
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Decorated defect condensate: A window to unconventional
quantum phases in Weyl semimetals

Yizhi You
Phys. Rev. B 94, 195112 — Published  7 November 2016

DOI: 10.1103/PhysRevB.94.195112

http://dx.doi.org/10.1103/PhysRevB.94.195112


Decorated defect condensate, a window to unconventional quantum phases in Weyl

semimetals

Yizhi You1

1Department of Physics and Institute for Condensed Matter Theory,

University of Illinois at Urbana-Champaign, Illinois 61801

We investigate the unconventional quantum phases in Weyl semimetals. The emergent boson
fields, coupling with the Weyl fermion bilinears, contain a Wess-Zumino-Witten term or topological
Θ term inherited from the momentum space monopoles carried by Weyl points. Three types of
unconventional quantum critical points will be studied in order: (1) The transition between two dis-
tinct symmetry breaking phases whose criticality is beyond Landau’s paradigm. (2) The transition
between a symmetry breaking state to a topological ordered state. (3) The transition between 3d
topological order phase to trivial disordered phase whose criticality could be traced back to a Z2

symmetry breaking transition in 4d. The essence of these unconventional critical points lies in the
fact that the topological defect of an order parameter carries either a nontrivial quantum number
or a topological term so the condensation of the defects would either break some symmetry or give
rise to a topological order phase with nontrivial braiding statistics.

I. INTRODUCTION AND MOTIVATION

Throughout the past decades, the Landau-Ginzburg-
Wilson(LGW) theory successfully describes a large class
of continuous phase transition in terms of fluctuating or-
der parameters. In addition to the phase transition ap-
pearing at finite temperature driven by thermal fluctua-
tion, the quantum phase transitions, controlled by quan-
tum fluctuations in terms of external parameters at zero
temperature, can also be explained via the theoretical
framework of LGW paradigm.

While the condensation of an order parameter drives
the system into an ordered phase, the order to disorder
transition, on the opposite trend could be regarded as the
condensation of order parameter defects. To enumerate,
the transition between Ising ferromagnet phase to param-
agnetic phase can be realized by condensation of domain
walls1; the superfluid to Mott insulator transition can be
driven by superfluid vortex condensate2,3.

However, there still appears some unconventional
quantum critical points which are beyond the Landau-
Ginzburg-Wilson(LGW) type4–10. One of the explicit
examples is the deconfined quantum criticality between
VBS/nematic order to Neel order in frustrated spin
systems4–7,11,12, where the competing orders between dif-
ferent symmetry broken states are connected by a contin-
uous transition with only one relevant coupling constant.
Such quantum criticality cannot be described by LGW
formalism which suggests two distinct ordered phase shall
either be connected by an intermediate phase or experi-
ence a first order transition.

In addition, the discovery of topological matter13,14

introduces new species of matter with long range en-
tanglement which cannot be probed by any local op-
erators. After decades, the concept of symmetry pro-
tected topological(SPT) phases was introduced and clas-
sified for short ranged entangled states which cannot
be deform into trivial disordered states with the pres-
ence of symmetry20–22. Consequently, the transitions

among topological matter, symmetry protected topolog-
ical(SPT) order and trivial phase are also beyond LGW
formalism as they share the same symmetry and become
identical within any local probe15–18. In the absence of lo-
cal order parameter, one cannot plainly, follow the LGW
approach to described the phase transition in terms of
order parameter fluctuations. The critical theory be-
tween topological order(or SPT) to trivial phase is stud-
ied by a bundle of pioneers19–23. The common wisdom
of these approach involves adding a topological term in
addition to the conventional LGW theory. The topolog-
ical Θ term in addition to the classical NLσM provides
a new critical point which exactly describes the critical
theory between SPT to trivial phase19,21. In addition,
the transition from topological order to trivial phase can
be approached by anyon condensate where the anyons,
as a Lagrangian subgroup of the topological excitations,
would confine any other topological quasiparticle after its
proliferation15,24–26.

Apart from the unconventional quantum critical points
beyond the LGW formalism, there also exist some exotic
quantum criticality as an enriched LGW theory, e.g., the
phase transition between the symmetry breaking state
to a topological state(or symmetry protected topological
order state)10,17,27–29. Such transition, connecting order
to disorder phases, is still within the LGW paradigm.
However, the defect of the order parameter in the sym-
metry breaking phase is decorated with some topological
terms17,20,27,30–33. Accordingly, if one proliferates the de-
fect to disordered the phase, the coupling between defect
and topological term in the effective theory makes itself
distinguish from a trivial disordered phase, namely we
obtain a topological state(or symmetry protected topo-
logical order state).

In this paper, we investigate three types of unconven-
tional transitions in Weyl semimetal systems at three
spatial dimensions. 1) The transition between two dis-
tinct symmetry breaking phases. 2) The transition be-
tween symmetry breaking state and topological ordered
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state in 3 + 1d. 3) The transition between topological
order state and trivial(or SPT) state. The essence of
these unconventional criticality is to decorate the topo-
logical defect with some nontrivial quantum number or
topological terms20,27. Our starting point is the Weyl
semimetals34,35 who contain eight Weyl cones coupling
with some fluctuating boson variables. Owing to the
momentum space monopole carried by each Weyl point,
the effective theory of the boson variables forms a Wess-
Zumino-Witten(WZW) term and the topological defect
of the boson field therefore carries some nontrivial quan-
tum number or topological term.

The outlines of our paper are organized as follow. In
section II, we review the deconfined quantum criticality
in 2d Mott insulators. In Section III, we investigate the
SU(2) soliton condensation towards a charge superfluid
state. We couple the SU(2) field to the Weyl semimetal
where the SU(2) symmetry breaking phase corresponds
to the chiral symmetry breaking of QED4. The soliton
of the SU(2) degree of freedom carries charge 2e and its
proliferation restores the SU(2) symmetry but meanwhile
breaks the charge U(1) symmetry towards a supercon-
ductivity order. Such charged soliton condensation tran-
sition connecting different symmetry broken state is also
beyond the LGW type. The essence of this exotic quan-
tum phase transition arises from the nontrivial quantum
number carried by the order parameter defect and the
criticality therefore contains an emergent WZW term.

In Section IV, we study the transition between sym-
metry broken state and 3d topological ordered state. We
start with the 3d pair density wave(PDW) state where
the fermions in each Weyl cone form an s-wave pairing
and condense with a global momentum. The nodal plane
of the PDW state contains gapless modes. We couple
the gapless fermions with an O(3) rotor and turn the
gapless nodal plane into a gapped state whose effective
theory is equivalent to a 2d topological paramagnetic
phase27. After we condense the dislocation and discli-
nation to disorder the PDW order, the ground state(GS)
wave function can be written in terms of the superposi-
tion of all close nodal membranes decorated with a topo-
logical paramagnetic state. Alternatively, if we express
the GS wave function in terms of the O(3) rotor de-
gree of freedom, the wave function is the condensation of
skyrmion flux loops decorated with fluctuating domain
walls. The open membrane, whose boundary contains
a half superconducting(SC) vortex loop is a deconfined
loop excitation. Meanwhile, the end point of the flux line
contains a monopole of the O(3) rotor as a deconfined
particle excitation. The monopole has π statistics with
the half SC vortex and the system is therefore in a 3d Z2

topological order phase equivalent to the 3d toric code
model36,37. The spirit of this unconventional transition
lies in the fact that the effective theory of the nodal plane,
as a decorated topological paramagnetic state, contains
a topological Θ term.

In Section V, we focus on the transition between SPT
state and topological ordered state in 3d from interact-

ing Weyl semimetals. We look into the SPT phases whose
surface contain topological order and let the surface topo-
logical order saturates into the bulk by domain wall pro-
liferation. The proliferation of domain walls decorated
with an anomalous 2d topological order drives the system
into a 3d topological order phase. On the opposite trend,
the transition from the topological order to an SPT phase
can be realized by loop condensate which confines other
topological excitations. Finally, we also map the transi-
tion between SPT and topological order phase in 3d to
a spontaneously Z2 symmetry breaking transition on the
surface of 4d. This scenery generates a connection be-
tween topological and LGW type transition in different
dimensions from a holographic view.

II. NOVEL QUANTUM CRITICALITY
BETWEEN TWO SYMMETRY BROKEN

PHASES

A large class of spontaneous symmetry breaking phase
transitions can be described by the Landau-Ginzburg-
Wilson(LGW) theory. The LGW paradigm demon-
strates that a continuous phase transition occurs from
a symmetry broken phase to a disordered phase or vice
versa. In addition, for two phase of matters with dis-
tinct symmetry breaking, the transition between them
shall encounter with an intermediate phase which, both
or neither symmetry are broken.
To illustrate, imagine we have a classical O(M + N)

rotor ~n described by the non-linear sigma model(NLσM).

L =
1

g
(∂µni)

2 (2.1)

The coupling constant g tunes the fluctuation strength
of the rotor. When g is small, the rotor is in the ordered
phase which breaks the rotation symmetry and contains
M+N−1 gapless Goldstone mode. When g is large, the
theory is in the gapped disordered phase. Now assume we
slightly break the rotor from O(M+N) to O(M)×O(N).

L =
1

g

M∑
i=1

(∂µni)
2 +

M+N∑
j=M+1

1

g′

∑
(∂µnj)

2 (2.2)

We then have two coupling constant g and g′ which tunes
the fluctuation strength of two rotors. The phase dia-
gram therefore contains four distinct phases, a) O(N)
symmetry breaking, b) O(M) symmetry breaking, c)
both symmetries are broken, d) both rotors are disor-
dered. The phase transition between the O(N) to O(M)
symmetry broken phase has to go through an intermedi-
ate region, where both symmetries were broken or both
rotors were disordered. Else, the two different symmetry
broken phases can also be connected by a multicritical
point.
It was long recognized that two distinct symmetry bro-

ken phase cannot be connected by a continuous tran-
sition with only one relevant coupling constant. How-
ever, Senthil et al.4,5 proposed an exotic deconfined
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quantum critical theory beyond LGW paradigm. Such
transition4,5 connects different symmetry breaking mat-
ter by a continuous transition, and the critical region is
controlled by the emergent WZW term4,5. The WZW
term in the criticality suggests the defect of an order
parameter carry some nontrivial quantum number. As a
result, the condensation of symmetry defects restores the
symmetry, but meanwhile breaks another symmetry as-
sociate with the quantum number. Before we proceed, let
us first review the deconfined quantum phase transition
in 2d.

A. Phase transition between Neel and VBS order
in Mott insulator

The first prominent example on deconfined quantum
criticality is discovered by Senthil et al.19–22 in Mott in-
sulator on square lattice. Deep in the Mott phase, the
charge degree of freedom is frozen while the spin degree
of freedom suffers from a variety of competing orders.
In the Neel ordered phase, the spin 1/2 on each cite

forms an AF order which breaks the spin rotation sym-
metry. The path integral description of the quantum spin
fluctuation is determined by the nonlinear sigma model
with a Berrys phase factor7. The Berry phase indicates
the fact that the instanton event38 contributes a phase
factor of eiπ/2 which enters into the path integral over
all possible spacetime spin configurations. Accordingly,
a single (spacetime)hedgehog cannot appear in the crit-
ical theory. Meanwhile, the instanton event for adding
skyrmion quadrupole(with four skyrmion) does not gen-
erate any Berry phase with sign frustration in the path in-
tegral. However, the skyrmion quadrupole carries lattice
momentum and the condensation of skyrmion restores
the rotation symmetry but meanwhile breaks the transla-
tion symmetry by lattice momentum condensation. The
four-fold hedgehog operator is dangerously irrelevant so
the critical point is stable against that. However, as
long as the skyrmion condense, the four-fold hedgehog
becomes relevant and the proliferation of instantons con-
fines the U(1) gauge field carried by the original spinon.
The resultant phase after skyrmion quadrupole conden-
sate is a VBS state with dimerized spin order4–7. The
VBS state restores the spin rotation symmetry but breaks
the translation symmetry.
Alternatively, one can also approach the criticality

from the VBS side. The VBS state on the square lat-
tice breaks translation symmetry and there are 4 dis-
tinct VBS configurations describing a discrete Z4 clock
order parameter. The Z4 vortex of such order param-
eter carries a spinon. The condensation of Z4 vortex,
together with the spinon restores the translation symme-
try but meanwhile breaks the O(3) rotation symmetry11.
The quantum critical region is characterized by the O(5)
WZW model where the O(3) spinon together with the
O(2) clock order parameter forms an emergent O(5) ro-
tor. (When approaching the criticality, the instantons

corresponding to the 4-fold anisotropy are (dangerously)
irrelevant so one can enlarge the symmetry from Z4 to
U(1).)

III. QUANTUM PHASE TRANSITION IN 3d
CONNECTING DISTINCT SYMMETRY

BREAKING STATES

The concrete example of the continuous transition
between two phases with different broken symmetries
was found in miscellaneous systems in 2d with strong
interaction8,9, including frustrated magnets, bilayer
graphene, etc. However, such mechanism and concrete
examples in 3d is less explored as correlation effect is
suppressed in higher dimension. Moon39 demonstrated
that with the presence of anomalies and relevant symme-
try breaking operators, the Wess-Zumino-Witten model
in higher dimension can precisely characterize similar un-
conventional quantum criticality.
In this part, we intend to construct a microscopic

model as a platform for novel quantum phase transi-
tion between different symmetry breaking phases. As
is pointed out by several pioneers17,39–41, a WZW theory
at the stable fixed point is essential in the critical the-
ory connecting different symmetry breaking states since
the WZW term itself connects an order parameter defect
with another quantum number. As a result, in order to
acquire such phase transition beyond LGW paradigm, it
is essential for us to start from a critical theory contain-
ing a WZW term.
For deconfined quantum criticality in 2d, the WZW

term12 emerges due to the special structure of the VBS
vortex who contains spin 1/2 degree of freedom in the
vortex core. However, for frustrated magnetism in higher
dimension, it is hard to find a similar composition.
Therefore, in this work, we intend to begin with an al-
ternative approach. We start from a Weyl semimetal
system with eight Weyl cones, and couple our theory
with a classical rotor. Each component of the rotor
couples with the fermion bilinear and acts as a mass
term. Once we integrating out the fermions, one ob-
tains a Wess-Zumino-Witten theory for the fluctuating
rotor21,42,43. The WZW term of the rotor originates
from the special band structure of Weyl semimetal who
contains monopole in momentum space around the Weyl
points.
In the next two paragraph, we would investigate

the phase transition theory between different symmetry
breaking states in detail. The effective theory can be
written in terms of LGW type theory plus an emergent
gauge field coupling with the defect current. The emer-
gent gauge field decorates the defect of an order parame-
ter with a quantum number and the WZW term emerges
when approaching the criticality. In addition, we can also
consider an alternative case where we condense the dou-
ble defects without carrying any quantum number. Such
double defects condensation restore all symmetries and
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drive the theory into Z2 topological order.

A. Transition between SC and O(4) symmetry
broken

In this part, we would investigate a type of quantum
phase transition beyond LGW paradigm. The transition
connects a superconductivity state with an O(4) symme-
try broken state8,9,39. The superconductivity is realized
by charge 2e SU(2) soliton condensation, contrary to the
conventional BCS paired electron condensate. The SU(2)
soliton can be view as the topological excitation of an
O(4) rotor field in 3+1d which gives homotopy mapping
π3(S

3) = Z. The charged SU(2) soliton condensation
disorders the O(4) rotor but meanwhile breaks charge
U(1). In order to affix the U(1) charge to the soliton, we
couple the O(4) rotor to the Weyl semimetals44.
The Weyl semimetal we start with contains 8 Weyl

points while 4 of them has left(right)-hand chirality.
These Weyl cones couple with an O(4) rotor ~n =
(n1, n2, n3, n4) as,

H = Ψ†
k
(σxτzkx + σyτzky + σzτzkz + n1τx

+ n2τyπxµy + n3τyπy + n4τyπzµy)Ψk (3.1)

σ, τ, π are Pauli matrices acting on the flavor index of
the Weyl cones. When the rotor is in the ordered phase
as ~n 6= 0, the Weyl fermions are gapped. The ordered ~n
vector acts as independent CDW order parameters which
nests every two Weyl cones with opposite chirality in-
duced by fermion interaction with finite strength. The
O(4) rotor has a topological defect equivalent to an SU(2)
soliton42,45. As one can write the O(4) degree of freedom

in terms of the SU(2) matrix U = n4I + i
∑3

i=1 naσa,
the SU(2) soliton describes the O(3) skyrmion(for com-
ponent n1, n2, n3) living in the domain wall of n4. As an
alternative, one can also view the SU(2) soliton as a link-
ing between two vortex loops by decomposing the O(4)
rotor to U(1) × U(1) as Fig 1. By representing a and b
as the gauge field for the U(1)×U(1) degree of freedom,
the soliton density J0 ∼ ǫijklǫxyzni∂xnj∂ynk∂znl can be
mapped to the linking number between two vortex loops
in 3d space ǫxyzax∂ybz.

FIG. 1. The linking between two vortex loops forms an SU(2)
soliton. Here the red and green loops represents the gauge
field a and b coming from two U(1) degree of freedom.

The proliferation of the SU(2) soliton disorder the
O(4) rotor. However, as the rotor couples with the
Weyl fermion, one needs to carefully inspect the quan-
tum degree of freedom carried by the soliton. Since the
amplitude of the rotor is fixed, the fermion is always
gapped even in the O(4) disorder phase. Coupling the
fermion with the electromagnetic field and integrating
out the fermion, we obtain the effective theory of the
O(4) skyrmion as,

L =
1

g
|∂µni|

2 + 2AµJ
skyr
µ + i2πH3[~n] + ...

Jskyr
λ =

1

12π2
ǫµνρλǫijklni∂µnj∂νnk∂ρnl (3.2)

Jskyr is the SU(2) soliton current which couples with the
electromagnetic field and carries charge 2e. Before we
condense the soliton to restore the O(4) rotation sym-
metry, we have to make sure the soliton here is a boson.
H3[~n] in Eq.(3.2) is a topological invariant of the mapping
from the spacetime into the target space S344. There are
only two homotopy classes π4(S

3) = Z2. This geomet-
ric phase term indicates the soliton is a boson as its self
rotation gives a phase of 2π.
Another way to investigate the statistics of the soli-

ton is to decompose the O(4) vector into O(3) × Z2 =
(n1, n2, n3) ⊗ n4. When there appears a domain wall of
n4, there is a 2d Dirac fermion theory localized near the
domain wall,

H = Ψ†
k
(σ′

xkx + σ′
zky

+ n1σ
′
yπ

′
xµ

′
y + n2σ

′
yπ

′
y + n3σ

′
yπ

′
zµ

′
y)Ψk (3.3)

FIG. 2. The skyrmion living on the domain wall plane.

Now we further decompose the O(3) vector into O(2)×
Z2 = (n1, n2)⊗n3. The O(3) skyrmion configuration can
be illustrated as Fig 2, the domain wall for n3 forms a
loop and (n1, n2) has a nonzero winding number along
the domain wall loop. In the domain wall loop, the 1d
fermion theory can be written as,

H = Ψ†
k
(σ̃xkx + n1σ̃yπ̃z + n2σ̃z π̃z)Ψk (3.4)

If (n1, n2) does not have a winding number, the 1d
fermion in the domain wall is fully gapped. Once we turn
on a winding number of 2π along the domain wall loop
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corresponding to the creation of an SU(2) soliton for the
O(4) rotor, the fermion spectrum would contain two zero
modes which lead to the level crossings at k = 0. Each
additional fermion zero mode would change the fermion
parity of the ground state. Consequently, the SU(2) soli-
ton does not change the fermion parity and hence the
soliton is bosonic.

The SU(2) soliton in our theory can be mapped into a
Hopf soliton. Consider an O(3) vector who transform as
a spin 1 representation of the SU(2) group. The SU(2)
gauge transformation for creating the SU(2) soliton can
be mapped to the O(3) Hopf soliton. Such mapping is il-
lustrated as Fig 1. First, we decompose the O(4) rotor to
U(1)×U(1). Each U(1) has a vortex loop and the linking
between the two vortex loop is the SU(2) soliton. Now
we bound the two vortex loop together as a ribbon, the
linking now becomes the self-twist of the ribbon which is
exactly the O(3) Hopf soliton45,46.

If we condensed the SU(2) soliton to restore the O(4)
rotation symmetry, we would meanwhile break the charge
U(1) and drive the theory into a superconducting state.
Such superconductivity is induced by charge soliton
condensation instead of the traditional fermion pairing
scheme. The phase transition could be either continuous
or weakly first ordered depending on the dynamics of the
soliton.

B. Attacking from the superconductivity side

In our previous discussion, we had shown that the
charged SU(2) soliton condensation restores the O(4) ro-
tation symmetry and meanwhile drives the system into
charge 2e superfluid state. In this section, we would try
to start with the opposite trend, we start from the super-
conductivity phase of the Weyl semimetal and restore the
charge U(1) symmetry by vortex line condensation. The
vortex line contains 1d gapless mode of the O(4) rotor
and we would show explicitly how does the vortex con-
densation process concur with O(4) symmetry breaking.

We have in total 4 Weyl pairs with opposite chiral-
ity and we turn on intra-cone s-wave pairing to gap out
the semimetal. For each SC Weyl cone pairs, one can
write them in the Nambu basis Ψ† = χ1 + iχ2 and the
Hamiltonian is,

H =

4∑
i=1

χT
i,k(i∂xσ

103 + i∂yσ
303 + i∂zσ

223

+O1σ
210 +O2σ

230)χi,−k

∆ = O1 + iO2 (3.5)

∆ is the pairing field and σabc = σa ⊗ πb ⊗ τb with τ(π)
acting on the chirality(Majorana) index. For each SC
Weyl pairs, the vortex loop of the pairing field ∆ contains
a 1d helical Majorana mode. As we have 4 Weyl pairs
in total, the vortex loop carries 4 helical Majorana mode

coupling with the O(4) vector ~n as,

H = χT
k
(i∂xσ

100 + n1σ
312 + n2σ

320 + n3σ
332 + n4σ

200)χ
−k

(3.6)

Integrating out the fermion inside the vortex, we would
obtain 1+1d O(4) WZW term at k = 1, which represents
the critical spin 1/2 Heisenberg chain akin to the SU(2)1
conformal field theory.

S =

∫
dxdt

1

g
(∂µni)

2 +

∫ 1

0

du
ǫijkl

12π
ni∂xnj∂ynk∂unl

(3.7)

Next we would demonstrate that the vortex condensa-
tion would concur with O(4) rotation symmetry break-
ing. Different from our previous approach, the order pa-
rameter defect here is a line object instead of a point
particle. The vortex line carries gapless boson mode(of
the O(4) rotor) and it is hard to write down a straight-
forward theory describing the loop condensation in the
presence of gapless modes. To detour this problem we
borrow a domain wall from the O(4) rotor.
We first add an anisotropic term to break the O(4) ro-

tor into O(3)×Z2. This can be achieved by adding a large
mass term like αn2

4 so the n4 component is suppressed to
zero. Once n4 is disordered, we can assume the ground
state is saturated with all superpositions of domain walls
for the scalar field n4. When the domain wall plane is
perpendicular to the superconducting vortex line, the Z2

domain wall and the U(1) SC vortex together forms a
monopole defect as Fig 3. Inside the monopole, there

FIG. 3. The domain wall living on the SC vortex line forms
a ‘monopole defect’. The blue arrow is the domain wall while
the red line is the vortex loop

contains 0 + 1d O(3) WZW term at k = 1,

S =
1

4

∫ 1

0

du

∫
dt ǫijkni∂tnj∂unk (3.8)

This Wess-Zumino-Witten model at k = 1 represents a

spin 1
2
degree of freedom for ~N = (n1, n2, n3)

40. Once
we condense the bound state between n4 domain wall
and SC vortex as a ‘rough’ monopole, the spinon in-
side the monopole would be condensed as well. This re-
stores the charge U(1) but meanwhile breaks the O(3) of
(n1, n2, n3).
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To describe the theory of such ‘rough’ monopole con-

densation, we first write the spinon of ~N in CP 1 form.

ni =
1

2
z∗σiz (3.9)

z is a two component complex field with |z1|
2 + |z2|

2 =
1. The z field has a U(1) gauge symmetry z → eiθz.
Thereby when writing the NLσM of the O(3) rotor in
terms of the CP 1 form, the spinon field z automatically
couples to a U(1) gauge field aµ = z∗i ∂µzi.

As the composite monopole(as a bound state of SC vor-
tex and n4 domain wall) is decorated with a spinon degree
of freedom, one could assume the composite monopole
field carries a fundamental representation of SU(2)17 and
couples with the gauge field a. As a result, one can pre-
cisely use the CP 1 field theory to describe the monopole
condensation transition,

L = |(∂µ + iaµ)zi|
2 + µ|zi|

2 + β(
∑
i

|zi|
2)2 + κfµνf

µν

(3.10)

The CP 1 field represents the composite monopole degree
of freedom. fµν is the electromagnetic tensor of a. Here
we have soften the constrain |z1|

2+ |z2|
2 = 1 and replace

it with the interaction β term. When µ is positive, the

spinon acquires a nonzero expectation value so the O(3)
rotation symmetry is broken. The SC to O(4) symmetry
breaking transition is characterized by the CP 1 spinon
condensate due to the fact that the ‘rough’ monopole
consist of SC vortex and n4 domain wall carries a spinon

of ~N = (n1, n2, n3). The monopole condensation higgsed
the gauge field of the spinon and the O(3) rotation sym-
metry is broken(which also breaks the original O(4)). As
a result, the SC phase and the O(4) symmetry broken
phase can be connected through a second order transi-
tion.
As the monopole composed from n4 domain wall and

SC vortex carries a spinon of ~N = (n1, n2, n3), the cou-
pling between them can be written as,

S =

∫
d3xdt aλJ

N
λ ,

JN
λ =

1

Ω3
ǫλρµνǫjkl∂ρn

e
j∂µn

e
k∂νn

e
k, (3.11)

JN is the monopole current of ~N = (n1, n2, n3) and a is
the U(1) gauge field for z. This coupling indicates there
could appear an emergent Wess-Zumino-Witten term at
the phase transition point.
At the critical region when both O(4) and SC are dis-

ordered, the SC order parameter together with the O(4)
rotor has an emergent O(6) symmetry. We can write the
Weyl semimetal in the Nambu basis,

H = χT
k (i∂xσ

10300 + i∂yσ
30300 + i∂zσ

22300 +O1σ
21000 +O2σ

23000 + n1σ
02110 + n2σ

02130 + n3σ
02122 + n4σ

02202)χ
−k

(3.12)

After we integrating out the fermion, criticality theory
connecting two symmetry breaking phase is controlled
by the O(6) WZW theory,

S =
1

4

∫
d3xdt [

1

g
|∂µni|

2

+

∫ 1

0

du
2π

Ω5
ǫijklmnni∂xnj∂ynk∂znl∂tnm∂unn] (3.13)

C. Double vortex condensation, topological order

In our last section, we had shown that in the SC phase,
the condensation of vortex loop restores the charge U(1)
but meanwhile breaks the O(3) symmetry. Then one
may ask it is possible to restore the charge U(1) without
breaking O(3)47? The answer is Yes. Instead of con-
densing single vortex, we bound two vortices together
and condense the double vortex lines. The double vor-
tex line carry two copies of the critical boson chain de-
scribed by a NLσM with Θ = π27. By turning on ferro-

magnetic/antiferromagnetic interaction between the two
O(3) rotors, we can gap the two critical boson chain into
a rotation invariant state. They are two ways to gap out
the critical chain, which finally drives the system into
a O(3) NLσM with either Θ = 0 or Θ = 2π. Both of
these two gapped chains are rotation invariant, so the
double vortex line condensation does not break the rota-
tion symmetry. In addition, the effective theory exhibit
Z2 topological order which can be described by the BF
theory,

L =
1

4π
ǫµνρλBµν∂ρaλ (3.14)

Here ǫµνρλ∂ρaλ is the current for a single SC vortex and
ǫµνρλ∂ρB

µν is the O(3) monopole current. This term in-
dicates the monopole and vortex loop has mutual semion
statistics.
There are two ways to gap out the gapless mode inside

the double vortex line and they end up with the same 3d
topological order after double vortex condensed. How-
ever, these two states can be distinguished on the bound-
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ary. The end point of vortex line on the boundary is a
vortex particle. If the bound state of two vortex lines are
gapped into Θ = 2π phase, the end point of double vor-
tex on the boundary carries spin 1/2 degree of freedom
as a Kramers doublet. Thus, the time reversal opera-
tor acting on the double vortex line in a projective way.
The surface theory thereby contains either gapless mode
or anomalous topological order. This Z2 topological or-
dered phase is associate with the 3d Z2 × T invariant
boson SPT phase after Z2 symmetry gauging.

IV. THE PDW SUPERCONDUCTOR MELTING,
3D STRING-MEMBRANE CONDENSATION

In our previous discussion, we investigate the transi-
tion from SC to O(4) rotation symmetry broken states
by vortex line condensate. In this part, we assume the
superconducting state from Weyl cone pairing is nonuni-
form in space as the Cooper pairs condense with a global
momentum48. As a result, the consequent SC order pa-
rameter has a pair density wave(PDW) structure whose
pairing amplitude modulates in space.
Assume the SC order parameter modulates along z di-

rection. One can write the pairing of the Weyl cones in
the Nambu basis as27,

H = χT
i,k(i∂xσ

10300 + i∂yσ
30300 + i∂zσ

22300 +O1σ
21000

+ n1σ
02212 + n2σ

02232 + n3σ
02220 + n4σ

02100)χi,−k

∆ = O1 = |O1| cos(qz) (4.1)

Here we choose a specific gauge when the PDW order is
real and therefore O2 = 〈χT

i,kσ
23000χi,−k〉 = 0.

This PDW state has a slab configuration whose am-
plitude modulates along the PDW wave vector. In the
nodal plane of the PDW state at qz = (n + 1/2)π, the
SC amplitude is zero and the Majorana fermions merely
couple with the O(4) rotor. We first break the O(4) vec-
tor down to O(3) by developing a nonzero expectation
value of n4. In addition, we assume n4 = m is positive
and large compared to the fluctuating O(3) rotor.
Thereupon, the fermions are gapped inside the nodal

plane so one can integrate out the fermion band to ob-
tain the effective theory of the O(3) rotor in the 2d nodal
plane. The disordered O(3) rotor is actually in the SPT
phase whose effective theory is a descendent of the topo-
logical NLσM in 2d.
To demonstrate this, first we look at the fermions in-

side the nodal plane. The nodal plane is a domain wall of
O1. There exists 8 copies of 2d Majorana cones localized
inside the nodal plane who couple with the rotor as,

H = χT
k (i∂xσ

1000 + i∂yσ
3000 +mσ2300 + O2σ

2100

+ n1σ
2212 + n2σ

2220 + n3σ
2232)χ

−k (4.2)

Here m is the expectation value of n4 which is already
polarized.
Integrating out the fermions in the nodal plane, one

obtains a topological NLσM with Θ = 2π whose ground

state wave function can be written in terms of all co-
herent configurations of the O(4) degree of freedom
(n1, n2, n4, O2). The coefficient of each configuration is
the O(4) WZW term.
However, inside the nodal line, the SC amplitude is

zero so O2 = 0. We can apply this constraint by adding
a large mass term |u|O2

2 to push O2 to zero. Then the
effective theory is merely the dynamics of the O(3) ro-
tor. The wave function of the O(3) rotor in the nodal
plane can be written in terms of the coherent sum of all
rotor superpositions and the coefficient for each coherent
state counts whether there are even or odd number of
skyrmions in each configuration.

|GS〉 =

∫
D[~n]ei

2π

Ω2

∫
dx2ǫijkni∂xnj∂ynk |~n〉

|~n〉 = (n1, n2, n3)

Z2 : (n1, n2, n3, O2) → −(n1, n2, n3, O2) (4.3)

Such wave function illustrates an SPT state protected
by Z2 symmetry where the sign structure of the coherent
sum in Eq. (4.3) can never be erased out as long as the
symmetry is unbroken42,49. The nodal plane is therefore
decorated with a topological paramagnetic state.
Now we are about to disorder PDW state and con-

dense the nodal plane to restore the spatial symme-
try. The melting procedure can be realized by dislo-
cation and disclination proliferation, which bends the
nodal plane into arbitrary close membrane configura-
tion. The condensation of nodal membrane restores
the rotation/translation symmetry. We assume there
is some thermal or quantum fluctuation which effec-
tively generates positive interaction between disclina-
tion(dislocation) and therefore triggers a tendency to
condense them. During the condensation, the origin
Goldstone mode(φ) associate with the translation sym-
metry broken is gapped by the vortex tunneling term
cos(nφ). The coherence of the condensed dislocations
and disclinations generates a coherent state of all types
of nodal membrane configurations. Meanwhile, since the
nodal membrane separates the positive and negative pair-
ing amplitude, the nodal line must be closed in the bulk
in the GS, otherwise there must be a half vortex of the
pairing field associated with it. We focus on the situa-
tion where the GS is vortex free so all the nodal line must
form a close-loop configuration.
After nodal membrane condensed, the GS is the su-

perposition of all close membranes decorated with a 2d
SPT state(topological paramagnetic). One can write the
wave function in terms of all coherent superposition of
O(4) soliton configurations where the coefficient of each
configuration carries a sign structure counting the total
parity of solitons.

|GS〉 =

∫
D[~n]ei

2π

Ω3

∫
dx3ǫijklñi∂xñj∂y ñk∂z ñl |~̃n〉

|~̃n〉 = (n1, n2, n3, O1) (4.4)
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This wave function can be regarded as a consequence of
both loop condensate and membrane condensate in 3d. If
we only look at O1, the GS wave function is the conden-
sation of all close nodal membrane of O1, where the mem-
brane itself is decorated with an O(3) topological param-
agnetic state. Alternatively, if we focus on the skyrmion
flux Bk ∼ na∂inb∂jnc degree of freedom, the GS wave
function is the condensation of all close flux loops where
the loop contains fluctuating domain walls of O1

37. This
wave function is akin to the 3d boson toric code model37

whose wave function can be written in terms of either
membrane or loop condensate. Here and after, we would
argue that there is Z2 topological order in this melted
PDW state.
Before we melt the PDW, there are three types of de-

confined excitations, a 2π dislocation, a 2π SC vortex and
a π dislocation + π SC vortex bound state. The π dislo-
cation and π SC vortex bound state is associated with the
condition where the nodal plane has an open boundary
line bounded with a π SC vortex line. The half-vortex
traps an electromagnetic flux π/2. After we melt the
PDW slab, the π dislocation + π SC vortex bound state
still remains as a deconfined excitation. Thus, one can
conclude that the open membrane of O1 contains a loop
excitation carrying electromagnetic flux π/2.

Beyond such deconfined loop excitation as the bound-
ary of opened membrane, we can also find a deconfined
particle excitation as the end point of an open string. If
we write the O(3) rotor degree of freedom in terms of the
CP 1 representation,

ni =
1

2
z∗Tσiz

aµ = z∗i ∂µzi,

Bk = ǫijǫabc
1

8π
na∂inb∂jnc =

1

2π
ǫijk∂iaj (4.5)

The skyrmion flux can be written in terms of the elec-
tromagnetic flux of an U(1) gauge field a. In the PDW
melted phase, the flux line condenses and the monopole
excitation is deconfined. The monopole of the gauge field
a is associated with the hedgehog configuration of the
O(3) rotor. Here and after, we would demonstrate that
the monopole at the end of skyrmion flux and the loop on
the boundary of membrane has mutual semion statistics.

To proceed, we would prove that the O(3) monopole
is a dyon which carries electric charge 2e. Starting from
the fermion model we worked on, the O(3) rotor couples
with the fermion as,

H = Ψ†
k
(σxτzkx + σyτzky + σzτzkz +mτx + n1τyπxµy + n2τyπy + n3τyπzµy)Ψk (4.6)

When the mass term is positive and much larger than
O(3) vector, after integrating out the fermions, the ef-
fective theory between O(3) monopole and the elec-
tromagnetic field is expressed in terms of the axion
electrodynamics,50,

4Θ

4π2
dAda, (Θ = π), (4.7)

We have a factor of 4 since the Hilbert space is quadru-
pled compared to those of 3D TI. The axion term indi-
cates when we have a monopole of O(3), there traps a
polarized charge 2e inside the monopole50.
In the GS, the flux line of a, interpreted as the

skyrmion flux, can be written as a coherent sum for all
close flux loop configurations so the monopole as the end
point of the open flux string is a deconfined particle exci-
tation. The monopole carries charge 2e, while the bound-
ary loop of the open membrane trap EM flux π/2. The
winding between the monopole and the loop accumulates
a π Berry phase. This demonstrates that the melted
PDW SC is a boson toric code theory in 3d13.
Another way to confirm the π statistics between flux

loop and monopole is illustrated as Fig 4. Imagine
we create a pair of monopole/anti-monopole, take one
monopole winding around the boundary line of the nodal
membrane and finally annihilate the monopole/anti-

monopole pair. When the monopole goes across the
nodal membrane, it creates a skyrmion on the nodal
plane. As is demonstrated in the wave function at
Eq. (4.3), the topological paramagnetic state on the
nodal plane can be written as the coherent sum of all
skyrmion configurations while each additional skyrmion
contributes a minus sign factor. Hence, the braiding pro-
cedure creates addition skyrmion on the nodal plane ac-
commodates with a global minus sign factor in the wave
function. This indicates flux loop and monopole has mu-
tual π statistics.
In conclusion, the PDW melting transition connects a

symmetry breaking state with a 3d topological ordered
state. The essence of such transition lies in the fact that
the nodal plane is decorated with a topological paramag-
netic state, and nodal membrane condensation give rise
to a boson SPT protected by Z2 × T symmetry, whose
effect theory is described by the O(5) NLσM27,42,51,

L =

5∑
a=1

1

g
(∂µNa)

2 +
i2π

Ω4
ǫijklmN i∂xN

j∂yN
k∂zN

l∂tN
m

~N = (O1, O2, n1, n2, n3)

T : n1,2,3 → n1,2,3; Z2 : (O1, O2) → −(O1, O2) (4.8)

If we gauge the Z2 symmetry, the half SC vortex of
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FIG. 4. We create a pair of monopole/anti-monopole on
the left, take one monopole braiding around the membrane
boundary line and annihilate the pair. The blue plane is the
open nodal membrane. The orange line is the trajectory of the
monopole. Once the monopole goes across the nodal mem-
brane, it adds additional skyrmion number on the plane so
the wave function of the topological paramagnetic acquires a
minus sign.

(O1, O2) couples with the Z2 gauge flux. This flux loop
is associate with the open membrane boundary of O1,
which exhibit nontrivial loop-particle braiding with the
monopole. Consequently, the Z2 topological order in our
theory is related to a 3d SPT state after symmetry gaug-
ing. The half vortex + half dislocation pair plays the
role as the bound state between Z2 gauge flux and half
SC vortex, and the PDW state we start with is crucial
as it provides a system with deconfined half SC vortex
excitation48. The PDW melted state is thereby equiva-
lent to a gauged 3d boson SPT phase.

A. Three loop statistics in this model

If we do not fix n4 in equation Eq. (4.2), the O(4) ro-
tor coupling with the Majorana cones acquires an O(4)
Θ term at Θ = π. Breaking the O(4) symmetry to
U(1) × U(1), the theory is gapped with mutual semion
topological order. The nodal plane of the PDW is there-
fore decorated with the Z2 topological order. After we
melt the PDW slab, there are three types of deconfined
excitations: The vortex line for n1, n2(label as a), the
vortex line for n3, n4(label as b), and the half-vortex half
dislocation of the SC(label as c). When the braiding be-
tween vortex lines of a and b are penetrated by the half
vortex of the SC, the 3 loop braiding acquires a π Berry
phase, as a signature of the nontrivial 3 loop statistics.
The trajectory of such 3-loop statistics, can also be ex-
pressed in terms of the particle loop statistics where the
‘particle object’ is composed by the two vortex loop a
and b linking to each other. Else, if we project the two
vortex loop into a global U(1) degree of freedom, the link-
ing of the vortex loops becomes the self-twist of a ribbon
band. The 3-loop statistics then reduce to the particle-
loop statistics between a self-twist ribbon and SC half

vortex52.

V. ISING ORDER PERCOLATION

A. Saturation of surface topological order to the
bulk

In this section, we focus on the phase transition be-
tween SPT to topological order phases. The relation be-
tween SPT phases and topological order states is well
explored in terms of symmetry gauging45,49,53, where the
gauge flux exhibit nontrivial statistics. In these prece-
dents, the transition between SPT and topological or-
der states could be characterized as the confinement-
deconfinement transition of the gauge flux.
At this point, we would start with another approach to

bridge the relation between SPT and topological phase in
3d. We start with a certain type of 3d SPT state whose
surface can exhibit topological order. By saturating the
2d domain wall between SPT and trivial phase into the
bulk, the system is soaked with domain wall membranes
decorated with 2d topological order. Such domain wall
condensate drives the SPT state into a topological or-
dered phase with nontrivial loop-particle statistics.
To study such phase transition explicitly, we begin

with the microscopic model studied in Eq.(3.1).

H = Ψ†
k
(σxτzkx + σyτzky + σzτzkz +mτx

+ n1τyπxµy + n2τyπy + n3τyπzµy)Ψk (5.1)

Assumem is positive and its amplitude is large compared
to the O(3) rotor (n1, n2, n3). When the O(3) rotor is
disordered, the theory describes a time reversal invariant
topological insulator inherited from the chiral symmetry
breaking of the Weyl fermions. The surface state of this
topological insulator, who contains 4 Dirac cones, can be
regarded as the domain wall ofm where the mass changes
the sign. If we turn on the s-wave superconductivity
of the surface Dirac cone, the surface state is thereby
gapped and the SC order ∆ breaks T and charge U(1)
symmetry. The SC surface can be written in the Nambu
basis as,

H = χT
k
(i∂xσ

1000 + i∂yσ
3000 +O1σ

2100

+O2σ
2300 + n1σ

2212 + n2σ
2232 + n3σ

2220)χ
−k

∆ = O1 + iO2, T : χ → Kiσ2000χ (5.2)

The nonzero surface SC order O1, O2 breaks charge U(1)
and T . To restored the broken symmetry, one has to
condense the vortex of the superconductivity order. How-
ever, the vortex of the SC order carries a spinon degree
of freedom of the O(3) rotor. This can be easily veri-
fied by the O(5) WZW term at k = 1 after we integrate
out the fermion. The O(5)1 WZW term, composed from
the SC order together with an O(3) rotor, indicates the
SC vortex contains an O(3)1 WZW term at 0d, which
is exactly the spinon of the rotor. The spinon decorated
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vortex is a Kramers doublet whose condensation breaks
the T symmetry. Thus, to restore the charge U(1) and
T , one needs to condense double SC vortex. After double
vortex condensate, the single vortex is a deconfined exci-
tation carrying Kramers doublet. Meanwhile, the vortex
between n1, n2 also carries a Kramers doublet as it con-
tains an O(3)1 WZW term of n3, O1, O2. The vortex
of n1, n2 has mutual semion statistics with the SC vor-
tex. If we add a mass term for n3 which suppress the
n3 component to zero, the O(5)1 WZW term is therefore
reduced to the O(4) topological Θ term at Θ = π with
U(1) × U(1) anisotropy. The Θ term denotes the mu-
tual semion statistics between the vortex of n1, n2 and
SC vortex, both of which carries Kramers doublet. This
surface topological order is known as the [eT mT ] surface
state26,54.
To drive SPT state into a topological ordered state, we

proliferate domain wall of the mass term m in the bulk.
Such domain wall separates SPT states with vacuum and
therefore supports the [eT mT ] Z2 topological order we
discussed in the previous content. The condensation of
[eT mT ] state decorated domain wall drives the theory
into a 3d topological order with nontrivial loop-particle
braiding. To demonstrate this, we first write down the
effective theory after domain wall condensate. As the
domain wall contains Z2 topological order in 2d, one can
write down an O(5) Θ term in 3d with U(1)×U(1)×Z2

anisotropy to characterize their braiding,

LΘ =
ǫijklh

Ω4
n′
i∂xn

′
j∂yn

′
k∂zn

′
l∂tn

′
h

~n′ = (n1, n2, O1, O2,m) (5.3)

The intersection between vortex line of n1, n2 and domain
wall of m at the perpendicular direction forms a particle
object, we can thereby define the gauge field associated
with the particle and loop current.

Bµν =
1

Ω2
n1∂µn2∂νm

aµ =
ǫij

2π
Oi∂µOj (5.4)

The O(5) Θ term then becomes the BF term 1
4πB ∧ da.

The monopole formed by the vortex and the domain
wall is a deconfined particle excitation which has mutual
semion statistics with the SC vortex.
At this point, we had demonstrated that the transi-

tion between SPT to topological ordered phase could be
realized by domain wall condensation where the surface
topological order goes into the bulk and saturates. To
go backward, we start from the topological ordered state
and pull it back to the SPT(or trivial phase) by anyon
condensate.
In order to confine the monopole and trivialize the

topological order in the bulk, one could condense the SC
vortex loop. However, as the SC vortex loop carries gap-
less mode, the condensation would give rise to a gapless
photon phase. In order to obtain a trivial gapped phase,

one has to get rid of the gapless mode inside the vortex
loop.
As is demonstrated by Eq. (5.3), the SC vortex and

the monopole(formed by the domain wall and vortex of
n1, n2) together forms an O(5) Θ term at Θ = π. If we
develop a SC vortex line along the i direction, the vortex
line contains an O(3) NLσM with a Θ term at Θ = π.
This exactly describes the spin 1/2 chain with short-
ranged interaction whose ground state is either gapless
or symmetry breaking. The O(3) degree of freedom com-
posed by (n1, n2,m) could be written in terms of the
CP 1 field characterizing the spinon degree of freedom.
If spinon does not condense, the SC vortex carries 1d
gapless mode akin to the spin 1/2 AF chain. To get rid
of the gapless mode, one needs to condense the spinon
z which breaks the O(3) rotation symmetry. After the
spinon condense, the vortex line no longer carries gapless
mode. Without loss of generality, we assume the spinon
is condensed and m is nonzero. At this stage, the con-
densation of the SC vortex line gives rise to either SPT
or trivial phase, depending on the sign of m. As long
as m is ordered, the domain wall membrane is confined
in the bulk. When m is positive, the theory describes an
SPT phase protected by T symmetry while negative m is
associated with the trivial phase. The interface between
the trivial-SPT phase is the domain wall of m which sup-
ports [eT mT ] surface topological order. When m is pos-
itive, the wave function after SC vortex condensate can
be written as42,

|GS〉 =

∫
D[~n]ei

2π

Ω3

∫
dx3ǫijklni∂xnj∂ynk∂znl |~n〉 (5.5)

One can combine the vortex of SC together with the
n1, n2 degree of freedom and express them in terms of
SU(2) matrix U = n1I+i(n2σx+O1σy+O2σz). The wave
function is a coherent sum of all SU(2) soliton configura-
tions and the sign factor for each configuration counts the
number of solitons. Each additional soliton in the con-
figuration gives a minus sign to the factor42. In addition,
we can also regard the wave function as a superposition
of SC and n1, n2 vortex loop saturating in the bulk. The
coefficient of each superposition counts the linking num-
ber between the SC and n1, n2 vortex loop while each
linking contributes a minus sign.
As a summary, we investigate the transition from SPT

to topological order phase in 3d via domain wall conden-
sation from 4 copies of 3d topological insulators. The
domain wall, acts as the interface between SPT and triv-
ial phase of TI supports [eT mT ] surface topological or-
der. As long as the domain wall goes into the bulk and
saturates, the bulk exhibit topological order with non-
trivial loop-particle statistics. On the opposite side, if
we start from the 3d topological phase, one can confine
the monopole by loop condensate. As the vortex loop
carries gapless mode, to obtain a gapped trivial phase,
one have to condense the charge(spinon) associate with
the monopole to get rid of the gapless mode inside the
vortex. The correspondence phase after vortex loop con-
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densate is either a trivial or SPT phase depending on the
symmetry breaking order after spinon condensate.

B. Transition from Topological order to SPT in 3d,
a holographic view

In our previous discussion, we introduce a phase tran-
sition between SPT and topological order in 3d boson
topological insulators via surface topological order pro-
liferation. This idea could be extended to other type of
SPT phases.
Imagine we have a 3d SPT state whose surface ex-

hibit topological order described by the K-Matrix
Kij

4π ai∧

daj(This K-Matrix only characterize the topological or-
der of the quasiparticles without assigning any symme-
try). If we proliferate the domain wall between SPT to
vacuum into the bulk, the corresponding topological or-
der decorated domain wall condensation drives the the-
ory into a 3d topological ordered phase. The particle-loop
braiding in the bulk can be written in terms of the BF

term
Kij

4π ai ∧ dBj55. B is two form gauge field and dBj

is a monopole object composed of the vortex line of aj
with the domain wall intersecting on the vortex line.
On the opposite trend, if we start the from the topo-

logical order side and condense the vortex loop ai to con-
fined the monopole and trivialize the phase, we have to
confine the domain wall as well otherwise the theory is
either symmetry broken or gapless. The argument works
as follow. As the domain wall condense in the bulk, the
vortex line of aj is saturated with the domain wall. At
each intersection between domain wall and vortex , one
can regard it as the vortex core of aj at the surface of
the SPT phase. Such vortex core must carry some non-
trivial quantum number of the symmetry who protects
the SPT state, otherwise one could condense the anyon
on the surface to obtain a gapped symmetric trivial sur-
face which is forbidden in SPT system. Thus, one cannot
simply condense the vortex line as it would either drive
the theory into gapless state or breaks the symmetry who
protects the SPT phase. As a result, one has to suppress
the domain wall in the bulk before vortex loop conden-
sate. When the domain wall is suppressed, the bulk goes
back into the SPT or trivial phase.
The transition between SPT and topological order via

surface topological order saturation can be generalized
to a class of SPT phase based on our previous argument.
However, the above argument only applies when the SPT
state surface does not have perturbative anomaly. If
the surface has perturbative anomaly, the surface state
cannot exhibit symmetry invariant topological order as
the anomaly matching condition tells us the perturbative
anomaly is always associate with gapless mode in IR.
In addition, the transition between SPT and topologi-

cal ordered state in 3d can be mapped into a symmetry
breaking transition on the surface of 4d10,15,30,31. Imag-
ine we have a ZT

2 variable ‘m’ in 4d space. The theory is
in the disordered phase so the domain wall of m prolifer-

ates in space. We now decorate the domain wall with a
3d SPT state protected by symmetry G(assume G is an
internal symmetry). After the domain wall condensate,
the theory is a 4d SPT protected by the G×ZT

2 symme-
try. This is exactly the idea of the decorated domain wall
construction of SPT states10,20,31. On the boundary of
the 4d SPT, if the 3d SPT state protected by symmetryG
supports surface topological order in 2d, the 3d bound-
ary can be expressed as the domain wall condensation
embellished with a 2d topological order. Consequently,
the 3d boundary contains nontrivial loop-particle statis-
tics. This is exactly the 3d topological order phase we
studied in our previous content.
If the ZT

2 symmetry is broken on the surface, the do-
main wall percolation shrinks in 4d and the m variable
is ordered. The surface of such ZT

2 ordered bulk is either
in the SPT or trivial phase with respect to the symmetry
G. The argument flows as follow, if we have an interface
between different Ising ordered phase of m, the interface
as a 3d domain wall is an SPT phase protected by sym-
metry G. The surface of such SPT contains topological
order with obstruction where the topological quasiparti-
cle carries nontrivial quantum numbers. As a result, the
domain wall between the corresponding surfaces of the
two Ising order phases contain anomalous topological or-
der. Thus the two surface state must belong to different
phase of matter as long as the symmetry G is preserved.
To conclude, the topological to SPT phase transition in

3d can be mapped to the symmetry breaking of a scalar
field on the surface of 4d, provided that the domain wall
defect of the scalar variable is decorated with the 3d SPT.
However, such decorated domain wall scheme only works
when the lower dimension SPT inside the domain wall
follows the NDST10, otherwise the surface state can al-
ways be gapped without symmetry breaking.

VI. CONCLUSION AND OUTLOOK

In this paper, we elaborate several unconventional
quantum phase transitions in Weyl semimetals coupling
with fluctuating bosonic fields, whose criticality contains
a WZW term or Θ term. The existence of such topo-
logical term in the critical region evidences the fact that
a defect of the boson order parameter carries either a
quantum number or a topological term. Consequently,
once we start with a symmetry breaking state and pro-
liferate the order parameter defect, the defect condensa-
tion would restore the original symmetry but meanwhile
breaks another symmetry(if defect carries quantum num-
ber) or drives the state into 3d topological order(if defect
carries topological term).
The spirit of such exotic quantum phase transition is

the defect decoration. The emergentWZW term(or topo-
logical Θ term) appearing at the criticality is encoded in
the decorated defect degree of freedom. Further, we also
look into the phase transition between a 3d topological
order to a trivial(or SPT) phase by proliferating the do-
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main wall between SPT/trivial interface. As long as the
SPT surface states support topological order, the domain
wall condensate would drive the theory into 3d topologi-
cal ordered phase with nontrivial particle-loop(or three-
loop) braiding. In particular, such transition could be
mapped into the surface state of a Z2 symmetry break-
ing phase transition at the surface of 4d where the Z2

domain wall is decorated with 3d SPT state. Elucidating
this connection provides us a new way to relate the topo-
logical phase transition and conventional LGW transition
via a holographic view.

Besides exploring the effective theory of the unconven-
tional phase transition, another motivation of this work
is to seek exotic phase of matter and their transition in
Weyl semimetals. Due to the monopole carried by the
Weyl cone in momentum space, a class of boson order
parameters who gap out the Weyl semimetal exhibit a

WZW term or topological Θ term. This provides a sys-
tematic path for us to explore the novel boson quantum
phases via fermion models. We anticipate our approach
could shed light on the exploration of exotic phases in
Weyl semimetal56 systems.
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