian described the main text. As
mentioned earlier, kx,y are conserved quantities, while kz-dispersion becomes hopping. Labeling the sites along the
z-direction as j = 0, 1, . . . , L− 1, the Hamiltonian may then be written

H = J


H0

d Hod

H†od H1
d Hod

H†od

. . .

HL−1
d

 ,

Hj
d = τz

[
σx sin(kx + ajx) + σy sin(ky + ajy)

]
+ τx

[
m+ 3− cos(kx + ajx)− cos(ky + ajy)

]
,

Hod =
iσzτz − τx

2
,

where the position-dependent vector potentials are ajx = Ax sin(Ωt) exp(−j/ξ) and ajy = Ay cos(Ωt) exp(−j/ξ). As
noted in the main text, we work in the case Ax = 0 and ky = 0 for all of the data shown.

Appendix B: Further details of the Demkov-Osherov model

The Demkov-Osherov (D-O) model consists of N parallel levels traversed by a single mode whose energy changes
linearly with some parameter λ76–78. It can formally be solved when treated as a scattering problem, i.e., starting
with some probability pin in the states at λ(t = −∞) = −∞, λ is ramped linearly according to λ = vt and the final
probabilities at t =∞ are obtained. The nice property of this model is that the level-crossings factorize, in the sense
that the probability of ending up in one branch can be obtained by simply taking the semi-classical product of all
the prior two-level (Landau-Zener) avoided crossings. Essentially this implies that in the long-time limit there are no
interference effects between the various avoided crossings.

Motivated by the surface-bulk resonance discussed in Sec. II B, we will consider a particular subclass of D-O model
illustrated in Fig. 7a. A total of L levels representing the bulk bands span the energy window εbulk ∈ (−1/2, 1/2)
while the surface state disperses with bare energy ε0 = λ with some generic parameter λ taking the place of Ay. Gaps

of strength 2∆0/
√
L are opened uniformly between each bulk state and the surface state, which we will see gives a
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FIG. 7. Surface state occupation in Gaussian ramps of the Demkov-Osherov (D-O) model. (a) Illustration of the simplified
D-O model that we consider (Eq. B1) with L = 10 levels. We simulate a Gaussian ramp to the middle of the bulk spectrum

(b) and track the final surface state occupation pf0 = |〈0|ψ(t =∞)〉|2 as function of the ramp rate τpump (c). The dashed lines

show the predicted value pf0 = e−2Γτpump with Γ from Eq. B3 showing a good fit for a variety of ∆0 and λ0.

well-defined thermodynamic limit. Choosing all matrix elements to be real and labeling the bulk states |j = 1, · · · , L〉
and the surface state |0〉, this is described by the Hamiltonian

H = λ|0〉〈0|+
L∑
j=1

εj |j〉〈j|+
∆0√
L

L∑
j=1

(|0〉〈j|+ |j〉〈0|) , (B1)

where εj = (j − 1/2)/L− 1/2.
We will be particularly interested in taking this model to the thermodynamic limit L→∞ and ascertaining what

universal properties can be found in its dynamics. Consider first the exactly-solvable case where we start in the ground
state |0〉 at λ = −∞ and ramp linearly via λ = vt. Due to the fact that the crossings can be treated independently, at

time t =∞ the probability to remain in the surface state is simply pf0 =
∏
j e
−2π∆2

j/v = e−2π∆2
0/v, where ∆j = ∆0/

√
L

is the off-diagonal matrix element between |0〉 and |j〉. Note that this transition probability is identical to that of a
single Landau-Zener transition with matrix element ∆eff = ∆0. While this effective gap only formally gives the final
transition amplitude, one can readily confirm numerically that the dynamics of the occupation p0(t) = |〈0|ψ(t)〉|2
during the ramp is also well-approximated by that of a single avoided crossing of strength ∆eff .

Let us now apply this intuitive approximation to arbitrary ramps λ(t/τpump) set by some timescale τpump (e.g., the
width of a Gaussian). A natural estimate for the transition probabilities is that they will again factorize but now with
v → |vj | = |ε̇0(tj)|, where tj is the time where the jth level is crossed: ε0(λ(tj)) = εj . Then if we start in the state
|0〉 at time ti and monotonically increase λ up to time tf , such that |vj | = vj , the amount remaining in the surface

state will be p
ti→tf
0 ≈ e−α(ti→tf ), where

α(ti → tf ) = 2π
∑
i

∆2
i /vi

L→∞→ 2π

ˆ
dεν(ε)

∆2(ε)

dε/dt
= 2π∆2

0

ˆ tf

t1

dt = 2π∆2
0|z1|τpump, (B2)

ν(ε) = L is the density of bulk states, and t1(λi, λf ) = z1(λi, λf )τpump is the time where the surface state first passes

into the bulk, i.e., where it crosses ε1. Note that this can be written as p
ti→tf
0 ≈ e−Γτpump which looks like a constant

rate Γ of surface states leaking into the bulk during the ramp.
The story becomes even more subtle if λ(t) is not monotonic. Then the surface state may cross a given bulk state

multiple times, and population that had transferred into the bulk may now return to the surface. However, we are
already ignoring interference effects in the above model by, for instance, not ramping all the way to λ =∞ to dephase
the excitations. Therefore, at a similar level of approximation we may assume that no population, once transferred
to the bulk, is able to return to the surface. Furthermore, if λ(t) is an even function of time, then the magnitude
of the velocity vj for passing bulk level j during the first half of the ramp will be the same as during the second

half of the ramp. Thus, we estimate the final surface occupation to be pf0 = e−2Γτpump , where Γ is given by Eq. B2.
We numerically test this approximation using a Gaussian ramp that starts from λ = −λ0 and ramps to λ = 0 as
illustrated in Fig. 7b. Plugging this ramp profile into Eq. B2, we find

ΓGaussian = 2π∆2
0

√
−2 ln(1− 1/(2λ0)). (B3)

This estimate is plotted against exact simulation in Fig. 7c, showing a good fit. This justifies our independent-level
Demkov-Osherov approximation for Gaussian ramps, which is used in the main text to fit the data in Fig. 5.
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FIG. 8. Signal in the ` = 2 and 3 sidebands as a function of the length scale ξpr for approximate ARPES matrix elements
(Eq. C) using the same parameters as Fig. 3b. Data in previous figures is essentially the ξpr →∞ limit of this model.

Appendix C: Matrix elements in ARPES

An additional complication in interpreting ARPES experiments is the fact that not all electrons photoemit with
identical matrix elements, as we have tacitly assumed throughout this work. The general expression for the ARPES
signal in the presence of photoemission matrix elements is significantly more complicated85 and does not provide
much insight to our analysis. However, we can slightly improve our approximation by simply weighting the states in
G< by their position along the z-direction. The intuition behind this is that both the probe photons and the ionized
electrons have some finite penetration depth or mean free path in the bulk before they are dissipated. Approximating
this by a single length scale ξpr, we can introduce a weighting operator

Ŵk‖ =
∑
jα

e−j/ξpr |jαk‖〉〈jαk‖|,

where j = 0, 1, . . . , L− 1 is the site number along the z-direction, α = 1− 4 are indices in the spin-orbital basis of σ
and τ , and k‖ is the xy momentum as before. This operator just weights single-particle states by their position along
z and thus we approximate the surface-weighted ARPES response by replacing f by

f ′n(tr, tav) = 〈ψn(tav + tr/2)|Ŵ |ψn(tav − tr/2)〉.

The result with this surface projection are shown in Fig. 8 and allow us to compare surface and bulk behavior,
particularly in higher Floquet sidebands. We see that the ` = 2 sideband does not change significantly in either
amplitude or character as ξpr is varied, which is consistent with its nature as a surface state. On the other hand,
the ` = 3 sideband is dominated by excitations into the bulk, which shows up as a strong increase in the signal with
ξpr. On top of these bulk excitations, one expects a surface sideband signal as well, which should not depend on ξpr

in the ξpr → ∞ limit. In principle we should be able to use this idea to distinguish the surface and bulk signals.
Unfortunately, we are currently unable to do so with our data due to finite size effects; we leave this distinction of
surface and bulk signals in the sidebands as a subject for future work.

Appendix D: Further details of FAPT

In this appendix, we will derive Eq. 14 by using the approximate time-dependent wave function derived using FAPT
(Eq. 13) to obtain the Wigner distribution:

f(tav, tr) = 〈ψ(tav + tr/2)|ψ(tav − tr/2)〉 ≡ 〈ψ(t+)|ψ(t−)〉

≈ e−i(Θ0(t−)−Θ0(t+))

[
〈0F (λ+, t+)|0F (λ−, t−)〉+

λ̇−
∑
n 6=0,`

〈en|Ã(`)
F (λ−)|e0〉

εFn0(λ−) + `Ω
ei`(Ωt−−ϕ0)〈0F (λ+, t+)|nF (λ−, t−)〉+ (λ+ ↔ λ−)

]
, (D1)

where t± ≡ tav ± tr/2 and λα ≡ λ(tα). As mentioned in the main text, time enters via both the periodic part of
the Floquet eigenstates and the slow time-dependence of λ, and we will expand this slow dependence about the tav:
λ(t±) = λ(tav)± trλ̇(tav)/2 +O(λ̇2).
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Let us now evaluate the terms in Eq. D1 one-by-one. First, consider the phase factor eiδΘ0 where

δΘ0 = Θ0(t+)−Θ0(t−) =

ˆ t+

t−

(
εF0 (λ(t′))− λ̇(t′)〈e0|ÃF (λ(t′), t′)|e0〉

)
dt′ . (D2)

At order λ̇, the energy can be expanded around λav as εF0 (λ(t′)) ≈ εF0 (λav) + λ̇av(t′− tav)∂λε
F
0 (λav). The second term

is odd about tav, so it integrates to zero. Meanwhile, it is useful to express ÃF and V in terms of Fourier modes:

V (λ, t) =
∑
`

ei`(Ωt−ϕ0)V (`)(λ) (D3)

ÃF (λ, t) = i
∑
`,`′

e−i`
′(Ωt−ϕ0)V (`′)†∂λV

(`)ei`(Ωt−ϕ0) (D4)

=⇒ Ã
(`)
F = i

∑
`′

V (`′)†∂λV
(`+`′). (D5)

Throughout this appendix, we explicitly write the driving phase ϕ0 to facilitate averaging over it as in Eq. 8. Then,
replacing λ(t′) by λav in the second term of Eq. D2 to leading order in λ̇ we get

ˆ t+

t−

〈e0|ÃF (λav, t
′)|e0〉dt′ =

∑
`

ˆ t+

t−

ei`(Ωt
′−ϕ0)〈e0|A(`)

F |e0〉dt′ (D6)

=
∑
`

〈e0|Ã(`)
F |e0〉
i`Ω

(
ei`(Ωt+−ϕ0) − ei`(Ωt−−ϕ0)

)
(D7)

=
∑
`

〈e0|Ã(`)
F |e0〉
i`Ω

ei`(Ωtav−ϕ0)
(
ei`Ωtr/2 − e−i`Ωtr/2

)
≡ iB1 . (D8)

Unless explicitly stated otherwise, all terms in the above expression are now evaluated at λav, which is a trick we will
employ throughout. Putting these terms together,

eiδΘ0 ≈ eiε
F
0 tre−iλ̇av(iB1) ≈ eiε

F
0 tr
(

1 + λ̇avB1

)
. (D9)

Note that this first term in this product gives the main peak center as εF0 , the Floquet quasi-energy, while the terms
like ei`Ωtr/2 in B1 give additional satellite peaks offset by half-integer multiples of Ω. Later averaging over the phase
ϕ0 will remove all but the integer multiples of this frequency.

Next, we Taylor expand the term that appears to be O(λ̇0) in Eq. D1 about time tav:

|0F (λ(t−), t−)〉 ≈ |0F (λav, t−)〉 − tr
2
λ̇av∂λ|0F (λav, t−)〉 (D10)

and similarly for the bra. Thus,

〈0F (λ+, t+)|0F (λ−, t−)〉 ≈ 〈0F (λav, t+)|0F (λav, t−)〉︸ ︷︷ ︸
A0

+
λ̇avtr

2
(〈∂λ0F (λav, t+)|0F (λav, t−)〉 − 〈0F (λav, t+)|∂λ0F (λav, t−)〉)︸ ︷︷ ︸

λ̇A1

.

(D11)
Now |0F (λ, t)〉 = V (λ, t)|e0〉, so ∂λ|0F 〉 = ∂λV |e0〉. Thus

A1 =
tr
2

(
〈e0|∂λV †(t+)V (t−)|e0〉 − 〈e0|V †(t+)∂λV (t−)|e0〉

)
(D12)

=
tr
2

∑
`′,`′′

(
〈e0|∂λV (`′)†e−i`

′(Ωt+−ϕ0)ei`
′′(Ωt−−ϕ0)V (`′′)|e0〉 − 〈e0|V (`′)†e−i`

′(Ωt+−ϕ0)ei`
′′(Ωt−−ϕ0)∂λV

(`′′)|e0〉
)
(D13)

=
tr
2

∑
`′,`′′

e−i(`
′−`′′)(Ωtav−ϕ0)e−i(`

′′+`′)Ωtr/2
(
〈e0|∂λV (`′)†V (`′′)|e0〉 − 〈e0|V (`′)†∂λV

(`′′)|e0〉
)
. (D14)

Meanwhile,

A0 =
∑
`′,`′′

e−i(`
′−`′′)(Ωtav−ϕ0)e−i(`

′′+`′)Ωtr/2〈e0|V (`′)†V (`′′)|e0〉 . (D15)
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In the remaining two terms of Eq. D1, at order λ̇ we can again replace λ± by λav. Then we can group these two

terms into one that we denote λ̇avA2, with

A2 =
∑
n 6=0,`

[ 〈en|Ã(`)
F |e0〉

εFn0 + `Ω
ei`(Ωtav−ϕ0)e−i`Ωtr/2〈0F (λav, t+)|nF (λav, t−)〉+ (D16)

〈e0|Ã(`)†
F |en〉

εFn0 + `Ω
e−i`(Ωtav)−ϕ0e−i`Ωtr/2〈nF (λav, t+)|0F (λav, t−)〉

]
. (D17)

Now

〈0F (t+)|nF (t−)〉 = 〈e0|V (t+)†V (t−)|en〉 (D18)

= 〈e0|

∑
`′,`′′

V (`′)†e−i`
′(Ωt+−ϕ0)ei`

′′(Ωt−−ϕ0)V (`′′)

 |en〉 (D19)

= 〈e0|

∑
`′,`′′

ei(`
′′−`′)(Ωtav−ϕ0)e−i(`

′′+`′)Ωtr/2V (`′)†V (`′′)

 |en〉 (D20)

and similarly for 〈nF (t+)|0F (t−)〉. Thus

A2 =
∑

n 6=0,`,`′,`′′

[ 〈en|Ã(`)
F |e0〉〈e0|V (`′)†V (`′′)|en〉

εFn0 + `Ω
ei(`+`

′′−`′)(Ωtav−ϕ0)e−i(`+`
′+`′′)Ωtr/2 + (D21)

〈e0|Ã(`)†
F |en〉〈en|V (`′′)†V (`′)|e0〉

εFn0 + `Ω
e−i(`+`

′′−`′)(Ωtav−ϕ0)e−i(`+`
′+`′′)Ωtr/2

]
. (D22)

Altogether,

f ≈ eiε
F
0 tr(1 + λ̇avB1)(A0 + λ̇avA1 + λ̇avA2) ≈ eiε

F
0 tr(A0 + λ̇av(A1 +A2 +A0B1︸ ︷︷ ︸

A3

)), (D23)

where we can rewrite A0B1 as

A0B1 =
∑
`,`′,`′′

〈e0|Ã(`)
F |e0〉〈e0|V (`′)†V `

′′ |e0〉
`Ω

e−i(`
′−`′′−`)(Ωtav−ϕ0)e−i(`

′′+`′)Ωtr/2
(
e−i`Ωtr/2 − ei`Ωtr/2

)
. (D24)

Together with the expressions for A0,1,2 above, this is the leading correction to f(tav, tr). However, the observable
ARPES signal comes from Fourier transforming this to get f(tav, ω), then convolving in both the frequency and

time direction by the Gaussian probe of width τpr, e
−ω2τ2

pr and e−(tav−tpr)2/τ2
pr respectively, to get the ARPES signal

I(tpr, ω) at frequency ω for a probe centered at time tpr. In the limit τpr � T this convolution averages over many
cycles as discussed earlier, which we treat by averaging over ϕ0. Then, for instance, the “adiabatic” signal reduces to

A0 =
∑
`

〈e0|V (`)†V (`)|e0〉e−i`Ωtr , (D25)

which yields the same Wigner distribution as Eq. 8.
Let’s now calculate the leading correction, A3 = A1 +A2 +A0B1, term by term:

A1 =
tr
2

∑
`

e−i`Ωtr
[
〈e0|∂λV (`)†V (`)|e0〉 − 〈e0|V (`)†∂λV

(`)|e0〉
]

(D26)

A2 =
∑

n 6=0,`′,`′′

e−i`
′Ωtr
[ 〈en|Ã(`′−`′′)

F |e0〉〈e0|V (`′)†V (`′′)|en〉
εFn0 + (`′ − `′′)Ω

+ h.c.
]

(D27)

A0B1 =
∑
`′,`′′

〈e0|Ã(`′−`′′)
F |e0〉〈e0|V (`′)†V (`′′)|e0〉

(`′ − `′′)Ω

(
e−i`

′Ωtr − e−i`
′′Ωtr

)
. (D28)



17

It is worth noting that A0B1 naturally breaks up into “diagonal” and “off-diagonal” terms corresponding to `′ = `′′

and `′ 6= `′′ respectively. The diagonal term can be rewritten as

(
A0B1

)
d

=
∑
`′=`′′

〈e0|Ã(0)
F |e0〉〈e0|V (`′)†V (`′)|e0〉

(`′ − `′′)Ω
e−i`

′Ωtr
(

1− e−i(`
′′−`′)Ωtr

)
(D29)

= −itr〈e0|Ã(0)
F |e0〉

∑
`′

〈e0|V (`′)†V (`′)|e0〉. (D30)

This term along with A1 are the only ones proportional to tr. They actually give rise to a shift of the peaks, since
the Fourier transform of itre

iEtr is the derivative of the delta function, δ′(ω − E). Combining these two terms gives

A1 +
(
A0B1

)
d

= tr
∑
`

e−i`Ωtr
[
〈e0|∂λV (`)†V (`)|e0〉 − h.c.

2
− i〈e0|Ã(0)

F |e0〉〈e0|V (`)†V (`)|e0〉
]
. (D31)

At this point it is useful to introduce the notation |n(`)
F 〉 = V (`)|en〉 as the `-th Fourier mode of the n-th Floquet

eigenstate as in Eq. 7. Then the first term in Eq. D31 looks like the Berry connection of |0(`)
F 〉 with the caveat

that the state is not normalized. More explicitly, if we make so local gauge choice of states |0̃(`)
F (λ)〉 such that their

Berry connection is zero, i.e., 〈0̃(`)
F (λ)|∂λ0̃

(`)
F (λ)〉 = 0, then rewriting |0(`)

F 〉 = eiϕ
(`)(λ)|0̃(`)

F 〉 we find 〈0(`)
F |∂λ0

(`)
F 〉 =

i∂λϕ
(`)〈0(`)

F |0
(`)
F 〉 = i∂λϕ

(`)p0`. Factoring this out of each term in Eq. D31, we find

A1 +
(
A0B1

)
d

= −itr
∑
`

e−i`Ωtrp0`

[
∂λϕ

(`) −
∑
`′

p0`′∂λϕ
(`′)

]
. (D32)

In words the `-th peak is shifted by an amount proportional to the difference between its Berry connection, ∂λϕ
(`),

and the mode-averaged Berry connection,
∑
`′ p

(`′)
0 ∂λϕ

(`). This is surprising, as the Berry connection is not gauge
invariant and thus observables expressed in terms of it seem not gauge invariant on their face. However, the term
above is in fact gauge invariant, which comes from the fact that all of the Fourier modes are shifted by the same the
phase. To see this, consider a new gauge choice |0′F (λ, t)〉 = eiχ(λ)|0F (λ, t)〉. Then

|0′F (λ, t)〉 =
∑
`

ei`Ωt|0′(`)F 〉 = eiχ(λ)
∑
`

ei`Ωt|0(`)
F 〉 =⇒ |0′(`)F 〉 = eiχ(λ)|0(`)

F 〉 . (D33)

But then ϕ(`) → ϕ(`) + χ and the χ contribution will clearly drop out in Eq. D32, since
∑
`′ p0`′ = 1.

Meanwhile, the off-diagonal terms in A0B1 can be made to look more like A2. By first exchanging the indices `′

and `′′ in the second term followed by using the fact that Ã
(−`)
F = Ã

(`)†
F from the fact that ÃF (t) is Hermitian, we

find that

(
A0B1

)
od

=
∑
`′ 6=`′′

〈e0|Ã(`′−`′′)
F |e0〉〈e0|V (`′)†V (`′′)|e0〉

(`′ − `′′)Ω

(
e−i`

′Ωtr − e−i`
′′Ωtr

)
(D34)

=
∑
`′ 6=`′′

e−i`
′Ωtr

(
〈e0|Ã(`′−`′′)

F |e0〉〈e0|V (`′)†V (`′′)|e0〉
(`′ − `′′)Ω

+ h.c.

)
(D35)

=
∑
`′

e−i`
′Ωtr

∑
` 6=0

(
〈e0|Ã(`)

F |e0〉〈e0|V (`′)†V (`′−`)|e0〉
`Ω

+ h.c.

)
. (D36)

Adding this to A2, we find that

A2 +
(
A0B1

)
od

=
∑
`′

e−i`
′Ωtr

∑
(n,`)6=(0,0)

(
〈e0|V (`′)†V (`′−`)|en〉〈en|Ã(`)

F |e0〉
εFn0 + `Ω

+ h.c.

)
. (D37)

It bears mentioning that the frequency shift is zero at this order in the undriven case. This can be seen from the
above Floquet solution by replacing the quasienergies εFn with the actual energies En and only allowing `, `′, `′′ = 0.
Then the Berry connection term (Eq. D32) vanishes because one subtracts the Berry connection of the ground state
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from itself. Similarly, the off-diagonal corrections (Eq. D37) vanish because the term 〈e0|V (0)†V (0)|en〉 = 〈E0|En〉 = 0
from orthogonality of the energy eigenstates.

Finally, having solved for the Wigner distribution in terms of the average and relative times, we must Fourier
transform and convolve with the probe to get the actual ARPES signal and see that there are no additional corrections
to order λ̇. We rewrite the diagonal (Eq. D32) and off-diagonal (Eq. D37) corrections as ad and aod respectively, such
that

f(tr, tav) ≈ eiε
F
0 tr
∑
`

e−i`Ωtrp
(`)
0

[
1 + λ̇av(a

(`)
od − itra

(`)
d )
]
. (D38)

This trivially Fourier transformed to get

f(ω, tav) ≈ 2π
∑
`

p
(`)
0

[
(1 + λ̇ava

(`)
od )δ(ω − εF0 + `Ω) + λ̇ava

(`)
d δ′(ω − εF0 + `Ω)

]
. (D39)

Now let us convolve this Wigner distribution by a Gaussian probe to get the ARPES signal and confirm that these
results are unaffected by smearing the δ-function peaks by Gaussians. First convolving along the ω direction (see Eq.
9), we get

I1(ω, tav) ≡
ˆ ∞
−∞

dω′f(ω′, tav)e−(ω′−ω)2τ2
pr

≈ 2π
∑
`

p0`

[
(1 + λ̇ava

(`)
od )e−(ω−εF0 +`Ω)2τ2

pr

+2λ̇ava
(`)
d (ω − εF0 + `Ω)τ2

pre
−(ω−εF0 +`Ω)2τ2

pr
]

≈ 2π
∑
`

p0`

[
(1 + λ̇ava

(`)
od )e−(ω−εF0 +`Ω−λ̇ava

(`)
d )2τ2

pr

]
,

corresponding to a frequency shift of λ̇ava
(`)
d . Second, we must convolve in the time direction with the probe envelope

e−(tav−tpr)
2/τ2

pr . The previous expression for I1(ω, tav) only depends on tav through λav. Therefore assuming that
that probe is short such that λ does not significantly change during it (i.e., τramp � τpr) we must ask when it is

appropriate to simply replace tav by tpr. This clearly correct for all terms of order λ̇, because doing a Taylor series
in the difference tav − tpr times the derivative of these terms with respect to λ would lead to corrections of order

λ̇2. Thus the only potentially relevant correction comes from the term p0`(λav) exp[−(ω − εF0 (λav) + `Ω)] ≡ C0(λav).

Fortunately, a Taylor expansion in tav − tpr gives λ̇(tpr)(tav − tpr)C
′
0(λpr), which is odd w.r.t. (tav − tpr) and thus

vanishes under integration with the Gaussian. So at order λ̇ we get our final answer for the ARPES signal:

I(ω, tpr) ≈
∑
`

p0`

[
(1 + λ̇pra

(`)
od (λpr))e

−[ω−εF0 (λpr)+`Ω−λ̇pra
(`)
d (λpr)]

2τ2
pr

]
, (D40)

which is the final result reproduced in Eq. 14.


