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Abstract
Molecular dynamics simulations of a quasi-harmonic solid are conducted to elucidate the mean-

ing of temperature fluctuations in canonical systems and validate a well-known but frequently

contested equation predicting the mean square of such fluctuations. The simulations implement

two virtual and one physical (natural) thermostat and examine the kinetic, potential and total en-

ergy correlation functions in the time and frequency domains. The results clearly demonstrate the

existence of quasi-equilibrium states in which the system can be characterized by a well-defined

temperature that follows the mentioned fluctuation equation. The emergence of such states is

due to the wide separation of timescales between thermal relaxation by phonon scattering and

slow energy exchanges with the thermostat. The quasi-equilibrium states exist between these two

timescales when the system behaves as virtually isolated and equilibrium.
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I. INTRODUCTION

Fluctuations of thermodynamic properties play an important role in phase transforma-

tions and many other physical phenomena and diverse applications. While fluctuations

of energy E, volume V , number of particles N and other extensive parameters are well-

understood, controversies remain regarding the nature, or even existence,1–3 of fluctuations

of intensive parameters such as temperature, pressure and chemical potentials. In particu-

lar, the question of temperature fluctuations in canonical systems has been the subject of

discussions for over a century (see e.g. van Hemmen and Longtin4 for a historical overview

of the subject).

A number of different views on temperature fluctuations can be found in the literature,

including the following:

(i) Temperature fluctuations in canonical systems is a real physical phenomenon and can

be measured experimentally.5 If the volume and number of particles in the system are fixed,

then6–8

〈

(∆T )2
〉

=
kT 2

0

Nc0v
, (1)

where ∆T = T − T0 is the deviation of the system temperature T from the thermostat

temperature T0, c
0
v is the constant-volume specific heat (per particle) at the temperature T0,

and k is Boltzmann’s constant. The angular brackets 〈...〉 indicate the canonical ensemble

average. Assuming ergodicity, 〈...〉 can be computed by averaging over a long trajectory

in the phase space of the system.∗ Spontaneous energy exchanges between the system and

the thermostat bring the system to quasi-equilibrium states in which the temperature is

slightly higher or slightly lower than T0. It is also possible to quantify the cross-correlation

between the fluctuating temperature and the system’s total energy by the equation6–8

〈∆E∆T 〉 = kT 2
0 , (2)

where ∆E = E − E0 and E0 is the equilibrium energy.

(ii) Temperature of a canonical system is defined as the temperature of the thermo-

stat. Thus, T ≡ T0 by definition and the very notion of temperature fluctuations is

meaningless.1–3

(iii) While fluctuations of the system energy E are well-defined, non-equilibrium tem-

perature T is ill-defined.3,4 One can formally define T as T ≡ T0 + (E −E0)/(Nc0v), which

makes T just a nominal parameter identical to energy.4 From this point of view, equa-

tion (1) contains no new physics in comparison with the well-established energy fluctuation

relation6–8

〈

(∆E)2
〉

= NkT 2
0 c

0
v. (3)

∗ By contrast, the temperature T appearing in Eq.(1) is defined by averaging over much shorter segments

of the trajectory as discussed later in the paper.

2



(iv) Even for an equilibrium isolated system, temperature is not a well-defined parameter.

It can be evaluated by measuring the system energy and trying to estimate the temperature

of the thermostat with which the system was in equilibrium before being disconnected.9,10

This reduces the temperature definition to a statistical problem addressed in the frame-

work of the estimation theory. The statistical uncertainty associated with the temperature

estimate can be interpreted as its “fluctuation”.

Recently, thermodynamics-based arguments for the viewpoint (i) have been put forward

as part of a more general thermodynamic fluctuation theory.8 The goal of the present paper

is to provide additional insights into the nature of temperature fluctuations by conducting

molecular dynamics (MD) simulations of a quasi-harmonic crystalline solid. As an opera-

tional definition, the non-equilibrium temperature is identified with kinetic energy of the

particles averaged on an appropriate timescale. In Sec. II we set the stage by reviewing

the thermodynamic arguments6–8 and introducing three timescales of the problem that

permit a clear definition of non-equilibrium temperature. After presenting the simulation

methodology in Sec. III, we report on MD results for the kinetic, potential and total energy

fluctuations and the respective correlation functions for the solid (Sec. IV). Using this data,

we are able to extract the temperature fluctuations and verify Eqs.(1) and (2) independently

of Eq.(3). In Sec. V we summarize the results of this work and formulate conclusions.

II. THEORY

If a thermodynamic system is disconnected from its environment and becomes isolated, it

reaches thermodynamic equilibrium after a characteristic relaxation time τr. For a simple

system, the equilibrium state is fully defined by its energy E, volume V and number of

particles N . The entropy S of an equilibrium isolated system is a function of E, V , and

N . This function can be established by equilibrating the isolated system with different

values of E, V and N and measuring or computing S for each set of these parameters.

The function S = S(E, V,N) is called the fundamental equation7,8,11 and incapsulates

all thermodynamic properties of the substance. The temperature, pressure and chemical

potential are defined by the fundamental equation as the derivatives T = 1/(∂S/∂E),

p = T (∂S/∂V ) and µ = −T (∂S/∂N), respectively.

Suppose the isolated system is still in the process of relaxation. While E, V and N are

fixed, other thermodynamic properties can vary. If we mentally partition the system into

relatively small subsystems, their parameters E, V and N can vary during the relaxation.

It is important to recognize that the relaxation time tr of a small subsystem is much shorter

than τr of the entire system, at least for short-range interatomic forces. Thus, there is a

certain timescale tq such that

tr ≪ tq ≪ τr, (4)

on which the small subsystems remain infinitely close to equilibrium, even though the entire
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system is not in full equilibrium. The subsystems weakly interact with each other across

their interfaces, causing a slow drift of the entire system towards equilibrium. Such virtually

equilibrium subsystems are called quasi-equilibrium8 and the entire isolated system is said

to be in a quasi-equilibrium state.† On the quasi-equilibrium timescale tq, the isolated

system can be thought of as equilibrated in the presence of isolating walls separating its

small subsystems. Accordingly, each quasi-equilibrium subsystem α can be described by

a fundamental equation Sα = Sα(Eα, Vα, Nα), from which the local temperature, pressure

and chemical potential can be found by Tα = 1/(∂Sα/∂Eα), pα = Tα(∂Sα/∂Vα) and µα =

−Tα(∂Sα/∂Nα), respectively. If the number of subsystems is large enough, we can talk

about spatially continuous temperature, pressure and chemical potential fields. Such fields

appear in the standard treatments of irreversible thermodynamics12 and are only defined on

the quasi-equilibrium timescale. They evolve during the relaxation process and eventually

become uniform when the entire system reaches equilibrium.

Following the fluctuation-dissipation concepts,6,13–18 one can expect that similar quasi-

equilibrium states arise during equilibrium fluctuations in an isolated system. Accordingly,

the fluctuated states can be described by well-defined local values of the intensive parame-

ters, including temperature. Again, such local intensive parameters are only defined on the

quasi-equilibrium timescale tq.

Turning to canonical fluctuations, consider a small subsystem of an equilibrium isolated

system. Let us call this subsystem a system and the rest of the isolated system a reservoir.

Consider a timescale tq such that tr ≪ tq ≪ τr, where tr is the relaxation time of the

system and τr is the global relaxation time of the system plus reservoir. On this timescale,

the system can be considered as quasi-equilibrium and thus virtually isolated. As such,

it possess all intensive properties mentioned above. Fluctuations generally occur on all

timescales. However, if we monitor the system properties averaged over the timescale

tq, then we can talk about fluctuations of its intensive parameters. In particular, quasi-

equilibrium fluctuations that preserve the system volume and number of particles (canonical

ensemble) include well-defined temperature fluctuations. As long as the temperature is

properly defined on the quasi-equilibrium timescale, it will satisfy the fluctuation relation

(1).

We next apply these concepts to a crystalline solid comprising a fixed number of atoms

N ≫ 1. The local relaxation timescale tr can be identified with a typical phonon lifetime.

Suppose the solid is isolated and in equilibrium. Its instantaneous potential energy U and

kinetic energy of the centers of mass of the particles K fluctuate whereas the total energy

E = K + U is strictly fixed. The timescale tK of the kinetic (as well as potential) energy

fluctuations is the inverse of a typical phonon frequency f̄ : tK ∼ 1/f̄ . Assuming that the

† Landau and Lifshitz6 call the quasi-equilibrium states“quasi-stationary”, which may cause some confusion

since the term “stationary” is often used to describe steady-state flows in driven systems.
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solid is nearly harmonic, this timescale is much shorter than tr. The temperature of the solid

is fixed at T = E/3k and can be evaluated from the equipartition relation 〈K〉 = 3NkT/2

by monitoring the kinetic energy over a long time t ≫ tr.

If the same solid is now connected to a thermostat, two types of fluctuation occur. First,

the same fluctuations as in the isolated system, including the energy exchanges between the

phonon modes on the tr timescale. Second, there will be fluctuations in the total energy

of the solid due to energy exchanges between the solid and the thermostat. The two types

of fluctuation are governed by physically different relaxation processes: phonon scattering

inside the solid in the first case and heat flow between the solid and the thermostat in

the second. The respective relaxation times, tr and τr, are significantly different. Usually

τr ≫ tr, i.e., the energy exchanges with the thermostat occur on a much longer timescale

that depends on the system size, the system/thermostat interface and other factors. Thus,

there is a timescale tq in between, tr ≪ tq ≪ τr, on which the solid remains quasi-equilibrium

and can be assigned a well-defined temperature. We can use the equipartition relation to

find this quasi-equilibrium temperature,

T =
2 〈K〉q
3Nk

, (5)

where the subscript q indicates that the time average must be taken on the quasi-equilibrium

timescale tq.
‡

If the kinetic energy is averaged over the thermodynamic timescale t ≫ τr, then the

equipartition relation trivially gives the thermostat temperature

T0 =
2 〈K〉

3Nk
. (6)

By contrast, the quasi-equilibrium temperature defined by Eq.(5) fluctuates around T0 and

is predicted to satisfy the fluctuation formula (1). We emphasize that Eq.(5) defines T

independently of the instantaneous or average values of the total energy and makes no

reference to the specific heat of the substance.§ Instead, the temperature fluctuations can

be used to extract the specific heat c0v. For a classical harmonic solid composed of atoms

(not a molecular crystal), c0v = 3k and Eq.(1) becomes

〈

(∆T )2
〉

=
T 2
0

3N
. (7)

‡ The reader is reminded that 〈...〉 is the time average over a very long trajectory of the system in the

phase space. By default, the time averaging is performed in the canonical ensemble (NVT); otherwise

the ensemble is indicated as a subscript. For example, in Section IVA we discuss the time average

〈...〉NVE computed in the micro-canonical (NVE) ensemble. Some observables are averaged over many

time intervals of the same finite length (say, θ). This is indicated in the subscript, e.g., 〈...〉θ. 〈...〉q
denotes the time average over a finite time interval on the quasi-equilibrium timescale tq.

§ For example, for a molecular solid the rotational and vibrational degrees of freedom contribute to c0v but

do not appear in Eq.(5), which only includes the kinetic energy of the centers of mass.
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The key point of this treatment is that the kinetic energy of the centers of mass of the

particles must be averaged over the appropriate timescale. We caution against using the

“instantaneous temperature” defined by the instantaneous value of the kinetic energy as

T̂ = 2K/3Nk, as is often done in the MD community. The “temperature” T̂ so defined

essentially represents the kinetic energy K/N itself up to units. Although this unit conver-

sion can sometimes make the MD results look more intuitive, it fails to predict the correct

temperature fluctuations. Using the standard canonical distribution, it is easy to show that

for any classical system19

〈

(∆K)2
〉

=
3N(kT0)

2

2
, (8)

from which
〈

(∆T̂ )2
〉

= 2
T 2
0

3N
. (9)

For an atomic solid, this equation is off by a factor of two. Consequently, the specific heat

of the solid extracted from Eq.(1) using the “instantaneous temperature” T̂ is 3k/2 instead

of the correct 3k.

In spite of the failure of the “instantaneous temperature” T̂ to describe the mean-square

fluctuation of temperature, it does satisfy some other fluctuation relations, including Eq.(2)

which then becomes
〈

∆E∆T̂
〉

= kT 2
0 . Like the energy variance 〈(∆E)2〉, the covariance

〈∆E∆T 〉 remains the same for both instantaneous and quasi-equilibrium fluctuations.

In the following sections, Eqs.(1), (2) and (3) will be verified by MD simulations with

different choices of the thermostat.

III. METHODOLOGY OF SIMULATIONS

A. Molecular dynamics simulations

As a model system we chose face-centered cubic copper with atomic interactions de-

scribed by an embedded-atom potential.20 The potential accurately reproduces many phys-

ical properties of Cu, including phonon dispersion relations. The MD simulations were

performed with the LAMMPS code21 with the time integration step of dt = 0.001 ps. Ex-

cept for the system in a“natural thermostat”discussed later, all simulations were conducted

in a cubic simulation block with periodic boundary conditions. The block edge was 7.23 nm

and the total number of atoms was N = 32000. The block edges were aligned with 〈100〉

directions of the crystal lattice. The simulation temperature was chosen to be T0 = 100

K and the lattice parameter was adjusted to ensure that the solid was stress-free at this

temperature.

Prior to studying thermal fluctuations, two types of additional simulations were per-

formed to generate data needed for a comparison with fluctuation results. Firstly, the

phonon density of states g(f) at 100 K was computed by the method developed by Kong22
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and implemented in LAMMPS. This method was chosen because it does not rely on fluctu-

ations and provides independent results for comparison. Secondly, to test the accuracy of

the simulation methodology, the specific heat of the solid was computed by a direct (non-

fluctuation) method. This was accomplished by running canonical (NVT) MD simulations

at the temperatures of 50, 100 and 150 K and calculating the time average energies 〈E〉.

The volume was fixed at the value corresponding to 100 K. The energy was found to follow

a linear temperature dependence in this temperature interval, from which the derivative

(∂ 〈E〉 /∂T )N,V was evaluated by a linear fit. The specific heat at 100 K was then found

from the equation c0v = (∂ 〈E〉 /∂T )N,V /N . The number obtained was 24.89 J/(mol K),

which is close to the equipartition theorem prediction 3k = 24.94 J/(mol K).

The subsequent MD simulations utilized two ensembles: the microcanonical NVE (iso-

lated system) and canonical NVT (system in a thermostat). The NVE system was prepared

so that the temperature evaluated from the relation 〈K〉NV E = 3NkT/2 was very close to

100 K. In the NVE ensemble, the MD simulation simply integrates the classical equations

of motion with a Hamiltonian dictated by the interatomic potential. The NVT simulations

utilized the Langevin thermostat built into LAMMPS.21 The Langevin algorithm23 mimics

a thermostat by treating the atoms as if they were embedded in an artificial viscous medium

composed of much smaller particles. This medium exerts a drag force as well as a stochastic

noise force R that constantly perturbs the atoms. The total force on atom i is

F i = −
∂U(r1...rN)

∂ri
−miγvi +Ri. (10)

Here, U(r1...rN) is the potential energy due to atomic interactions, and mi, ri and vi

are, respectively, the mass, position and velocity of atoms i. The drag term depends on

the damping constant γ, the inverse of which controls the timescale τr of the energy ex-

changes between the solid and the thermostat. During the simulation, the noise Ri is

randomly sampled from a normal or uniform distribution at time intervals much shorter

than τr = 1/γ. The variance of the noise defines the thermostat temperature T0 via the stan-

dard fluctuation-dissipation relation.23 To evaluate the role of the thermostat, additional

simulations were conducted with a Nose-Hoover thermostat as will be discussed later.

B. Post-processing procedures

We next describe the statistical analysis of the MD results at the post-processing stage.

Consider a long MD simulation run implemented for a time ttot. Suppose two fluctuating

properties, X and Y , are saved at every integration step of the simulation. These can be the

kinetic, potential or total energy of the solid. We trivially compute the time average values

〈X〉 and 〈Y 〉, as well as the variances 〈(∆X)2〉 and 〈(∆Y )2〉 and the covariance 〈∆X∆Y 〉,

were ∆X = X − 〈X〉 and ∆Y = Y − 〈Y 〉.
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For a spectral analysis, we break the long stochastic processes X(t) and Y (t) into a

large number of shorter processes, x(t) and y(t), by dividing the total time ttot into smaller

intervals of the same duration θ ≪ ttot. The time θ was chosen to be longer than the

correlation times of both variables, so that the intervals represent statistically independent

samples with different initial conditions. For each time interval 0 ≤ t ≤ θ we perform a

discrete Fourier transformation of x(t) and y(t) to obtain a set of Fourier amplitudes, x̂j and

ŷj, corresponding to the frequencies fj = j/θ, where j = 0,±1,±2, .... These amplitudes

are complex numbers satisfying the symmetry relations x̂−j = x̂∗
j and ŷ−j = ŷ∗j (the asterisk

denotes complex conjugation). The functions

ĈXX(fj) =
x̂j x̂∗

j

f1
, ĈY Y (fj) =

ŷj ŷ∗j
f1

,

where the bar denotes averaging over all time intervals, represent the ensemble-averaged

power spectra of X and Y . Likewise,

ĈXY (fj) =
x̂j ŷ∗j
f1

represents the spectral power of X-Y correlations.

Following the Wiener-Khinchin theorem,6,24 the functions ĈXX(fj), ĈY Y (fj) and

ĈXY (fj) were then subject to inverse Fourier transformations to obtain the auto-correlation

functions (ACF) CXX(t) = 〈X(0)X(t)〉 and CY Y (t) = 〈Y (0)Y (t)〉 and the cross-correlation

function (CCF) CXY (t) = 〈X(0)Y (t)〉. In this work, we are interested in correlations be-

tween properties relative to their average values, namely, C∆X∆X(t) = 〈∆X(0)∆X(t)〉,

C∆Y∆Y (t) = 〈∆Y (0)∆Y (t)〉 and C∆X∆Y (t) = 〈∆X(0)∆Y (t)〉. These were readily obtained

by removing the point f0 from the spectra prior to the Fourier inversion.

All correlation functions in the frequency domain shown in the figures below have been

normalized by 〈(∆X)2(∆Y )2〉1/2. For ACFs, the area under the normalized plots agains

the frequency is therefore unity.

To evaluate the effect of the averaging timescale on the fluctuation relations more directly,

the spectral analysis was supplemented by a simple coarse-graining procedure in the time

domain. For this procedure, we lifted the requirement that the time interval θ be longer

than the correlation time. For every time interval l, we computed the time average energy

values 〈X〉l, 〈Y 〉l, etc. A formal temperature Tl was defined by the equipartition relation

Tl = 2 〈K〉l /3Nk. These coarse-grained values were then treated as a new dataset, for which

we computed the fluctuation properties such as 〈(∆E)2〉θ, 〈(∆T )2〉θ and 〈∆E∆T 〉θ. These

fluctuation properties were examined as functions of the time interval θ. For θ = dt, this

procedure reduces to computing the fluctuations of instantaneous properties. By increasing

θ, we can scan various timescales, including tr, τr, and the quasi-equilibrium timescale in

between.

8



IV. SIMULATION RESULTS AND DISCUSSION

A. NVE simulations

The goal of the NVE simulations was to evaluate the phonon relaxation time at the

chosen temperature and make consistency checks of the methodology. Figure 1 shows the

kinetic energy ACF in the frequency and time domains. The results were obtained from a

ttot = 2 ns MD run by averaging over θ = 3 ps time intervals. For comparison, the plot of

Ĉ∆K∆K(f) [Fig. 1(a)] includes the phonon density of states g(f/2) computed by the non-

fluctuation method22 and plotted against the frequency f followed by normalization to unit

area. The close similarity between the plots is not surprising: in a perfectly harmonic solid,

the kinetic energy ACF is identical to the phonon density of states except for the doubling

of the frequency scale.25–27 This doubling is due to the fact that kinetic energy goes through

zero twice per vibration period. In the present simulations, the vibrations were not perfectly

harmonic. The anharmonicity slightly washed out the shape of the spectrum and produced

a high-frequency tail. Since the total energy is strictly conserved, the potential energy ACF

has an identical shape (not shown here). As another test, the velocity ACF Ĉvv(f) was

computed from the same simulation run. As expected, it was found to be very similar to

Ĉ∆K∆K(f) except for the frequency doubling effect: Ĉvv(f/2) ≈ g(f/2) ≈ Ĉ∆K∆K(f).
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Figure 1: Results of NVE MD simulations. (a) Normalized power spectrum Ĉ∆K∆K(f) of kinetic

energy fluctuations (filled circles), velocity ACF Ĉvv(f/2) (open circles), and phonon density of

states g(f/2) (solid line). (b) The kinetic energy ACF C∆K∆K(t).

The time-dependent ACF C∆K∆K(t) shown in Fig. 1(b) indicates that the relaxation

time due to phonon scattering is about 0.5 ps. Strictly speaking, this time depends on the

phonon frequency and polarization, but we are only interested in a crude estimate. For

comparison, the period tK of kinetic energy fluctuations can be estimated using a typical

frequency of f̄ = 10 THz [Fig. 1(a)], which gives about tK ≈ 0.1 ps. The factor of five

difference between the two timescales is a measure of anharmonicity of this solid at 100 K.

In the NVE ensemble, the variance of the kinetic energy of the centers of mass of the

particles is19

〈(∆K)2〉NV E =
3N(kT0)

2

2

(

1−
3k

2c0v

)

. (11)

Using 〈(∆K)2〉NV E obtained by the simulation, this equation was inverted to solve for

c0v. The number obtained was 25.06 J/(mol K), which is in good agreement with 24.94

J/(mol K) predicted by the equipartition theorem.

We emphasize that equilibrium temperature fluctuations in the NVE ensemble are un-

defined since quasi-equilibrium states are only sampled by small subsystems of the system
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but not the system as a whole. As already mentioned, one can always formally define an

“instantaneous temperature” T̂ and its fluctuations, but this temperature is identical (up

to units) to the instantaneous kinetic energy per atom and does not provide new physical

insights.

B. NVT simulations

The NVT MD simulations were conducted with two time constants of the Langevin

thermostat: τr = 10 and 100 ps. The simulations times were ttot = 1000τr (10 and 100

ns, respectively). The kinetic and total energy fluctuations are illustrated in Fig. 2. To

facilitate the comparison, the energies were shifted relative to their time average values and

normalized by standard deviations. The plots clearly demonstrate the existence of two dif-

ferent fluctuation processes: fast fluctuations of kinetic energy and much slower fluctuations

of total energy. The fast fluctuations occur on the timescale of phonon frequencies, whereas

the slow fluctuations occur on the thermostat timescale τr. The large disparity between the

two timescales is demonstrated in the insets, where the kinetic energy fluctuations are su-

perimposed on nearly constant total energy. This two-scale behavior is especially manifest

for the slower thermostat (τr = 100 ps) and is a clear signature of quasi-equilibrium states,

in which the system behaves as if it were isolated and thus maintained a constant energy.

Figures 3(a,b) show the results of the timescale analysis discussed in Sec. III B, in which

the energies were averaged over different time intervals θ before computing their fluctuations

(Fig. 3(c) will be discussed later). The variances/covariances 〈(∆T )2〉θ, 〈∆E∆T 〉θ and

〈(∆E)2〉θ are compared with the right-hand sides of Eqs.(1), (2) and (3), respectively. The

deviation is normalized by the value of the right-hand side and plotted against θ. Recall that

the minimum value of θ is the integration step dt, corresponding to instantaneous values of

the energies. Observe that the“instantaneous temperature”fluctuation
〈

(∆T̂ )2
〉

has a 50%

error. This number is consistent with the theoretical prediction in Sec. II that an estimate

of temperature fluctuations from T̂ will be off by a factor of two. As the averaging time θ

increases, the error diminishes. When θ exceeds the phonon relaxation time tr (about 0.5

ps), the error reduces to ± a few percent and remains on this low level until θ approaches

the thermostat time τr. At that point the error increases again since the averaging begins

to smooth the temperature fluctuations. In the limit of θ → ∞, all fluctuations are totally

suppressed and the error goes to 100%. This behavior clearly demonstrates the existence

of a timescale on which the temperature defined by the average kinetic energy satisfies the

fluctuation relation (1). As predicted in Sec. II, this timescale lies between tr and τr where

the system samples quasi-equilibrium states. Comparing Figs. 3(a) and 3(b), we observe

that the range of validity of Eq.(1) widens as the thermostat time τr increases at a fixed tr,

which is again consistent with the definition of quasi-equilibrium states. By contrast, the

errors in 〈∆E∆T 〉θ and 〈(∆E)2〉θ remain negligible on all timescales until θ approaches τr
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Figure 2: Representative fluctuations of the kinetic (blue) and total (orange) energy in the NVT

ensemble with the thermostat time constants (a) τr = 10 ps and (b) τr = 100 ps. To enable

comparison, the energies were shifted relative to the average values and normalized by the standard

deviations. The insets zoom into shorter time intervals to demonstrate the existence of two

different timescales of the fluctuations (fast and slow).

and the averaging begins to suppress the fluctuations. This is also fully consistent with the

theory. As discussed in Sec. II, Eqs.(2) and (3) remain valid for both instantaneous and

quasi-equilibrium values of the fluctuating properties, which is consistent with Figs. 3(a,b).

Turning to the spectral analysis of the fluctuations, Fig. 4 presents the power spectra of

the kinetic and potential energies for the two Langevin thermostats. For the total energy,

the spectrum shows a monotonic decay with frequency and dies off at frequencies larger

than 1/τr, which supports the notion that the total energy fluctuations are primarily caused

by slow exchanges with the thermostat. By contrast, the kinetic energy spectrum consists

of two parts separated by a frequency gap. The low-frequency part is very similar to that

for the total energy, suggesting a strong correlation. The high-frequency part has a shape of

the phonon spectrum (plotted as a function of 2f) and is virtually identical to the spectrum

computed in the NVE ensemble (cf. Fig. 1). Note also that the high-frequency part of the

spectrum is the same regardless of the thermostat time constant. This part of the spectrum
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Figure 3: Normalized difference between the right and left-hand sides of fluctuation relations as

functions of the averaging time interval θ: Eq.(1) (black solid line), Eq.(2) (red dashed line) and

Eq.(3) (blue dotted line) . (a) Langevin thermostat with tr = 10 ps, (b) Langevin thermostat

with tr = 100 ps, (c) natural thermostat.

is dominated by the phonon processes and is independent of how and whether the system

interacts with environment. The gap between the low and high-frequency parts of the

spectrum is where the system is found in quasi-equilibrium states. As expected, this gap

widens as τr increases.

The kinetic-potential and kinetic-total CCFs in the frequency domain are plotted in

Fig. 5. The respective ACFs are also shown for comparison. Note that, at high frequencies,
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Figure 4: Normalized power spectra of kinetic and total energy fluctuations in the NVT ensemble

with a Langevin thermostat for two different time constants (10 and 100 ps). Square and triangle

symbols - kinetic energy, circle and nabla symbols - total energy.

the kinetic-potential energy CCF Ĉ∆K∆U(f) is a mirror image of the kinetic energy ACF

Ĉ∆K∆K(f) [Fig. 5(a)]. This reflects the nearly perfect anti-correlation between the two

energies on the phonon timescale where the energy exchanges with the thermostat are

negligible and the solid behaves as if it were isolated. In the low-frequency range below

the gap, Ĉ∆K∆U(f) and Ĉ∆K∆K(f) practically coincide. This is also expected since the

energy exchanges with the thermostat increase or decrees the kinetic and potential energies

(averaged over the phonon timescale) simultaneously. Although these correlation functions

are only shown for τr = 10 ps, the results for τr = 100 ps look very similar except for a wider

frequency gap. On the other hand, the Ĉ∆K∆E(f) and Ĉ∆E∆E(f) correlation functions are

similar for all frequencies [Fig. 5(b)]. In the low-frequency range, this is consistent with the

correlated behavior of all components of energy during the thermostat exchanges. At high

frequencies, the fast fluctuations of kinetic energy and nearly constant total energy produce

a zero CCF. Since both correlation functions are strongly dominated by low frequencies,

〈(∆E)2〉, 〈∆E∆K〉 and 〈∆E∆T 〉 remain the same on both the instantaneous and quasi-

equilibrium timescales.

Figure 6 shows the correlation functions in the time domain. Again, only the functions

for τr = 10 ps are shown; the result for τr = 100 ps lead to similar conclusions. Two of the

functions accurately follow the exponential relations

C∆E∆E(t) = 〈(∆E)2〉e−t/τr (12)

and

C∆E∆K(t) = 〈∆K∆E〉e−t/τr (13)
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expected for a system interacting with a Langevin thermostat. By contrast, the kinetic

energy ACF C∆K∆K(t) only follows the exponential relation

C∆K∆K(t) = 〈(∆K)2〉qe
−t/τr , t ≫ tr, (14)

on the timescale t ≫ tr. Here, 〈(∆K)2〉q = 1.786 eV2 is the value obtained by extrapolation

to t → 0. For shorter times, C∆K∆K(t) is a superposition of Eq.(14) and fast-decaying

oscillations representing phonon processes. This short-range part is illustrated in the inset

and is the same for τr = 100 ps (not shown). Furthermore, this part is identical to C∆K∆K(t)

obtained in the NVE ensemble (cf. Fig. 1). This is illustrated in Fig. 7 by superimposing

the NVT and NVE ACFs, which show accurate agreement.

It follows that the entire function C∆K∆K(t) computed in the NVT ensemble can be

presented in the form

C∆K∆K(t) = [C∆K∆K(t)]NV E + 〈(∆K)2〉qe
−t/τr , (15)

where the first term represents the short-range correlations. Equation (15) shows the same

timescale decomposition as already observed in the spectral form. 〈(∆K)2〉q represents

the quasi-equilibrium timescale and can be used to calculate the temperature fluctuations.

Taking Eq.(15) to the limit of t → 0, we obtain

〈(∆K)2〉 = 〈(∆K)2〉NVE + 〈(∆K)2〉q. (16)

Inserting 〈(∆K)2〉 and 〈(∆K)2〉NVE from Eqs.(8) and (11), respectively, we arrive at

〈(∆K)2〉q =
9Nk3T 2

0

4c0v
. (17)

The temperature is defined by Eq.(5), from which

〈(∆T )2〉 =
4〈(∆K)2〉q
9N2k2

. (18)

Inserting 〈(∆K)2〉q from Eq.(17) we exactly recover the fluctuation relation (1).

As an additional numerical test, c0v was extracted from Eq.(17) to obtain c0v = 24.89

J/(mol K) in good agreement with the independent calculation in Sec. IIIA.

C. Additional tests

To demonstrate that the results reported in the previous sections are not artifacts of the

Langevin thermostat, selected simulations were repeated using the Nose-Hover thermostat

implemented in LAMMPS.21 The results (not shown here for brevity) were found to be in full

agreement with the simulations employing the Langevin thermostat, including the timescale
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Figure 5: Results of NVT MD simulations with a Langevin thermostat (τr = 10 ps). (a) Com-

parison of the kinetic energy ACF and kinetic-potential energy CCF in the frequency domain.

Note that both spectra have the same shape but opposite sign at high frequencies and coincide

at low frequencies. (b) Comparison of the total energy ACF and kinetic-total energy CCF in the

frequency domain. Both functions show a similar monotonic decrease with frequency and die off

above 1/τr.

separation and validation of the fluctuation relation (1) with temperature computed in

quasi-equilibrium states.

Both the Langevin and Nose-Hover algorithms implement virtual thermostats that cor-

rectly sample the canonical distribution but still differ from a physical thermostat. The

latter is commonly associated with a large volume of some inert substance possessing a

large heat capacity and separated from the system by a physical interface. The energy

exchange with the thermostat is then controlled by heat conduction across the interface,

which is different from random perturbations of atoms uniformly across the system as in

the virtual thermostats. To eliminate any possibility that the virtual thermostats could

affect our conclusions, efforts were taken to model a “natural” thermostat and show that
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Figure 7: The NVT kinetic energy ACF for a Langevin thermostat with τr = 10 ps (red curve)

superimposed on the NVE kinetic energy ACF (blue points). The inset shows a zoom into the

short-time region.

the conclusions remain valid. By a “natural” thermostat we mean a simulation block much

larger than our system and separated from the latter by a physical interface.

As the first step, the NVE MD simulations were executed as above (Sec. IVA), but

this time, atoms within a relatively small cubic block selected at the center of the system

were treated as the system itself, whereas the rest of the simulation cell was considered

a thermostat. Accordingly, the energy correlation functions were only computed for the
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Figure 8: The anatomy of the “natural” thermostat implemented in this work. (a) Vertical cross-

section of the simulation block revealing the cubic system under study at the center, the thermostat

regions above and below the system, and a fixed shell enclosing both the system and the thermo-

stat. The entire assembly is much longer in the vertical (z) direction than shown. (b) and (c)

show horizontal (x-y) cross-sections at the levels indicated by the arrows.

small subsystem. Repeating the same statistical analyses as above, it was confirmed that

the phonon relaxation time and the thermostat exchange time were significantly different,

creating a large time interval (accordingly, a frequency gap in the spectrum of kinetic

energy) in which the system existed in quasi-equilibrium states. The temperature defined

on this quasi-equilibrium timescale was found to satisfy the fluctuation relation (1).

But even this test was not found completely satisfactory. The volume of the inner

lattice block selected as our system was not strictly fixed but rather fluctuated during the

simulations. Strictly speaking, the ensemble implemented on the system was NPT (with

zero pressure) rather than NVT. Although the fluctuation relations (1) and (2) remain valid

in the NPT ensemble as well,8 the simulations with the virtual thermostats were conducted

in a different (NVT) ensemble.

To make sure that the comparison is made for the same ensemble, the natural thermostat

was redesigned as shown in Fig. 8. A cubic lattice block with an edge of about 2 nm (about

1400 atoms) was embedded at the center of a larger periodic block with the dimensions

3.6× 3.6× 72 nm (80,000 atoms). This relatively small inner lattice block was the system

to be studied. Atoms within a 0.8 nm shell parallel to the long (z) direction were fixed

in their positions. The remaining atoms above and below the cubic block represented the

thermostat and were subject to the following constraint: they could only vibrate in the x

and y directions while their z-coordinates were fixed. As a result, the cubic system was fully

surrounded by atoms incapable of motion in the directions normal to the faces of the cube.
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The volume of the system was thereby fixed, imitating rigid walls of a calorimeter. At the

same time, the thermostat atoms above and below the cube could exchange energy with it

by heat conduction across the interfaces mediated by transverse phonons (polarized in the

x-y plane). This heat exchange controlled the system temperature. The entire assembly

was brought to thermal equilibrium at the temperature of 100 K.¶ As usual, the lattice

parameter was chosen to ensure zero mechanical stress in the system. Once equilibrium was

reached, a 20 ns long NVE MD simulation was performed to compute statistical properties

of fluctuations as described above.

Fig. 3(c) shows the normalized differences between the variances/covariances 〈(∆T )2〉θ,

〈∆E∆T 〉θ and 〈(∆E)2〉θ computed with the natural thermostat and the right-hand sides of

Eqs.(1), (2) and (3), respectively. The results are qualitatively the same as obtained with

the Langevin thermostat [Fig. 3(a,b)]. The deviation from the temperature fluctuation

relation (1) is again about 50% when the instantaneous temperature is used (θ = dt) and

reduces to approximately ± 10% when the temperature is defined by the kinetic averaged

over the time intervals θ >
∼ 0.1 ps. When θ reaches a few ps or higher, the error increases

again due to the smoothing of fluctuations by averaging over timescales comparable with

the thermostat time. We can conclude that the latter must be on the order of 10 ps. Thus,

the quasi-equilibrium timescale for this thermostat is between ∼ 0.1 and ∼ 10 ps. In this

time interval, the temperature fluctuation relation (1) is approximately followed, although

not as accurately as with the Langevin thermostat. This is understandable given that the

system in the natural thermostat was a factor of 20 smaller and subject to a size effect.∗∗

Upscaling of both the system and the thermostat would likely reduce the error but was not

pursued in this work.

Spectral analysis of energy fluctuations has shown that the system closely follows the

same trends as for the Langevin and Nose-Hoover thermostats. As one example, Fig. 9

compares the power spectra of kinetic energy for the natural and Langevin thermostats.

The high-frequency parts of the spectra coincide almost perfectly. The low-frequency parts

controlled by energy exchanges with the thermostat also have similar shapes. In fact, for

the natural thermostat, this part of the spectrum is very close to that for the Langevin

thermostat with τr = 10 ps. This confirms the above estimate of the time constant of the

natural thermostat. This also shows that the time constants of the Langevin thermostat

chosen for this study were quite realistic. Overall, we can conclude that the association of

the temperature fluctuation relation (1) with the quasi-equilibrium timescale has a generic

validity and does not reflect some specific features of thermostats.

¶ Since the partially constrained atoms forming the thermostat were thermally active only in the x and y

directions, their temperature was computed as 〈K〉 /Nk. In the system itself, the temperature was as

usual 2 〈K〉 /3Nk.
∗∗ The phonon mean free path at this temperature is estimated to be about 1.3 nm, which is comparable

to the system size.
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Figure 9: Power spectra of kinetic energy from NVT MD simulations of systems connected to a

natural thermostat and two Langevin thermostats with the time constants of 10 and 100 ps.

V. CONCLUSIONS

We have addressed the long-standing controversy regarding the meaning, or even exis-

tence, of temperature fluctuations in canonical systems. Over the past decades, the tem-

perature fluctuation relation (1) appearing in many textbooks and papers5–8,27 has received

different interpretations, including the assertion that this equation is meaningless1–3 or at

best a mere formality.4,9,10 We have demonstrated that Eq.(1) is a physically meaningful re-

lation that remains valid as long as the temperature is defined on an appropriate timescale.

This interpretation of temperature fluctuations has been supported by MD simulations of

a quasi-harmonic solid connected to a thermostat.

The simulations have confirmed the existence of two different fluctuation timescales in

canonical systems. The shorter timescale is associated with the time required for a small

isolated system to reach thermodynamic equilibrium. For an atomic solid studied here, this

time tr is controlled by phonon scattering. In this work, this time was about 0.5 ps at the

temperature of 100 K. The longer timescale arises due to slow energy exchanges between the

system and the thermostat. Such exchanges may occur by a variety of physically different

mechanisms, such as heat transfer across the system/thermostat interface. For the natural

and virtual thermostats studied here, the energy exchange time τr was on the order of 10

to 100 ps. Thus, τr is orders of magnitude longer than tr. At the intermediate timescale

tq (tr ≪ tq ≪ τr) the system remains in internal thermodynamic equilibrium and can be

treated as if it were disconnected from the thermostat. In such quasi-equilibrium states, it

has well-defined intensive properties such as temperature, pressure and chemical potential.

In particular, temperature can be defined through the equipartition relation using the
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kinetic energy averaged on the quasi-equilibrium timescale tq. It has been shown that

fluctuations of the temperature so defined do follow Eq.(1). Attempts to define temperature

through kinetic energy averaged over shorter (< tr) or longer (> τr) time intervals result in

significant deviations from Eq.(1). In particular, the “temperature” obtained by averaging

the kinetic energy over a long time t ≫ τr does not fluctuate and approaches the thermostat

temperature T 0.

The timescale separation is also reflected in the shape of the kinetic energy ACF in the

frequency domain, showing two peaks separated by a frequency gap. The peak at f = 0

arises from energy exchanges with the thermostat, whereas the second peak is associated

with phonon processes and has the shape of the phonon density of states (plotted against

2f). The frequency gap represents the quasi-equilibrium states. The potential energy ACF

has a similar structure and can also be used for the identification of quasi-equilibrium states.

Thus, measured or computed energy spectra of a canonical system carry all information

about the timescale on which temperature fluctuations are well-defined and follow Eq.(1).

The conclusions of this work were tested by MD simulations with two virtual thermostats

(Langevin and Nose-Hoover) and a natural thermostat consisting of large crystalline regions

surrounding the system. In the future, a similar study could evaluate the validity of pressure

fluctuation relations for canonical systems.6,8,28
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