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Abstract

Injection of a spin current into the surface or interface states of a topological insulator (TI)

induces a charge current (Inverse Edelstein Effect or IEE) and, inversely, a charge current flowing

at the surface or interface states of a TI generates a non-zero spin density (Edelstein Effect or EE)

from which a spin current can be ejected into an adjacent layer. The parameters characterizing

the efficiency of these conversions between spin and charge currents have been derived in recent

experiments. By using a spinor distribution function for a momentum-spin locked TI, we determine

a number of spin transport properties of TI-based heterostructure and find that the spin to charge

conversion in IEE is controlled by the relaxation of an out-of equilibrium distribution in the TI

states while the charge to spin conversion in EE depends on the electron transmission rate at the

interface of the TI.

PACS numbers: 72.25.-b, 73.40.-c, 72.25.Mk
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The electronic states of the two-dimensional electron gas (2DEG) at the surfaces or

interfaces of the topological insulators1,2 are characterized by dispersion surfaces of Dirac

cone type and Fermi contours with helical locking of the spin with the momentum by spin-

orbit coupling, as shown in Fig.1a (for simplicity we will assume a simple circular Fermi

contour throughout the letter). This locking between spin and momentum enables the

conversion between spin and charge currents by the Edelstein (EE) and Inverse Edelstein

(IEE) effects3–5, see Fig.1b-d. In EE a charge current in the 2DEG, i.e. a shift of the Fermi

contours in the direction x of the electron motion, induces an overpopulation of spins in the

transverse (y) direction due to spin-momentum locking, and therefore is associated with a

nonzero spin density (spin accumulation). The spin accumulation can diffuse through an

interface into an adjacent conducting material, resulting in a pure 3D spin current injected

into this material, without a net charge flow. In the inverse conversion by IEE the injection of

a spin current into the TI induces a charge current in the 2DEG at its surface or interface. As

shown by series of recent experiments6–10 using TI, the conversion between spin and charge

by EE and IEE is remarkably efficient and very promising for the creation or detection of

spin currents in spintronic devices. In experiments of spin pumping, for example, a spin

current generated by the ferromagnetic resonance of a magnetic layer is injected through a

thin metallic layer into the surface or interface state of a TI and converted by IEE into a

2-dimensional (2D) charge current. Such conversions by IEE are characterized by the length

λIEE that was first introduced for Rashba interfaces4,5, and defined as the ratio between the

induced 2D-charge current density Jc and the injected 3D-spin current density Js. The IEE

length has been predicted10 in a phenomenological model to be expressed as

λIEE ≡
∣∣∣∣JcJs
∣∣∣∣ = vF τIEE (1)

where vF is the Fermi velocity on the Dirac cone and τIEE is defined as the relaxation time of

an out-of-equilibrium distribution of the topological 2D states (here we focus on the absolute

value of IEE; the directions of the induced charge current relative to the spin current has

been defined and discussed in Ref.10). In the same way the conversion between 2D charge

current into 3D spin currents by EE can be characterized by the parameter qEE (an inverse

of length, qICS in the notation of Kondou et al.7),

qEE ≡
∣∣∣∣JsJc
∣∣∣∣ =

1

vF τEE
(2)
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FIG. 1: (Color Online) Schematically shown of (a,b) Dirac cone dispersion and Fermi contour with

spin-momentum locking of surface/interface states of topological insulator. (c) Edelstein Effect

(EE): an charge current Jc along −x generates a nonzero spin density along y (spin accumulation).

(d): Vertical injection of a spin current (wiggled lines with spin-polarization along y) generates a

charge current along −x11

Several theoretical approaches5,12 have been developed to address the spin-charge conver-

sion by TI and focused on the processional motion of electron spins if the spin direction of

the injected electrons is not perpendicular to the momentum of the TI states. In this case,

the injected electron is not an eigenstate of the TI and the dephasing takes place for the

non-equilibrium electron spin injected in the TI. The spin-charge conversion comes from a

3



subtle and detailed balance among spin injection, spin precession and spin relaxation.

In this paper, we provide a theory that determines the key physical parameters controlling

τIEE and τEE of Eqs. (1) and (2). To display the most physically transparent picture in

the spin-to-charge conversion, we limit the calculation to the simple case of predominant

contribution of surface states on a Dirac cone with helical in-plane locking. In general, some

mixture of surface and bulk states can take place around the Fermi level when a metallic

overlayer is in contact with the TI. Consequently, the surface states are altered by the Fermi

level shift, band-bending and possible creation of additional surface states. It has been

shown that the spin-momentum locked surface states could be completely destroyed by a

magnetic overlayer13. However our simplifying model is most useful in addressing the most

recent experimental results in which the predominant contribution to spin-charge conversion

can be attributed to Dirac cone 2D states. We refer to the two following examples: a) Thin

films of α-Sn present Dirac cone in a large gap of 1.2 eV for 44 atomic layers with the Dirac

point at about the middle of the gap (see Fig.2 in14). In contact with Ag and from ARPES

measurements, the Dirac cone is still observed and the Fermi level is at 0.65 meV above

the Dirac point, whereas the contact with Fe destroys the Dirac cone10. b) For Bi2Se3 and

(Bi,Sb)2Se3, it is clearly demonstrated by Wang et al.15 in which conditions a predominant

2D contribution can be obtained.

We start with defining the wavefunction of the TI surface states as ψp(ρ)χp where p

denotes the momentum at the 2D surface, ρ = (x, y) is the position, ψp is the orbital

part of the wavefunction and χp is the spin part which is perpendicular to the p, i.e.,

σ · (ẑ × p̂)χp = χp where σ is the Pauli matrix vector, ẑ is the unit vector normal to the

surface, and p̂ = p/p is the unit vector for the direction of the momentum. Since the spin

quantization axis for a given p is ẑ× p̂, the Boltzmann distribution must take the following

spinor form,

ĝp = gc(p) + gs(p)σ · (ẑ× p̂) (3)

where gc and gs are spin-independent and spin-dependent parts. We recall that, in ferro-

magnetic conductors, the spinor is of the form σ ·M where M is the local magnetization;

while for non-magnetic metals (NM), the polarization is not given a priori and one writes

an unspecified spinor σ ·A where the vector A could be any direction to be self-consistently

determined by boundary conditions. The spinor form given in Eq. (3) is unique to the spin-

momentum locked band structure. We next determine the distribution function in Eq. (3)
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for a bilayer made of a NM layer and the TI (as in the experiments of7,9). The spinor

Boltzmann equation reads,

dĝp
dt

=
∑
k

Γkp(f̂k − ĝp) +
∑
p′

∆pp′(ĝp′ − ĝp) (4)

where f̂k is the distribution function in the non-magnetic metal, Γkp is the transition rate

across the interface between the state k in the NM and the state p in the TI, ∆pp′ is

the (defect or impurity) scattering probability between states p and p′ in the TI. In the

following, we determine the spin and momentum dependence of these parameters in Eq. (4).

The transition probability Γkp at the interface is

Γkp = | < ψkσ|V (r)|ψpχp > |2δ(εk − εp) (5)

where ψkσ is the wavefunction of the NM layer, and V (r) is the step-like interface potential.

For the NM metal, the orbital part of the wavefunction is independent of spin, i.e., ψkσ =

ψkχσ. If we further assume that the interface potential is spin-independent and the interface

is rough enough so that the momentum conservation across the interface does not apply, the

above scattering matrix takes the following simple form

Γkp = [1 + σ · (ẑ× p̂)]/τt (6)

where τt characterizes the tunneling time across the interface (the inverse of the transition

probability). Note that the dependence of the spin and momentum in the transition proba-

bility is solely from the spin-momentum locking of the TI states: the probability is highest

if the spin of the k state is parallel to ẑ× p̂ and is zero if antiparallel.

The defect or impurity scattering rate between the states p and p′ of the TI is

∆pp′ = | < ψp′χp′ |Vsc(ρ)|ψpχp > |2δ(εp − εp′) (7)

where Vsc(ρ) is the scattering potential of the impurities or defects. If the scattering potential

is short-ranged and spin-independent, the above scattering reduces to

∆pp′ = (1 + p̂ · p̂′)/τp (8)

where we have introduced a relaxation time τp to represent the strength of the scattering

within the TI band. The momentum dependence again comes from the spin momentum
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locking. If the momenta are antiparallel, p̂′ = −p̂, the scattering amplitude vanishes–this is

known as zero backscattering for the TI. However, as long as they are not antiparallel, any

impurity scattering contains spin-flip processes.

Next we define the spin chemical potential µ ≡ (eNF )−1
∑

k Trσ(σf̂k), where e is the

electron charge and NF is the density of states of the NM at the Fermi level. Note that

the electron hopping from the NM to the TI occurs at the interface, thus NF is the density

state projected on the 2D surface, i.e., the unit of NF is the inverse of the energy per area

which is approximately the product of the 3d density states and the interface layer thickness

(lattice constant). By using Eqs. (6) and (8), we find that, for the steady state solution of

Eq. (4)dĝp/dt = 0, can be obtained exactly

ĝp =
2eτpNF

4τp + τt
µ · (ẑ× p̂)[1 + σ · (ẑ× p̂)]. (9)

We can immediately evaluate the spin accumulation in the TI

δm =
∑
p

Trσ(µBσĝp) =
µBτpNF

4τp + τt
µ (10)

where µB is the Bohr magneton, and the charge current in the TI is then

Jc =
∑
p

Trσ(evĝp) =
e2τpvFNF

4τp + τt
(µ× ẑ) (11)

where e is the electron charge and vF is the Fermi velocity. Note that the spin current in

the TI is zero, i.e., Trσ
∑

p(σvĝp) = 0. The spin current across the interface, on the other

hand, can be readily identifies as the summation over the first term (times the spin matrix)

in Eq. (4),

Js =
∑
kp

Tr
[
eσΓkp(f̂k − ĝp)

]
=

e2NF

4τp + τt
µ (12)

Thus, the spin to charge conversion rate is

λIEE =
|Jc|
|Js|

= vF τp ≡ λmf , (13)

i.e., the IEE length is exactly the mean free path of the TI, which has been proposed earlier

in the interpretation of experiments, see Eq. (1). At first, one might be surprised by this

result since the spin-independent defect or impurity scattering by itself does not involve

spin-flip. However, the spin-momentum locked TI band transfers any momentum scattering

to spin rotation. We also want to emphasize that the IEE length derived here comes from
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scattering within the TI band, while the other scatterings, particularly those due also to

the hybridization of the TI with bulk states (in the TI bulk as well as in the NM), could

significantly contribute the IEE length as well through an additional contribution to τp.

Experimentally, the charge current can be directly measured while the spin current en-

tering the TI can be obtained via the enhanced FMR linewidth broadening. To determine

the absolute values of charge/spin currents from Eq. (11) and (12), we consider a typical

trilayer consisting of FM/NM/TI where the FM stands for a conventional ferromagnet such

as NiFe. The spin pumping by the precession of the FM layer leads to a spin current across

the FM/NM interface16,

Js =
eGmix

πh̄

(
h̄

2
m× dm

dt
− eµ

)
(14)

where Gmix is the mixing conductance of the FM/NM interface, m is the unit vector in the

direction of the magnetization of the FM layer. The chemical potential at the FM/NM would

exponentially decay when electrons diffuse across the NM layer. However, if the thickness of

the NM layer is much smaller than the spin-diffusion length, we may simply assume that the

chemical potential maintains a constant throughout the NM layer and thus we may equate

Eq. (12) and (14), and find

Js =
e

2π

(
1

Gmix

+
1

Gt

+
4

Gp

)−1
m× dm

dt
(15)

where Gp = πh̄NF τ
−1
p and Gt = πh̄NF τ

−1
t .

Up till now, we have considered transition probabilities among eigenstates of the NM

and TI, i.e., the electron spins injected to the TI layer is to change the non-equilibrium

occupation number without altering the electronic states of the TI. However, if the electron

spin injected into the TI is not a spin eigenstate of the TI, a spin torque will be applied to

the spins of the TI.We recall the spin injection from a NM layer to a ferromagnetic layer in

which a spin torque on the magnetization in the form of m × (m × Js)
17 could rotate the

magnetization and possibly creates a dynamic procession of the FM layer if the spin toque

is strong enough. In the TI, an electron spin with a given momentum p receives a torque

τ = s× (s× Js) so that the total torque satisfies,

ds

dt
= −αγ0s× (ẑ× p̂) + s× (s× Js) (16)

where γ0 is the gyro magnetic ratio, α is the spin-orbit coupling strength of the TI (or the

spin-orbit locking strength). Since the spin chemical potential is very small compared to the
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spin-orbit coupling (α) of the TI, the steady state ds/dt = 0 solution of Eq. (16) , up to the

first order in Js/α, is

δs ≡ s− ẑ× p̂ =
Js
αγ0
× (ẑ× p̂). (17)

If Js is polarized in the plane of the layer, say Js = Jsŷ, an out-of equilibrium spin comment

δsz = (py/pF )(Js/αγ0) has been induced due to the absorption of the spin current by the

TI; this spin component has also been obtained in Ref.5,12. The effect of this spin torque

is negligibly small on the spin dynamics of the TI because α is much larger than the spin

current induced torque–this is in sharp difference from the spin injection to a FM in which the

resulting spin torque is competing with a much smaller energy scale (such as the anisotropy

and the applied magnetic field) and it could excite magnetization switching and precessing18.

One of the consequences of the above induced out-of-plane component is an unusual spin

Hall current19: a z-component spin polarization and y-direction of the electron flow Jzy.

Recall the definition Jzy =
∑

p Tr(vyszĝp), we find Jzy = vFJs/αγ0 where we use sz given

above and equilibrium distribution function ĝ(0).

We now turn to the inverse effect: an applied charge current in the TI produces a spin

current in the NM layer. Consider a bilayer TI/NM with a semi-infinite NM layer. The

distribution function at the interface of the NM layer f̂k satisfies,

df̂k
dt

=
∑
p

Γpk(ĝp − f̂k)− f̂k − (Î/2)Trf̂k
τsf

(18)

where Î is the 2 × 2 unit matrix and τsf is the spin-flip scattering time in the NM. For a

given charge density in the TI layer, Jc ≡
∑

p Tr(evpgp) where gp ∝ px[1 + σ · (ẑ × p̂)] ,

we can readily obtain the f̂k, in the steady state case, the spin current across the NM/TI

interface,

Js =
1

vF (τt + τsf )
ẑ× Jc, (19)

Thus, qEE ≡ |Js/Jc| = [vF (τt + τsf )]
−1. The charge to spin current inversion rate depends

on the spin flip rate in the NM metal and the transition rate at the NM/TI interface, but

independent of the impurity scattering of the TI layer. If τsf →∞, i.e., no spin absorption

in the NM layer, the spin current flows back to in the TI, leading to zero net spin current.

Similarly, when τt → ∞, i.e., no transition across the interface, the spin current obviously

disappears since the interface blocks the electron flow. The relaxation time τp is not involved

in qEE, but only in the resistivity of the 2DEG: a long τp would generate proportionally large
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Jc and Js for a given applied voltage. In some experiments6,7, the spin current is measured

via the spin torque where a ferromagnetic layer (FM) is placed on the other side of the NM

layer. In this case, if we assume that the NM layer is much thinner than the spin diffusion

length, the distribution in the NM layer is now determined by

df̂k
dt

=
∑
p

Γpk(ĝp − f̂k)− Gmix

πh̄NF

f̂k (20)

where the last term represents the flow of the spin current from the NM to the FM layer

if the magnetization of the FM is oriented perpendicularly to the spin current. Thus, we

obtain,

q−1EE = πh̄NFvF

(
1

Gt

+
1

Gmix

)
. (21)

If the spin current is not perpendicular to the FM, it will penetrate into the FM to be

partially relaxed inside the FM and partially reflected (back flow), thus reducing the spin

current.

Finally, we compare our theoretical predictions with experimental results on the conver-

sion between spin and charge currents.

For the conversion from spin to charge by IEE, we first consider the example of spin pump-

ing from an Fe layer into the topological insulator α-Sn through a thin Ag layer10. With

spin-momentum locked 2D states at Ag/Sn interfaces characterized by a quasi-circular Fermi

contour and the Fermi velocity vF = 5.6 × 105 m/s, we can account for the experimental

value of λIEE = 2.1 nm by our Eq. (13) with τp = 3.7 fs, as also found in10. This rela-

tively short relaxation time is in the same range as the IEE relaxation time found in spin

pumping experiments on Rashba 2DEGs where τp = 5 fs for Bi/Ag Rashba interfaces4 and

the relaxation time derived from optical measurement on 2D states at interfaces between

metals20. It has been argued by Rojas-Sanchez et al.10 that such relatively short relaxation

times at interfaces with metals can be due to additional relaxation mechanisms coming from

the hybridization of the 2D states with metallic 3D states; this is consistent with the much

longer τp (in the range of picosecond) derived for the IEE relaxation time of the 2DEG

at the interface between the LAO and STO insulating oxides21. Further experiments on

TI protected by insulating materials would be of interest to see if the effective IEE time

and the efficiency of the conversion can be enhanced in heterostructures without TI/metal

interfaces.

9



It is also interesting to compare the prediction of Eq.(15) for the effective spin mixing

conductance, G∗mix ≡ (1/Gmix+1/Gt+1/Gp)
−1, that can be derived from the broadening of

the FMR line width in experiments of spin pumping into TI. It has been found experimentally

that G∗mix for spin pumping from Fe through Ag into α-Sn (G∗mix = 40/nm2), as well as spin

pumping into Bi2Se3 from CoFeB (G∗mix = 12 − 260/nm222) or NiFe (G∗mix = 42/nm223),

is always in the range of the spin mixing conductance in purely metallic systems (Gmix =

40/nm2 at the Co/Pt interface24). Clearly, both Gt and Gp should not be smaller than

Gmix of FM/NM systems in order to retain G∗mix comparable to Gmix. As Gt is the mixing

conductance of NM/TI interface, it would be comparable to Gmix if both interfaces have

similar quality. For Gp, we can estimate by using τp = 3.7fs and NF = 2 (eV Å2)−1 (for

a free electron model of a metal as Ag), yielding Gp = 100/nm2 which is indeed the same

order as Gmix.

For the conversion from charge to spin, the order of magnitude of the experimental

results is also consistent with Eq. (21). Considering the results on the conversion from a

spin current in (Bi1−xSbx)2Te3 series of TI to a spin current injected in NiFe through Cu7, if

we also suppose that both Gt at the TI/Cu interface and Gmix at the Cu/NiFe interface are

of the order of 100 nm−2 and assume the same value of NF for Cu and Ag with vF around

3.7× 105 m/s7, one obtains qEE ≈ 0.3nm−1, not very far from the experimental results in

Ref.7 between 0.4 and 1.1 nm−1 (except in the vicinity of the Dirac point7).

In summary we used the spinor distribution function for momentum-spin locked states

to derive the main parameters involved in spin-charge conversion by TI. In particular, we

find that the spin to charge conversion is related to the relaxation of the topological states

whereas the opposite conversion depends essentially on interface parameters, in contrast

with the description of similar conversions with spin Hall effect where a single parameter,

the spin Hall angle, characterizes both conversions. Our results can be a useful guide for

the exploitation of TI in spintronics.
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