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Using the Landau–Zener–Stückelberg–Majorana-type (LZSM) semiclassical approach, we study
both graphene and a thin film of a Weyl semimetal subjected to a strong AC electromagnetic field.
The spectrum of quasi energies in the Weyl semimetal turns out to be similar to that of a graphene
sheet. Earlier it has been predicted qualitatively that the transport properties of strongly-irradiated
graphene oscillate as a function of the radiation intensity [S.V. Syzranov et al., Phys. Rev. B
88, 241112 (2013)]. Here we obtain rigorous quantitative results for a driven linear conductance
of graphene and a thin film of a Weyl semimetal. The exact quantitative structure of oscillations
exhibits two contributions. The first one is a manifestation of the Ramsauer–Townsend effect,
while the second contribution is a consequence of the LZSM interference defining the spectrum of
quasienergies.

PACS numbers: 72.80.Vp, 05.60.Gg, 78.67.Wj, 72.20.Ht

I. INTRODUCTION

Graphene nanoribbons, superlattices and other meso-
scopic graphene-based structures attract considerable
current interest.1–3 Size effects in such systems allow for
the fine tuning of their electronic spectra and, as a re-
sult, manipulating their transport and optical character-
istics. Periodic superstructures are of special importance
since the periodicity gives rise to additional features in
the electronic band structure, such as opening band gaps
and forming new Dirac points.4–6 Unfortunately, it is not
an easy task to create graphene superlattices and their
tunability is rather limited. However, it is well known
that in quantum mechanics, there exists a profound sim-
ilarity between the effects of spatial and temporal peri-
odicity. Indeed, an analog of the Bloch theorem (namely,
the Floquet theorem) also works for systems in time-
periodic fields. Namely, the particle energy should be-
come a quasienergy ε bounded within its Floquet zone
−~ω0/2 < ε < ~ω0/2, where ~ is the Planck’s constant
and ω0 is the characteristic frequency of the uniform
field. The quasienergy spectrum can exhibit minigaps
dependent on the amplitude of the field.7 The concept
of quasienergy was first introduced in atomic physics in
the seminal papers by Zeldovich8 and Ritus9 and was
widely used in different fields of physics, especially at the
nanoscale (see the review article in Ref. 10 and references
therein).

Recently, systems with a Dirac Hamiltonian driven by
a periodic external electromagnetic field are attracting
considerable interest.11–16 For example, the quasienergy
concept has been implemented for graphene interact-
ing with the electromagnetic field.5,17–19 For the case of
graphene, a profound analogy between the spatial and

temporal modulation (special-temporal duality) is dis-
cussed in detail in Ref. 12. However, most of these stud-
ies have dealt either with the perturbative response of
graphene in weak electromagnetic time-dependent fields
or resorted to numerical analysis.

Meanwhile, the effects related to the minigaps in the
quasienergy spectrum should become even more pro-
nounced when increasing the field amplitude. Indeed,
as was proved in Ref. 4, the actual energy of carriers
exhibits gaps proportional to the perturbatively small
(eE0vF � ~ω2

0) amplitude of a periodic field. It is there-
fore important to study analytically the spectrum in the
opposite limit of strong fields. This limit corresponds to
a semiclassical description in the time domain. Being de-
scribed by a two-component wave function, graphene is
very akin to a two-level system. In fact, it is a good re-
alization of a Landau–Zener interferometer20–27 with the
range of applicability growing with the field amplitude
(see also a detailed review article Ref. 28 and references
therein). It is relevant to mention the four seminal pa-
pers on this subject, namely those of Landau29, Zener30,
Stückelberg31, and Majorana32; so, hereafter, we use
the terms Landau–Zener–Stückelberg–Majorana (LZSM)
transitions or interferometry. Here, we are dealing with
the interference of the wave functions corresponding to
multiple transitions between the electron states.

In the present paper, we focus on the specific features
of the conductance of a Dirac material driven by the inci-
dent electromagnetic wave. Earlier it was predicted that
the conductance of a graphene p-n junction of strongly-
irradiated graphene oscillates as a function of the radi-
ation intensity.6 However, the technique used in Ref. 6
allows making just a qualitative prediction of the oscil-
lations amplitude. Here we obtain a closed analytical
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expression for the linear driven conductance. We show
that the result is also applicable to another Dirac mate-
rial, namely, to a thin film of a Weyl semimetal, which is
a three-dimensional analog of graphene.33,34 We demon-
strate that the aforementioned features are also repro-
duced by Weyl semimetals.

We consider a graphene sheet or a thin layer of a
Weyl semimetal subjected to a strong normally-incident
linearly-polarized AC electromagnetic field (see Fig. 1).
As mentioned above, the wave function of a periodically-
driven system satisfies the Floquet theorem

ψα(t+ T ) = exp (−iεαT )ψα(t), (1)

where the subscript α enumerates the states, T = 2π/ω0

is the period of the driving field, and εα is a so-called
quasienergy. The quasienergy plays a role similar to the
crystal momentum in a spatially-periodic system. The
state described by the wave function in (1) is referred to
as a Floquet state.

A problem is that the quasienergy does not correspond
to any stationary state (in contrast to the crystal momen-
tum). A Floquet state (1) with quasienergy εα is, in fact,
a linear combination of all possible modes with energies
εα + nω0, where n is an integer. To relate it to some
quasiparticle state, one has to think of a lifetime of such
a state and its stationary distribution function, if there
is any.

It was demonstrated earlier, e.g. in Ref. 6 (for the case
of a strong driving field) and later in Ref. 15, that the
quasienergy spectrum ε(p) becomes highly anisotropic
and forms a set of additional Dirac points in momen-
tum space. Even more, due to the interference of two
successive LZSM transitions, one of the Fermi velocities
acquires a non-trivial oscillating dependence on the driv-
ing field intensity. Reference 15 goes as far as to ar-
gue that one can compute the DC conductivity using the
quasienergy spectrum as an effective spectrum of charge
carriers, hence, employing Fermi-liquid type expressions
with stationary Fermi distributions. This prediction is in-
deed a very tempting one to make. However, such treat-
ment overlooks the evident non-equilibrium dynamics of
the quasienergy states which is essential for the accurate
description of the transport phenomena. It also takes
into account the contribution from just one Dirac point
(the addition of other Dirac points lead to a divergent
answer).

Contemplating such state of affairs, we have to ask an
inevitable question: is it possible to construct a quan-
tum mechanical observable, which is directly related to
the quasienergy? The answer we give in our paper is pos-
itive. The observable in question is the so-called driven
conductance. It can be realized in the following geome-
try (see Fig. 1) The graphene stripe (with length L and
width W ) is irradiated by a linearly-polarized electro-
magnetic wave at normal incidence. The corresponding
vector potential in the plane of the graphene sheet is

A(t) = (0, 0, (cU0/e) sinω0t), (2)

A(t, y)

x

y

z

V

LW

FIG. 1: (Color online) Schematics of a set-up for graphene or
a thin film of the Weyl semimetal. A normal-incident linearly-
polarized electromagnetic wave irradiates the graphene strip.
The red arrow shows the direction of the polarization of the
vector potential A(t, y). The illuminated rectangular area of
the sheet is shaped by two metallic leads (electron reservoirs).
The thickness of the leads is assumed to be much larger than
the skin-effect depth. The skin effect protects the reservoir
electrons from the effect of irradiation. The linear response
of the system is measured by applying an infinitesimal bias
voltage V .

where the electric field amplitude E0 = U0ω0/e, and e is
the electron charge.

In this paper, we limit ourselves to the study of the bal-
listic regime for the electron transport in the irradiated
Dirac material. In such limit, the effects related to the
Floquet spectrum are the most clearly pronounced. The
left and right edges of a ballistic graphene sheet are con-
nected to equilibrium electron reservoirs, which screen
the corresponding parts of the sheet from the incident
electromagnetic field due to the skin effect. An infinites-
imal bias voltage V is created by the chemical potential
difference in the left and right reservoirs, µ and µ + V ,
respectively. The linear response of the system is charac-
terized by the electric current averaged over the period T
of the electromagnetic oscillations. The driven conduc-
tance is defined as

G =
Ī

V
=

1
T

∫ T
0
I(t)dt

V
. (3)

In ballistic graphene, the thermalization of electrons
takes place only in the electron reservoirs. Therefore,
the electrons inside the sheet are highly overheated. We
compute the conductance in the limit

κ =
~ω0

vFU0
� 1, (4)

β =
µ

~ω0
� κ, (5)

where vF is the Fermi velocity. Condition (4) corresponds
to a strong resonant interaction between the charge car-
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riers and the applied electromagnetic field; while condi-
tion (5) allows for an analytical solution of the conduc-
tance problem. The optimum frequency lies in the THz
range (see Section IV for details). One of the results of
Ref. 6 is that, in the limit (4), the quasienergy spectrum
can be computed analytically in the vicinity of each Dirac
point. The spectrum near the Dirac points lying on the
pz axis is of particular significance for future analysis

εp,n = ±
√
v2
zFδp

2
z + v2

xF(U0)p2
x,

vzF = vF,

vxF(U0) = vF

√
~ω0

πvFU0

∣∣∣∣sin(2U0vFλ

~ω0
+
π

4

)∣∣∣∣ ,
δpz = pz −

~ω0n

vF
,

(6)

where

λ =

√
1− p2

z

U2
0

+
pz
U0

arcsin
pz
U0
. (7)

Here n is an integer numbering a Dirac point. The
quasienergy spectra of graphene and a thin film of Weyl
semimetal turn out to be identical. They are related
to each other by the change of variables px → p⊥ =√
p2
x + p2

y.

The results of this paper can be summarized as follows.
The conductance of graphene and a thin film of Weyl
semimetal is obtained analytically in the limit (4)-(5).
In the simplest case, L � vF~/µ, it is represented by a
sum of three contributions of different nature

G(ω0, U0) = GI +GR(ω0, U0) +GF(ω0, U0),

GI = C1µ
2,

GR(ω0, U0) = C2µ
2J2

0

(
2vFU0

~ω0
sin

ω0L

2vF

)
(2 cos

2µL

~vF
+ 1),

GF(ω0, U0) = C3µ
2 v

2
xF

v2
F

sin2 µL

~vF
,

(8)

where J0(x) is the Bessel function of zeroth order and
C1,2,3 are numerical constants computed below. Here, GI

is the non-oscillatory part of the conductance and is of
no interest to us. The second term of G, GR, reveals os-
cillations of the conductance as a function of the driving
field amplitude U0 (a prefactor of the sine in the argu-
ment) as well as the driving-field frequency ω0 (in the
sine argument). This term can be considered as a mani-
festation of the Ramsauer–Townsend effect.36 Indeed, we
will see that this term stems from the quantum interfer-
ence between the incident and reflected components of
the quasiparticle wave functions.

The third termGF is associated with the LZSM physics
and Floquet excitations. It is proportional to the field-
dependent velocity of a Floquet excitation vxF. Exper-
imentally, one can separate the most interesting depen-
dence of the Floquet excitation velocity on the external

field amplitude by measuring the conductance at the spe-
cific frequency

ωk =
2vF

L
arcsin

~ωkxk
2vFU0

, (9)

where xk is the kth zero of the Bessel function J0. At
these frequencies, the contribution of the second term
in (8) is excluded and the conductance is simply GI +GF.
We have

v2
xF(U0) ∼ G(ωk, U0)−G (ωk, Un) , (10)

where Un = ~ω0π(n− 1/4)/2vF.
The paper is organized as follows. Section II presents

the general formalism and spectrum of 2D and 3D Dirac
materials subject to an incident electromagnetic wave. In
Section III, we calculate the driven conductance in the 2D
and 3D cases. Concluding remarks are given in Section
IV. Some technical issues are discussed in the Appendix.

II. FLOQUET SPECTRUM

A. Hamiltonian

Throughout this paper, we use the atomic units ~ =
vF = e = 1. In some key places, the usual units are
restored. The Hamiltonian describing quasiparticles in
the vicinity of Dirac point has the form

H = σ · p, (11)

where σ is the triad of Pauli matrices in the space of the
two sublattices in graphene.

For graphene, we use the xz basis, which is rotated
with respect to the standard one (see below). In the 3D
case, the thickness of a sample in the y direction is as-
sumed to be much smaller than the skin depth of the
material, D � c

√
ρε0/(ω0µr), where ρ is the electrical

resistivity of the semimetal, µr is its relative permeabil-
ity, and ε0 is the permittivity of vacuum. The typical
Weyl semimetal Cd2As3 has resistivity ρ & 105 nΩ · cm
at temperatures T & 200 K (see Ref. 35) and the corre-
sponding skin depth is & 0.1µm at µr ∼ 1, and ω0 ∼ 1
THz. The polarization of an applied field is linear (in z
direction) and given by vector potential (2). The Hamil-
tonian within the irradiated region is

H(t) =
∑
i

σipi − U(t)σz , (12)

where U(t) = U0 sinω0t. In 3D, the small thickness in
the y direction allows neglecting the y dependence of the
vector potential.

This means that the Hamiltonian commutes with the
full vector of the momentum operator p: [H,p] = 0 both
in 2D and 3D. Hence, the momentum is conserved and
we turn to the basis

Ψ(t) = ψp(t) exp(ipr), (13)
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in which the Hamiltonian takes the form

H2D =

(
pz − U(t) px

px −(pz − U(t))

)
,

H3D =

(
pz − U(t) p⊥e−iχ

p⊥eiχ −(pz − U(t))

)
,

(14)

where χ is the azimuthal angle: px = p⊥ cosχ, py =
p⊥ sinχ. Similarly to the static case, the 2D and 3D
Hamiltonians are related via the unitary transformation
U(χ) = cos χ2 − iσz sin χ

2 . Hence, they share the eigen-
functions

H2D = U−1(χ)H3DU(χ), ψ3D(t) = U(χ)ψ2D(t), (15)

as well as eigenvalues. The latter are the quasienergies.
Therefore, even in the presence of a linearly-polarized ex-
ternal field, the thin 3D and 2D Dirac materials retain
their unitary equivalence. All the formulae derived for a
Weyl semimetal are valid for graphene up to a geomet-
rical prefactor. The spectrum of the quasienergies was
derived in Ref. 6. Since we are going to use the details of
the spectrum in the rest of the paper, we briefly present
the main steps. From now on, we consider the case of a
Weyl semimetal. The graphene twin of each formula can
be obtained by a simple replacement p⊥ → px and the
change of the integration measure dχ sinϕdϕ→ dϕ.

Due to condition (4), the evolution of the system is
semiclassical and one immediately obtains the pair of
wave functions (see Appendix for details)

ψp = χp±(t) exp

(
±i
∫ t

q dt

)
,

χp± =
1√
2


√

q±(U−pz)
q

∓
√

q∓(U−pz)
q

 ,

(16)

where

q ≡ q(t) =
√

[U(t)− pz]2 + p2
⊥. (17)

The square root defining semiclassical momentum (17)
should be understood as an analytic function of time.
Its regular branch is fixed by the condition q > 0 when
U(t) > pz. There, q(t) has turning points at times satis-
fying the condition [U(t) − pz]2 + p2

⊥ = 0. These points
give rise to the nonzero probability of a transition be-
tween wave function pair (16).

The case most relevant for our current task is that of
a small transverse momentum

p⊥ � U0. (18)

It corresponds to the situation when transition point lies
on the real axis: U(t) − pz = 0. In fact, this is pre-
cisely the case for a LZSM transition. The system under-
goes two consecutive LZSM transitions (Fig. 2) at times

U(t)

pz

T

LZ

t

LZ

T

2
− t0

t0 T + t0

θ

θ

FIG. 2: (Color online) The interference of LZSM transitions
in a Weyl semimetal, t0 = ω−1

0 arcsin(pz/U0).

t0 = ω−1
0 arcsin(pz/U0) and T/2− t0. We note that con-

dition (18) is not very restrictive, since the amplitude U0

is still large. One can also see that in limit (18), the
inequality |U(t) − pz| � p⊥ holds for all points, which
are not too close to the time values corresponding to the
LZSM transitions. This provides a significant simplifica-
tion of eigenfunctions (16)

χp+ ≈
(

1
0

)
, χp− ≈

(
0
1

)
, p⊥ � U0. (19)

Therefore, the evolution of the wave functions between
the LZSM transitions can be represented by a simple di-
agonal operator

U(t) =

(
exp (i

∫ t
q dt) 0

0 exp (−i
∫ t
q dt)

)
. (20)

In this basis, the semiclassical scattering matrices asso-
ciated with each transition have the standard form (see,
e.g., Ref. 37)

L1,2 =

 √
P

√
1− Pe∓iϕs

−
√

1− Pe±iϕs
√
P

 , (21)

where the upper sign corresponds to the earlier tran-
sition, P = exp(−πν), ϕs = π/4 − ν/2 ln(ν/2e) +
arg Γ(iν/2), (ν = p2

⊥/(U0ω0) is the Stokes phase, and
Γ(x) is the Euler gamma function). Therefore, the evo-
lution of a wave function during the period T consists of
two intervals: (1) U(t) > pz and (2) U(t) < pz, divided
by two LZSM transitions. The quasienergies are now de-
fined by relation (1) as the eigenvalues of the evolution
operator

UT = U
(
t0 + T,

T

2
− t0

)
L2U

(
T

2
− t0, t0

)
L1. (22)

Denoting the accumulated semiclassical phases enter-
ing (20) as

θ1 =

∫ T
2 −t0

t0

|q| dt, θ2 = −
∫ T+t0

T
2 −t0

|q| dt, (23)
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and taking the trace of the full evolution operator (22),
we arrive at the eigenvalue equation

cos εpT = P cos(θ1 + θ2)− (1− P ) cos(θ1 − θ2 − 2ϕs).
(24)

The semiclassical phases θ1,2 were calculated in Ref. 6

θ1,2 = ∓U0

ω0

[
2∓ πpz

U0
+

(
pz
U0

)2

+
p2
⊥
U2

0

ln
4
√
eU0

|p⊥|

]
. (25)

With the help of (25), the solution of Eq. (24) can be
written explicitly in the most interesting case εp � ω0.
We expand all the values in (24) up to second order in
p⊥, pz. The result is given by Eq. (6), where for a Weyl
semimetal, one should swap px → p⊥. This produces a
set of almost (up to a factor λ, see Eq. (6), which is close
to unity if n is not very large) evenly-spaced Dirac points
with identical spectrum. The Fermi velocity vxF has a
resonant behavior at field amplitudes

U0k =
π~(k − 1/4)ω0

2λ
, (26)

where k is an integer. At these values of U0k, the spec-
trum drastically changes. This is the manifestation of
the resonant LZSM interferometry. At the values given
by Eq. (26), relation (6) gives a flat band in the x di-
rection (vxF vanishes at the resonance). This, of course,
is the consequence of the quadratic expansion, which we
used to find the spectrum. Retaining the last term in
phases (25), we obtain a very peculiar modification of
the spectrum. Near the point p⊥ = pz = 0, the Floquet
energy reads

εp = ±
{
p2
z +

v2p2
⊥ω0

πU0

(
sin2 p2

⊥
2U0ω0

ln
8U0

ω0

−
(
πvpz
ω0

)2

+
4

3

(
πvpz
ω0

)4
}
.

(27)

A numerical visualization at the resonant value corre-
sponding to n = 4 is presented in Fig. 3. It is important
to note that a spectrum similar to (6) was rederived in
Ref. 15. The method used in Ref. 15, though allowing
to lift the limit (4), completely fails to locate other non-
trivial Dirac points at p⊥ 6= 0. Taking into account just
one trivial Dirac point is indeed possible, but in the case
of a circularly polarized elecromagnetic wave of a small
amplitude only. This case is addressed in Ref. 15.

III. COMPUTATION OF THE CONDUCTANCE

A. Landauer–Büttiker relation

We now start the discussion of the driven conductance
of the system. We are interested in the response of the

ε(p)

p⊥

pz

ε(p)

p⊥
pz

FIG. 3: (Color online) Resonant spectrum near the Dirac
points at U0 = 15/8ω0. The asymmetric non-conical shape
is clearly visible.

electric current to the infinitesimal transport voltage V
(see Fig. 1). The analytically solvable case corresponds
to the limit of small chemical potential µ � ω0. It is
also important to stress that it is the chemical poten-
tial of the contacts that is well-defined and enters all the
equations. The computation of a driven conductance is
based on the corresponding non-stationary generalization
of the Landauer–Büttiker scattering matrix formula.38,39

The schematics of the scattering process is presented in
Fig. 4. An incident charge carrier with energy p0 un-
dergoes scattering into Floquet bands picking up an in-
teger number of energy quanta from the driving field:
p0 + ω0m. Although the system is non-stationary, the
energy is still conserved modulo ω0 due to the periodicity
of the external field. It is assumed that the contacts form
a sharp edge between the irradiated and non-irradiated
regions. The Floquet scattering takes place at both (left
and right) edges of the contacts. The zero-temperature
conductance is then given by the following relation4

G = e2Wµ

∫
dϕ sinϕdχ

(2π)3
cosϕ

∑
m

|Tm(ε)|2
∣∣∣
ε=µ

pz,m=µ cosϕm

.

(28)

Here, Tm(ε) is the probability for an electron with energy
ε in, say, the left reservoir to traverse the irradiated re-
gion and get into the state ε+ω0m in the right reservoir.
ϕm is the angle at which the electron in the state ε+ω0m
moves in the right reservoir (Fig. 4). As one can see, only
the amplitudes with initial energy ε = µ contribute to the
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θ

p1

px

p−1
p0 p0

p1p2 p2

z

1

0

2

θ2

p0

p−1

p1

pppppppxxxx

ppppp000

pp2

ppppp−−−1111

Left p0

p p2

z
θ2

2

1
pp

2

FIG. 4: (Color online) Floquet scattering. Different colors
denote different Floquet zones. The momentum p0 of the
incident particle lies in the first Floquet zone (n = 0). pm =
|µ+ ωm|.

expression (28). In order to compute the conductance,
we therefore need to solve the scattering problem.

B. Solution of the Floquet scattering problem

The wave functions inside the irradiated region were
found in Ref. 6. We point out that the set-up in Fig. 1
preserves the translational invariance in the transverse
(orthogonal to z) direction (we discard the influence of
the boundaries, see the explanation in the Discussion sec-
tion). Therefore, the momentum p⊥ lying in the ⊥ plane
is conserved. Due to the conservation of energy mod-
ulo ω0, one deduces the new conservation rule for the
momentum in the longitudinal direction:

pz,m = ±
√

(p0 +mω0)2 − p2
⊥, m ∈ Z. (29)

Now, we employ the condition

p⊥
ω0
≤ β � 1. (30)

[see Eq. (5)] The last inequality excludes the partici-
pation of the Dirac points at non-zero p⊥ (see Fig. 3).
Indeed, the Dirac points with non-zero p⊥ are located
at p⊥ ∼ nω0, n ∈ Z. This simplification plays a
crucial role in the construction of an analytical solu-
tion. Even more, condition (30) leads to the absence
of evanescent modes in the scattering event (pm,z is real
for −ω0/2 ≤ p0 ≤ ω0/2).

The wave function within the irradiated and shaded
regions is now sought in the form

Ψp(t, r) = exp (−iεpt+ ip⊥r⊥)ψp(t, z), (31)

where ψp(t, z) is a periodic Floquet function.
The Floquet wave function ψp(t, z) describing the scat-

tering of the particles incident from the left lead is rep-
resented by the following relation

ψp(t, z) =

=



[
exp (ipzz)ψ(εp, pz)+∑
m
Rm exp [−i(εpm − εp)t− ipm,zz]ψ(εp,−pm,z)

]
, z ≤ 0∑

m
Tm exp [−i(εpm − εp)t+ ipm,zz]ψ(εp, pm,z), z ≥ L,

(32)

where Tm ≡ T (ε, ε + mω) and Rm ≡ R(ε, ε + mω) are
the transmission and reflection amplitudes, respectively,
which relate the states εp → εp + ω0m. Due to condi-
tions (30), the individual states ψm,z entering the wave
function have the form

ψ(εp,−pm,z) ≈ [1− δm,0]

(
0
1

)
+ δm,0

(
sin ϕ

2
cos ϕ2

)
,

ψ(εp, pm,z) ≈ [1− δm,0]

(
1
0

)
+ δm,0

(
cos ϕ2
sin ϕ

2

)
.

(33)

Here we substituted

cos
ϕm
2
≈ 1 +O

[(
µ

ω0

)2
]
,

sin
ϕm
2
≈ O

(
µ

ω0

) (34)

and used condition (5). As seen from Eqs. (29), the pos-
sible momenta of the scattered states pz,m = mω0 ±
δpz, δpz = µ + O(µ2/ω0) lie near the Dirac points.
Approximations (33) and (34) allow for a considerable
simplification of the scattering wave functions. Namely,
the Floquet wave function takes the form

ψp(t, z) =

=



[
eipzz

(
cos ϕ2 + sin ϕ

2 R0

sin ϕ
2 + cos ϕ2 [R0 − 1] +Rt

)
, z ≤ 0

(
T0 [cos ϕ2 − 1] + Tt
T0 sin ϕ

2

)
, z ≥ L,

(35)

where we introduced the auxiliary scattering functions of
time Rt and Tt defined as

Tt =
∑
m

exp (−imω0t)Tm,

Rt =
∑
m

exp (−imω0t)Rm.
(36)
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The wave functions within the irradiated region are

ψδpz ≈

 exp (−iU0

ω0
cos t)

γ exp (iU0

ω0
cos t)

 ,

(37)

ψ−δpz ≈

γ exp (−iU0

ω0
cos t)

exp (iU0

ω0
cos t)

 ,

γ =
1

2
vxF sinϕ. (38)

Here, only the terms of the order of
√
κ are retained (note

that in (38), γ ∼ √κ) .
The sum in expression (28) can now be simplified using

the Fourier summation theorem

∑
m

|Tm|2 =
1

T

T∫
0

T 2
t dt (39)

Taking into account (34), we obtain the following expres-
sion for the conductance

G = e2Wµ2

∫
dϕ sinϕ

(2π)2v3
F

×

×
[

1

T

∫ T

0

|Tt(ϕ)|2dt+ T 2
0 (1− cosϕ)

]
ε(p)=µ

pz=µ cosϕ

,
(40)

Here, the integration domain spans the ϕ ∈ [0, π/2]
range.

The Floquet wave function within the irradiated region
can be represented by the following suitable parametriza-
tion

ψp,G =

(
e−iΘt

[
ft−zeiδpzz + γgt−ze−iδpzz

]
eiΘt

[
f−t−zeiδpzz + γg−t−ze−iδpzz

]) ,
Θt = i

U0

ω0
cosω0t,

(41)

where ft and gt are arbitrary T -periodic functions (see
Appendix for details). Here, one needs to understand the
structure of the approximations made while computing
the Floquet function within the irradiated region

ψG = α1 + α2

√
κ+ α3

√
κβ + α4κβ + α5κ

3/2 + ... (42)

It is of utmost importance for us that the term propor-
tional to κ is absent in the expansion of the wave function
in the region under study. The point is that the conduc-
tance has a quadratic dependence on the expansion pa-
rameters of the wave function ψG, G ∼ |ψG|2. The LZSM
interferometry effects are hidden in corrections of the or-
der of κ. The condition (5) allows us to omit the µ/ω0

corrections to the wave functions inside the contacts as
compared to the terms ∼ κ.

The general structure of scattered states (33) gives us a
clear pattern of the scattering event. The scattered states

with energy εp +mω0, m 6= 0 move almost orthogonally
to the interface due to the smallness of the transverse
velocity vxF. As a result, the functions of the scattering
angle can be written as sinϕn = O[(µ/ω0)], cosϕn = 1+
O[(µ/ω0)2]. Therefore, we take sinϕn ≈ 0, cosϕm ≈ 1
when solving the system of equations. Next, one should
match the solutions at z = 0 and z = L.

As a result, we arrive at the following set of equations

ft + γgt = e−iΘt
[
cos

ϕ

2
+ r0 sin

ϕ

2

]
,

γft + gt = eiΘt
[
Rt + sin

θ

2
+ r0(cos

ϕ

2
− 1)

]
,

(43)

e−iΘt
[
ft−Le

iδpzL + γgt−Le
−iδpzL] = t0 cos

ϕ

2
− t0 + Tt,

eiΘt+L
[
gte
−iδpzL + γfte

iδpzL
]

= t0 sin
ϕ

2
.

(44)

After simple but cumbersome algebra, one obtains the
following solution for the scattering function up to the
second order in

√
κ

Tt =
cosϕ

cos ϕ2
e−θt+iθt−L+iδpzL

(
cosϕ

cos ϕ2
+ δR(2)

0 sin
ϕ

2

)
+ t

(1)
0

(
1− cos

ϕ

2

)
− 2iγ sin(δpzL)

[
T (1)

0 e−2iθt sin
ϕ

2

− 2iγ sin(δpzL)eiθt−L−iθt
cosϕ

cos ϕ2

]
eiδpzL

+ 2i sin(δpzL)γ2eiθt−L−iθt
cosϕ

cos ϕ2
,

(45)

where

T (1)
0 =

cosϕ

cos2 ϕ
2

eiδpLJ0

(
2U0

ω0
sin

ω0L

2

)
δR(2)

0 =
eiδpL

cos ϕ2

[
T (1)

0 sin
ϕ

2
J0

(
2U0

ω0
sin

ω0L

2

)
− 2iγ sin δpzLJ0

(
2U0

ω0

)
cosϕ

cos ϕ2

]
.

(46)

Next, we substitute expressions (45) and (46) into
Eq. (40).

Retaining the lowest-order terms, we obtain the final
formula for the driven conductance

G(ω0, U0) =
e2WµD−1β0

2πvDF

×
[
1 + β1J

2
0

(
2vFU0

~ω0
sin

ω0L

2vF

)
(2 cos

2µL

~vF
+ 1)

+ β2
v2
xF

v2
F

sin2 µL

~vF

]
,

(47)
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FIG. 5: (Color online) Driven conductance vs external field
amplitude U0 and the length of the sample L calculated ac-
cording to Eq. (47). The oscillations as a function of L and U0

are clearly pronounced. The main contribution to the ampli-
tude comes from the Ramsauer–Townsend effect. More subtle
LZSM oscillations are illustrated in Fig. 6.

U0/ω0

5 6 7 8 943

G(U0,L) (arb. units)

FIG. 6: (Color online) Conductance oscillations proportional
to the strongly renormalized velocity vx(U0) of the Floquet
excitations. The velocity renormalization is the manifestation
of LZSM interferometry. Here, µ = 0.05ω0.

where

β3D
0 =

5
3 − ln 4

2π
, β3D

1 =
14 ln 2− 29

3
5
3 − ln 4

, β3D
2 =

167
40 −4 ln 4
5
3 − ln 4

,

β2D
0 =

3π

2
− 4, β2D

1 =
104
9π − 11

3

1− 8
3π

, β2D
2 =

17
4 − 40

3π

1− 8
3π

.

(48)

Here, D = 3 for Weyl semimetal and D = 2 for graphene,
β3D,(2D) correspond to a Weyl semimetal or graphene,
respectively and vxF is given by (6).

IV. DISCUSSION AND CONCLUSIONS

The analytical expression (47) describing the conduc-
tance under the effect of a strong electromagnetic wave
is the central result of our paper. It takes into account
the contribution of all Dirac points existing in the spec-
trum of Floquet excitations. As we will see, in the most
experimentally viable situations, the argument µL � 1
and cos, sin(µL) do not oscillate. The important oscillat-
ing terms are those, which contain the semiclassical large
pre-factors U0/ω0. These are J2

0 and v2
x, terms in (47).

One immediately notices that the driven conductance
exhibits oscillations as a function of the external field
amplitude U0. There are two oscillatory contributions.
The first one has the following specific feature. It has an
oscillatory dependence on the external field U0 as well
as on the length of the exposed area L. This (related
to ω) L-dependence is a manifestation of the Ramsauer–
Tounsend effect.36

The second oscillating term is the most interesting one.
It is proportional to the velocity squared v2

xF of the Flo-
quet modes in the x direction. It is the manifestation
of the presence of quasienergy excitations in the irradi-
ated area. From the experimentalist’s point of view, it
is easier to measure the conductance as a function of the
external field intensity and frequency. To get rid of the
Ramsauer–Tounsend oscillations, one can tune the fre-
quency of the external field in such a way that J2

0 in the
second term of (47) disappears [see Eq. (9)].

While solving the system of scattering equations, we
completely discarded the influence of the parameter λ.
We took it approximately to be λ ∼ 1. We, therefore, as-
sumed that the major contribution to the solution of the
scattering problem comes from the Fourier components
of Rn and Tn with not very large numbers: n . U/ω0.
To check this approximation we developed a numerical
scheme for the computation of the conductance.

The numerics were performed by an exact calculation
of the evolution operator

U(t) = T exp

(
−i
∫ t

0

H(t) dt

)
, (49)

on a time grid with the length equal to the period of
the external field and a slice 2π/(Nω0). The eigenvalues
of this operator determine the Floquet functions. We
took several values of N (N = 80, 90, and 100) to check
the stability of the numerical scheme. (N − 4)/2 Dirac
points of Floquet states were taken into account to form a
closed linear system to solve the scattering problem. The
numerics and theory slightly deviate from each other. In
Fig. 5, we present the calculated conductance surfaces as
a function of U0 and Lω. The numerical and theoretical
plots turn out to be nearly indistinguishable.

To illustrate the contribution from the Floquet excita-
tions, we show in Fig. 6 the behavior of the third term
in Eq. (47) as a function of U0. The behavior obtained
numerically is qualitatively the same, but differs in the
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amplitude of the oscillations. To get rid of the discrep-
ancy, one needs to treat theRn and Tn modes with higher
accuracy. This significantly complicates the analytical
approach. We leave this for future work.

Now we need to check the experimental viability of the
obtained theoretical conductance. We completely omit-
ted the influence of the disorder. The elastic scatter-
ing time was estimated in recent experiments. Exper-
iment35 explored Cd3As2 and obtained τel ∼ 10−13 s.
Experiment40 gives τel ∼ 10−12 s in TaAs. That pro-
vides the lowest limit for a possible radiation field fre-
quency ω ≥ 1012 Hz in Cd3As2 and ω ≥ 1013 Hz in
TaAs. The chemical potential should be µ . 1 meV (in
Cd3As2) or µ . 10 meV (in TaAs). The typical length
of the sample L ∼ 1µm corresponds to a Lµ factor of
the order of . 1. The experimental value of the chem-
ical potential in Cd3As2 is about 50 meV.41 As we see,
it is much larger than 1 eV, allowed by the derivation.
However, as we mentioned in the text earlier, µ is the
chemical potential of electrons injected into the contacts.
Recent experiment42 shows that the chemical potential of
a thin layer of WSM can be controlled by the gate volt-
age (even through the Weyl point) in a perfect analogy
to graphene. Note, that according to Refs. 43 and 44,
the Weyl semimetal should not be highly compensated
to prevent the formation of electron puddles.

To conclude, we studied the driven conductance of a
Dirac material (either 2D or a thin 3D film) in strong
linearly-polarized electromagnetic field. We discovered
that the driven conductance is the observable that al-
lows one to see the manifestation of Floquet physics hid-
den in the irradiated region of a semimetal. The LZSM
interferometry is responsible for strong oscillations of the
renormalized Fermi velocity of the Floquet excitation and
this is precisely the quantity, which causes the oscillatory
behavior of the driven conductance.
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Appendix: LZSM interferometry

Here, we present the details of the calculations of the
LZSM transfer matrices. Since the phases of the two
consequential LZSM amplitudes play a crucial role, we
feel it necessary to rederive all the amplitudes to be on
the safe side. We hope that the details of the derivation
will be of some use for solving other related problems.
The method involved can be found in books and papers
dealing with the asymptotic analysis (see e.g. Ref. 45).

We solve the original system of differential equations
on eigenfunctions

i
∂ψ

∂t
= Hψ

as

ψ̈↑ − iU̇ψ↑ + [(U − pz)2 + p2
⊥]ψ↑ = 0,

ψ↓ =
i~ψ̇↑ + (U − pz)ψ↑

p⊥
.

If the semiclassical condition

p⊥ � U0 (A.1)

holds, then at points defined by the equation
U0 sinωt1,2 = pz, the LZSM transitions take place

ωt1 = arcsin
pz
U0
, ωt2 = π − arcsin

pz
U0
. (A.2)

We denote u1 = U̇ |t=t1 = −U̇ |t=t2 . Even more, away
from the transition points, the wave function obeys a
semiclassical evolution and is given by Eq. (16).

Next, we expand the potential U(t) near the crossing
points t1,2. The expansion is legitimate if and only if
condition (A.1) is satisfied. Making a suitable change
s =
√
u1(t− t1,2), we arrive at two equations, describing

the system near the corresponding LZSM transition:

ψ̈ + [s2 + ν − i]ψ = 0 first LZSM transtion,

ψ̈ + [s2 + ν + i]ψ = 0 second LZSM transtion.
(A.3)

In what follows, we perform a full derivation of the
LZSM transfer matrix for both transitions. First,
we present the semiclassical expressions in accordance
to (16). Expanding the semiclassical momentum q =√

(U(t)− pz)2 + p2
⊥ = u1

√
s2 + ν near the transition

points t1 and t2 and performing simple integrals and al-
gebra we arrive at

ψ
(1)
s>0↑
semi+

=
(

2s√
ν

) iν
2

exp
(
is2

2 + iν
4

)
, (A.4)

ψ
(1)
s<0↑
semi+

=
(
−2s√
ν

) iν
2

exp
(
is2

2 + iν
4

)
. (A.5)

ψ
(1)
s>0↑
semi−

=
(

2s√
ν

)− iν2 −1

exp
(
− is22 − iν

4

)
, (A.6)

ψ
(1)
s<0↑
semi−

= −
(
−2s√
ν

)− iν2 −1

exp
(
− is22 − iν

4

)
. (A.7)
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ψ
(2)
s>0↑
semi+

=
(

2s√
ν

)− iν2
exp

(
− is22 − iν

4

)
, (A.8)

ψ
(2)
s<0↑
semi+

=
(
−2s√
ν

)− iν2
exp

(
− is22 − iν

4

)
. (A.9)

ψ
(2)
s>0↑
semi−

= −
(

2s√
ν

) iν
2 −1

exp
(
is2

2 + iν
4

)
, (A.10)

ψ
(2)
s<0↑
semi−

=
(
−2s√
ν

) iν
2 −1

exp
(
is2

2 + iν
4

)
. (A.11)

Now, we build formal exact solutions of equations (A.3).
First, we turn them into equations with linear coefficients
by using the substitution

ψ = exp
(
±is2/2

)
ϕ(s). (A.12)

We obtain

ϕ̈+ 2siϕ̇+ νϕ = 0,

ϕ̈− 2siϕ̇+ νϕ = 0.
(A.13)

Then, we use the standard Laplace technique to write
down the solutions in the form of complex integrals

ϕ(s) =
∫

C1,2

exp
(
st− it2/4

)
t−iν/2−1 dt, (A.14)

ϕ(s) =
∫

C3,4

exp
(
st+ it2/4

)
tiν/2−1 dt. (A.15)

The position and the shape of the contours is defined by
the condition that the function

V1,2 = t−iν/2 exp

(
st∓ it2

4

)
(A.16)
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C1

t
−2si

−π/4

(a)

past
C1

t

−2si −π/4

(b)

Re f(st− it2/4)

Re t

Im t

future

Ref(st− it2/4)

Ret

Im t

FIG. 7: (Color online) The contour defining the asymptotics
of the solution (A.14) in the complex plane of the t variable
for the first LZSM transition. Blue areas mark the regions
where Re[st − it2/4] is smaller than the value of the same
function at the saddle point. These are the allowed regions
for the contour of integration. Below, the relief of the real
part of the exponential function Re (st− it2/4) is presented.

has identical values at the end points of a given contour.
The integrands in (A.14) and (A.15) as well as the func-
tions (A.16) are multivalued. The main problem is how
to draw branch cuts and contours Ci in such a way that
solutions (A.14), (A.15) would yield the correct asymp-
totics. We explain how it is done with solution (A.14).
All other asymptotics are obtained in a similar manner.

First, let us look at the semiclassical solution (A.5).
It is the wave coming from the infinite past s → −∞.
It is also going to be the asymptotics of an exact solu-
tion (A.14).

1. First transition: solution ∼ exp(is2/2), s→ −∞

We characterize this solution by its dominant exponen-
tial term exp(is2/2). After the LZSM transition, when
the time tends to infinite future, s → +∞, the asymp-

totics of the solution will pick up the part of the other lin-
ear independent solution (A.6) (apart from (A.4), which
is a simple analytical continuation of the solution (A.5)).

Now, we analyze the integrand of (A.14). At |s| � 1.
the behavior of the integral is governed by the exponent
st−it2/4. It has a saddle point at t = −2si. The steepest
descent path is inclined at an angle 3π/4 with respect
to the real axis of t [see the relief of Re(st − it2/4) in
Fig. 7]. The contribution from this saddle leads to the
ψ ∼ exp(−is2/2) term at s → −∞. Obviously, this is
not what we need. Therefore, the position of the branch
cut should be chosen in a way prohibiting the contour to
pass through the saddle point. Thus, it is clear that the
branch cut needs to go to infinity in the right complex
semiplane.

Next, we discuss condition (A.16). The regions where
V (t, s) decays (tends to zero) are the second and fourth
quadrants of the complex plane, i.e. they approximately
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coincide with the allowed (blue) regions defined by the
saddle point (see Fig. 7(a) and explanation to it). The
only way to draw a contour, which yields a nonzero solu-
tion and cannot be deformed to pass through the saddle
point, is the path, which fully encircles the branch cut
(under condition that the branch cut itself has the end-
ing in the second or fourth quadrant). The exact direc-
tion of the branch cut still has not yet been fixed. It is
determined by the following argument. The placement
of the branch cut should facilitate the extraction of the
asymptotics. If the contour does not traverse the saddle
point, the asymptotics is defined by the vicinity of the
branch point t = 0 and the subsequent integration along
the steepest descent direction. For s < 0 the steepest
descent from point t = 0 is the positive Re t. This fixes
the placement of the branch cut, see Fig. 7(a), contour
C1. The asymptotics is obtained trivially by dropping
the term it2/4 in the exponential

ϕ(s) = Γ

(
− iν

2

)
(1− eπν) (−s)iν/2, −s� 1. (A.17)

One arrives (in combination with the prefactor
exp(is2/2)) at the desired behavior at s → −∞. When
we traverse to the s > 0 region, the relief of function
Re(st − it2/4) is changed, entailing the change of the
topology of an integration path. Suppose that we travel
from the infinite past to the infinite future (from large
negative s to large positive s) via the rotation in the
lower half-plane (counterclockwise, ∆arg s = π) of the
time domain. How shall we deform the contour to com-
pute the asymptotics?

The peculiar thing is that the steepest descent direc-
tion at the branch point is rotated clockwise simultane-
ously to preserve the negative sign of the st factor in the
exponential in (A.14). On the other hand, the saddle
point itself moves in the complex plane [see the lower
part of Fig. 7(a)]. The end of the contour must not leave
the specified allowed blue region of the complex plane.

Therefore, we have to bend the contour. However, only
the lower part of the contour can follow the steepest de-
scent path (clockwise) from the branch point. The path
of the upper part of the contour is blocked by the branch
cut. This means that the upper part of the contour slips
onto the upper sheet of the Riemann surface of the multi-
valued function tiν/2. One can avoid this detour into 3D
by the following trick. Instead of going on to the other
Riemann sheet, one can bend the branch cut in such a way
that it does not block the path of the upper part of the
contour, see Fig. 7(b)). One can then further force the
branch cut (and therefore, the contour) to pass through
the saddle point. This deformation solves the problem of
extricating the asymptotics at s→ +∞.

As a result, there is one more contribution to the
asymptotics coming from the saddle point. This is pre-
cisely the contribution that describes the LZSM transi-
tion.

The saddle point is passed in two directions: to the
left of the branch cut and to the right. Therefore, we can

identify the argument of t as 3π/2 to the left and −π/2
to the right. The contribution from a saddle point is

√
4π(2s)−iν/2−1eiπ/4e−πν/4(1− eπν). (A.18)

Hence, the total asymptotics reads

ϕ(s) = −2 sinh
πν

2
Γ

(
− iν

2

)
siν/2 (A.19)

+
√

4π(2s)−iν/2−1eiπ/4e−πν/4(1− eπν) exp(−is2), s� 1.

Collecting (A.17) and (A.19) and dividing by
Γ(−iν/2)(1 − eπν), we obtain the correct asymptotic
behavior of function ϕ(s) in the form

ϕ(s) =


(−s)iν/2, −s� 1,

e−πν/2siν/2 +
√
ν
√

1− e−πνeiarg Γ+iπ/4,

×e−is2(2s)−iν/2−1, s� 1.

(A.20)

Here, we used the identity:

|Γ (ix)| =
√

π

x sinhπx
. (A.21)

C2 t

C2

t

−2si

−2si
−π/4

−π/4

(a)

(b)

FIG. 8: (Color online) Contours defining the asymptotics of
the solutions in the complex plane of the t variable for the
first LZSM transition.

The contours defining the linearly independent solu-
tions and the deformations defining the asymptotics are
shown in Fig. 8 and 9, respectively. We also present
the correct contour deformation, which gives the asymp-
totics.

Finally, we present results for all other asymptotics.
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2. First transition: solution ∼ exp(−is2/2), s→ −∞

The asymptotics at s→ −∞ is given by

ϕ(s) =
√

4π(−2s)−iν/2−1eiπ/4eπν/4 exp(−is2), s→ −∞.
(A.22)

When s→ +∞, the saddle point changes its position and
the contour is deformed in the way shown in Fig. 9(b).
Then, there are two contributions: from the saddle point
and from the vicinity of a branch point. Hence

ϕ(s) =
√

4π(2s)−iν/2−1e3πi/4
(
e−iπ/2

)−iν/2−1

exp(−is2)

+siν/22 sinh
πν

2
Γ

(
− iν

2

)
. (A.23)

Matching (A.22) and (A.23) with the semiclassical ex-
pressions, and combining asymptotics ∼ exp(±is2/2) at
s → −∞ , we obtain the LZSM transfer matrix for the
first transition (eq. (21) upper signs).

C1

t

t
2si

2si
π/4

π/4

(a)

(b)

C

t

t2si

2si

π/4

π/4

(c)

(d)

C

C

C

FIG. 9: (Color online) Contours defining the asymptotics of
the solutions in the complex plane of the t variable for the
second LZSM transition.

3. Second transition: solution ∼ exp(is2/2), s→ −∞

See Fig. 9 for the correct placement of branch cuts
and deformation of the contours. The asymptotics when
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s < 0 is given by the saddle point

ϕ(s) =
√

4π(−2s)iν/2−1
(
e−iπ/2

)iν/2−1

eis
2

eiπ/2

=
√

4πeπν/4+3πi/4eis
2

(−2s)iν/2−1, s→ −∞.

When s > 0, we have

ϕ(s) =
√

4π(2s)iν/2−1eis
2−πν/4−iπ/4

−2 sinh
πν

2
Γ

(
iν

2

)
s−iν/2, s→ +∞.

4. Second transition: solution
∼ exp(−is2/2), s→ −∞

For s < 0, the main contribution comes from the vicin-
ity of t = 0

ϕ(s) = Γ

(
iν

2

)
1− e−πν
(−s)iν/2 .

For s > 0, there is an additional contribution coming
from the saddle point (two paths on each bank of a
branch cut)

ϕ(s) = Γ

(
iν

2

)
(1− e−πν)e−πν/2s−iν/2+

√
4π(2s)iν/2−1eis

2−πν/4−iπ/4(1− e−πν).

Combining the asymptotics ∼ exp(±is2/2) at s → −∞
from subsections 3 and 4, we obtain the second LZSM
matrix in (21) (lower signs).
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