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The structure of binary Ti62Cu38 metallic glass was investigated under pressures up to 33.8 GPa 

using the pair distribution function (PDF) analysis based on the high energy X-ray scattering and 

reverse Monte Carlo (RMC) simulations. At global scale, its relative volume showed a 

continuously smooth curve as a function of pressure. The isothermal bulk modulus of Ti62Cu38 

metallic glass was estimated as B0 = 132 (3) GPa with B0' = 5.8 (0.4). At local scale, atomic 

packing structure under compression conditions, which was extracted from RMC simulations, 

showed that the topological short-range order was dominated by the deformed icosahedron 

polyhedra and basically maintained stable. From the relationship between relative volume and 

changing ratio of the atomic separation distances, the real space fractal dimensionality of this 

metallic glass was determined as about 2.5 for all of first four peaks, and this experimental result 

revealed the consistent nature of fractal feature on degree of self-similarity in this sample within 

the entire experimental pressure range.  
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The fractal feature has been suggested in glass system for many years. Very recently, links 

between the structures of metallic glasses and fractal dimensionality under high pressure 

conditions were discovered.1, 2, 3 A power law exponent of 2.5 on the relationship between 

density and the so-called the ‘first strong diffraction peak’ in reciprocal space was proposed as a 

universal feature for metallic glasses under compression.2, 3 Furthermore, the fractal 

dimensionality of metallic glasses in real space was found to remain as about 2.5 as well, which 

was calculated from the atomic nearest-neighbor distance in pair distribution function (PDF) in 

two typical binary metallic glasses of Cu-Zr and Ni-Al systems up to 20 GPa from classical 

molecular dynamics (MD) simulations.1 More interestingly, the pressure dependence of cross-

over feature on the power law exponent shifting from 2.5 to 3 with increasing atomic separation 

distance was proposed, which related to that pressure tune the correlation length change based on 

continuum percolation model.1 However, no experimental PDF data was reported to exam the 

real space fractal dimensionality for any metallic glass system so far, and the validity of these 

fractal features in real space for metallic glass under high pressure conditions need to be checked 

by measured data in addition to the MD simulations. Based on this motivation, a typical binary 

metallic glass Ti-Cu system, which has been studied at ambient conditions for many years,4-6 was 

selected as model for the study of structure and real space fractal dimensionality under pressure 

conditions in this paper.  

 

Due to the complexity of experimental and analysis procedure, investigation on atomic level 

structure in real space for non-periodic systems under high pressure conditions are exceedingly 

rare. For example, the limited range of Q in previous high pressure X-ray scattering 

measurement restricted the accuracy of Fourier transforms to real space PDF, therefore the MD 
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simulations instead of measured PDF was used to study the structure evolution of metallic glass 

upon compression.1 The PDF method is able to provide valuable insights into the local atomic 

structure, and recently became advanced structure analysis technique combined with synchrotron 

high energy X-ray scattering measurement with high Q range.7, 8 Since the PDF method provides 

real space structural information in one dimension, simulations of the total scattering data using 

modeling techniques, such as reverse Monte Carlo (RMC), are extremely useful for visualizing 

the three-dimensional atomic arrangement	of liquid and amorphous materials.9, 10 Furthermore, 

combined density information derived from RMC fitting with measured PDF, fractal 

dimensionality of the system, if exists, can be determined in real space.  

 

The total X-ray scattering data for metallic glass Ti62Cu38 under high pressure at room 

temperature were collected at the sector 11-ID-B beamline at the Advanced Photon Source, 

Argonne National Laboratory, using an incident beam with a size of 150 µm×150 µm and a high 

energy of 86.7 keV. A 2D large amorphous-silicon-based flat-panel detector was used to record 

the scattering X-ray. A sample with a dimension of 150 µm ×150 µm ×20 µm was located in the 

sample chamber, which is a T301 stainless steel gasket with a 270 µm diameter hole between the 

two anvils of the diamond anvil cell. The pressure medium was 1:4 methanol/ethanol, and 

pressure was measured using ruby fluorescence method.11 

 

Raw two dimensional image data were processed using the Fit-2D12 software with a masking 

strategy 13  to mask the diamond peaks to obtain one-dimensional scattering data. After 

subtracting the contributions from the sample environment and background, the structure factor 
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S(Q) and reduced PDF G(r) were extracted using the PDFgetX2 program,14 which performs a 

numerical Fourier transformation between S(Q) and G(r) according to:  

𝐺 𝑟 = 4𝜋𝑟𝜌! 𝑔 𝑟 − 1 = !
!

𝑄 𝑆 𝑄 − 1!
! sin 𝑄𝑟 𝑑𝑄                                  (1) 

where ρ0 is the average atomic number density and g(r) is the pair distribution function. 

 

The RMC method was performed using a cubic box with periodic boundary conditions 

containing 10000 atoms to fit the X-ray scattering data for the Ti62Cu38 metallic glass using 

RMC++.15 A random initial configuration with a number density of 0.0656 Å-3 was used for the 

ambient pressure RMC fitting, where the density was based on measured value by the 

Archimedes method. At high pressure, the number densities were determined by adjusting the 

simulation box to provide the best match between the RMC and the experimental data. 

 

Changes in the structure factor S (Q) and the corresponding PDF for Ti62Cu38 metallic glass at 

various pressure conditions are displayed in Fig. 1. The splitting of the second peak in both S (Q) 

and PDF observed at each measured pressure is the characteristic indicators for conventional 

amorphous systems.16, 17 In reciprocal space, the relation between the first peak position Q1 and 

the second peak position Q2, as well as Q2shoulder which is the position of the shoulder of the 

second peak, was proposed to relate to specific types of short-range order.18 For example, the 

perfect icosahedron short-range order characterized by Q2 / Q1 is 1.71 and Q2shoulder / Q1 is 2.04,19 

and the short-range order in liquid pure Ti characterized by Q2 / Q1 is 1.76 (0.01) and Q2shoulder / 

Q1 is 1.92 (0.01).20 Two Gaussian functions are used to fit the second peak, and the results show 

that the ratio of the peak positions Q2 / Q1 remains as about 1.69 (0.01) and Q2shoulder / Q1 as 



5	

	

about 1.95 (0.01), indicating continuing existence of somewhat distorted icosahedral short-range 

order in this Ti62Cu38 metallic glass.19, 20 

 

With increasing pressure, the first peak position Q1 of the structure factor S (Q) in reciprocal 

space shifts towards higher Q, while the nearest-neighbor distance r1 in real space shifts to 

shorter distances. These characteristic peak shifts reflect the fact of the volume shrinkage and the 

density increase caused by high pressure. In this work, the density information is derived from 

RMC simulations. The RMC fit quality at various pressures is also presented in Fig. 1, which 

displays a good match between the fitting and experimental data. The fitting error of the derived 

density at each pressure point is within 2.7%. The relative volume V/V0 of the binary metallic 

glass Ti62Cu38 as a function of pressure are presented in Fig. 2. About 15% decline in volume is 

observed from ambient conditions to 33.8 GPa. Fitting the data by using the third-order Birch-

Murnaghan equation of state (EOS), it is shown that the isothermal bulk modulus of Ti62Cu38 is 

B0 = 132 (3) GPa when B0' = 5.8 (0.4). Changes in the relative volume as a function of pressure 

exhibits a continuously smooth curve, indicating no-detectable phase transition exists within the 

pressure range investigated in this work. 

The first peak position Q1 and the nearest-neighbor distance r1 as a function of pressure are 

shown in inset (a) and (b) of Fig. 2, respectively. The changes in the density related to the first 

strong peak shifts in both reciprocal space and real space was discovered to follow the power 

law:1-3 

𝑉
𝑉! =

𝑄!"
𝑄!!

!!"
          or           𝑉 𝑉! ∝

𝑟!!
𝑟!"

!!"  ,                      (2) 
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where V0 is the average atomic volume, Q10 is the first peak position of structure factor S(Q) and 

r10 is the nearest-neighbor distance under ambient pressure conditions; V, Q1p and r1p are the 

corresponding values under high pressure conditions; and DfQ and Dfr are the power exponent 

determined by changing ratio of Q1 and r1, respectively. According to the exponent fitting of 

power law in formula (2), DfQ1 of 2.50 (0.01) is determined in reciprocal space by using Q1 value 

change. In real space, Dfr1 is determined as 2.52 (0.04) according to nearest neighbor distance r1 

change, as shown in Fig. 3 (a) and (b), respectively. These results are close to the previous 

reported values of DfQ1 = 2.501, 2 and Dfr1 = 2.54 in other metallic glass systems from MD 

simulations.1 The non-integer DfQ and Dfr reveal these fractal dimensionalities as scale 

parameters, which reflect the degree of self-similarity in medium range and short range ordering 

in currently studied metallic glass system, and are well agreed with the previous reports.1, 2 

 

From real space PDF curves at various pressure conditions, fractal dimensionalities were 

determined by normalized positions of the second peak r2, the third peak r3, and the fourth peak 

r4 as 2.44 (0.05), 2.59 (0.02), and 2.48 (0.02), respectively, as shown in Fig. 3 (b). The roughly 

consistent fractal dimensionality as about 2.5 is observed, which surprisingly extend far beyond 

the nearest neighbor range in real space in this metallic glass system. This is different from the 

result in previous MD simulations, which suggested power law exponent cross-over phenomenon 

could be common in metallic glass systems.1 It is well-known the limitation of classical MD 

simulation which is strongly depend on quality of potential. As pointed out in the supplementary 

materials in previous report,1 the embedded-atomic method (EAM) type potentials used in its 

MD simulations, normally are not tested at high pressure conditions, which may result in errors. 

Thus the simulated cross-over of power law exponent from about 2.5 to 3 with increasing atomic 
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separation distance in real space might not be the general feature in metallic glass system, at least 

it is not the case for this Ti-Cu glass system. Instead, from the current measured PDF data, the 

real space fractal dimensionality could remain constant as about 2.5 over large pair distribution 

range up to above 30 GPa conditions. This consistent nature of fractal dimensionality from 

various PDF peaks in real space reflects the constant degree of self-similarity in various building 

block domains in this system, which actually is working well in much bigger atomic separation 

distance range than that in previous MD simulations.1 This discovery improves the 

understanding for real space fractal feature in metallic glass, and offers practical way for the 

challenging density estimation for non-periodic systems under high pressure conditions by using 

their measured PDF, without the concerning of the cross-over in its power law exponent when 

pressure is close to 15 - 20 GPa.1 

 

For the PDF peaks higher than the fourth one, the relations between Vp/V0 and rip/ri0 (i > 4) 

become featureless and could not be fitted according to Eq. (2). This might be related to the 

limitation effect of correlation length and need more measured data to prove its generality in 

metallic glass systems. The asymptotic behavior of these PDFs at higher r range could be related 

to the fractal feature, which was proposed by Ma et al..21 A sinusoidal function was introduced to 

describe the oscillatory correlation in far end of the PDF curves in real space, following the early 

fractal model on colloidal system.22 

𝑔 𝑟 = 𝐴 𝑟!!!! 𝑒𝑥𝑝 −𝑟 𝜉 𝑠𝑖𝑛 𝑄!𝑟 − 𝜙 + 1,                    (3) 

where A is amplitude, D = 3 is the dimensionality in 3D Euclidean space, ξ is the cutoff length, 

Q1 is the position of the first strong diffraction peak in reciprocal space, and ϕ is a phase. In 
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Ti68Cu32 metallic glass system, Df = 2.51 applied in this equation is the average of Dfi, where i = 

1, 2, 3, 4. 

 

However, this fractal model of asymptotic behavior was challenged by a recent study based on 

binary alloy liquid cases,23 in which the asymptotic behavior of their PDFs could also be fitted 

well by Ornstein-Zernike (OZ) model, which is a pole analysis for binary system.24, 25 In OZ 

approach, asymptotic behavior of PDF could be described as 

𝑔 𝑟 = 2 𝒜 𝑟 𝑒𝑥𝑝 −𝑟 𝜀 𝑠𝑖𝑛 𝑄!𝑟 − 𝜃 + 1,            (4) 

where 𝒜 is amplitude, θ is a phase and ε is decay length. As pointed out previously,23 the only 

significant difference between Eqs. (3) and (4) is the power exponent of r. 

 

Using Eqs. (3) and (4), 3-set of typical g(r) curves under various pressure conditions were 

selected for the fitting as shown in Fig. 4. It is clear that both equations mathematically fit almost 

equally well for the high r range from the fourth peak to 29.99 Å, as are indexed by the very 

closed values on the goodness-of-fit parameters R2. All the fitting parameters are summarized in 

Table I. The fitting results present a tradeoff effect, i. e. the bigger Df is, the smaller cutoff or 

decay length would be. It is noted that physical models corresponding to two equations are quite 

different as discussed previously.23 Therefore, good fitting of both equations suggests that the 

proposed asymptotic decay fitting21 is not the practice method to obtain physical reliable 

parameters for fractal dimensionality. Instead, the method of relative change of individual peak 

position in real space PDF could provide more stable scale invariant for fractal dimensionality. 
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It is interesting to compare the fractal feature between Ti68Cu32 metallic glass system under high 

pressure with other available high pressure case, such as metallic system of liquid gallium. The 

fractal dimensionality in Ti68Cu32 metallic glass system is determined as about 2.5 from the first 

four PDF peaks uniformly. In contrast, in liquid gallium, the power exponent Df extracted from 

both third and fourth peaks are smaller than 3, whereas, from both first and second peaks are 

bigger than 3, estimated from the measured data.26 The corresponding parameters of fractal 

dimensionality in liquid Ga depend on PDF peak positions, which demonstrate its unique 

physical feature and indicates a more complicated feature than metallic glass cases. Further 

investigations on liquid Ga under pressure is underway and will be reported elsewhere. 

 

Information on the atomic packing characteristics, such as the bond length, atomic coordination 

number and local atomic environment, can be extracted from the RMC atomic configurations 

using the Voronoi tessellation technique.27, 28 The Voronoi polyhedra are indexed by <n3, n4, n5, 

n6 …> to specify the polyhedron type and describe the local environment of the associated 

central atom, where ni denotes the number of i-edged faces of a Voronoi polyhedron. 

 

The bond length derived from the Voronoi polyhedron provides the information on an 

interatomic distances shortening trend as the pressure increasing, as shown in Fig. 5. In particular, 

the bond length ratio between the solute and solvent atoms, referred to as the effective atomic 

size ratio, controls the coordination number (CN).29, 30 The effective atomic size ratio in the 

current studied metallic glass Ti62Cu38 is 1.02, and this ratio remains nearly constant with 

increasing pressure. The stable effective atomic size ratio generally leads to that the dominant 

CNs within the first nearest neighbor shell, which are dominated by CN = 12, 13 and 14 as 
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shown in Fig. 6 (a), do not change with increasing pressure. By the same token, the average CN, 

Ti-centered average CN and Cu-centered average CN in this metallic glass Ti62Cu38 are nearly 

constant at 13.06 (0.04), 12.86 (0.06), and 13.39 (0.07), respectively, in the first nearest neighbor 

shell. This modeling result is similar to the result of other metallic glass, such as Pd81Si19 system 

upon compression above 30 GPa, where the CN remains unchanged with increasing pressure as 

well.31 Additionally, it is also found that the CN determined by effective atomic size ratio causes 

that Cu-centered average CN is greater than the Ti-centered CN.30	 

 

The effective atomic size ratio is also correlated with the type of the coordination polyhedra 

under pressure.30 The nearly unchanged effective atomic size ratio leads to a fact that the 

frequencies of the dominant coordination polyhedral types are similar and they only slightly 

fluctuate with increasing pressure. The frequencies of the dominant Voronoi polyhedra within 

the first nearest neighbor shell under three representative pressures 1.0 atm, 18.9 GPa and 33.8 

GPa conditions are illustrated in Fig. 6 (b). Note that there is a one-to-one correspondence 

between the Voronoi index and the coordination polyhedron. Voronoi polyhedra with indices < 0, 

2, 8, 1 > and < 0, 0, 12, 0 > corresponding to the deformed prism and icosahedron polyhedra, 

respectively, both contribute to a small fraction in this system. The polyhedra of deformed 

crystal feature, which are indexed by < 0, 3, 6, 4 >, < 0, 3, 6, 5 >, < 0, 4, 4, 6 > and < 0, 2, 8, 5 >, 

contribute 18.1 % and 17.0 % to the entire system, at 1.0 atm and 33.8 GPa, respectively. In 

contrast, at 1.0 atm and 33.8 GPa, the deformed icosahedron polyhedra indexed by < 0, 2, 8, 2 >, 

< 0, 3, 6, 3 >, < 0, 1, 10, 2 >, < 0, 2, 8, 3 >, < 0, 2, 8, 4 >, < 0, 1, 10, 3 > and < 0, 1, 10, 4 > 

amount to the large fractions of 30.3 % and 28.5 %, respectively. It clearly indicates that the 

deformed icosahedron is the main topological short-range order in the Ti62Cu38 metallic glass, 
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which is consistent with the results obtained from the Q2 / Q1 and Q2shoulder / Q1 ratios analyses. 

At the local scale, the structure of the Ti62Cu38 metallic glass is basically stable as a function of 

pressure. 

 

In summary, Ti62Cu38 metallic glass was investigated using in-situ synchrotron high energy X-

ray scattering combined with the PDF analysis and RMC fitting under high pressure. The relative 

volume as a function of pressure was determined as a continuously smooth curve. No major 

changes existed in the effective atomic size ratio, CN and dominant polyhedron type at various 

pressure conditions, which indicated the absence of pressure-induced polyamorphism. Moreover, 

the real space fractal dimensionality as index of degree of self-similarity in this system remained 

constant as about 2.5, revealing its intrinsic fractal nature within large atomic separation distance 

up to about 10.5 Å in entire pressure region up to 33.8 GPa. 
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Captions 

Fig. 1. (a) Experimental structure factor S(Q), and (b) pair distribution function g(r) of the 

Ti62Cu38 metallic glass (blue solid line) at various pressure conditions, with the corresponding 

RMC fits (red open circle).  

 

Fig. 2. Relative volume V/V0 of the Ti62Cu38 metallic glass as a function of pressure derived from 

the RMC fit. Blue solid line shows the data fitting using the third-order Birch-Murnaghan EOS. 

Inset (a) Changes in the ratio of the first peak position Q1 and (b) nearest-neighbor distance r1 

induced by pressure, respectively.  

 

Fig. 3. The relative volume V/V0 as a function of (a) the ratio of the first and the second peak 

positions in reciprocal space, and (b) the ratio of peak position ri in real space, where i = 1, 2, 3 

and 4.  

 

Fig. 4. The fitting results of the asymptotic decay at large r range for 3-set of typical g(r) using 

fractal and OZ approach, respectively. The thick gray line presents the g(r) from experiment. The 

thin red and blue line show fits of fractal and OZ model, respectively.  

 

Fig. 5. Bond distance as a function of the pressure. The Cu-Cu, Ti-Ti and Ti-Cu bond length are 

represented by open circles, squares and open stars, respectively.  
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Fig. 6. (a) CN distributions and (b) fractions of dominant coordination polyhedra in Ti62Cu38 

metallic glass under selected pressure conditions of 1.0 atm, 18.9 GPa and 33.8 GPa. Similar 

trends are found at other pressure points. Note that only the polyhedra with a fraction more than 

2% are shown. 

 

TABLE I. The parameters obtained by fitting 3 set of selected g(r) to Eq. (3) based on fractal 

model and Eq. (4) based on OZ model. 

  Fractal model OZ model 

Pressure Range (Å) R2 ξ (Å) A ϕ R2 ε (Å) 𝒜 θ 

1.0 atm 8.39-29.99 0.958 3.47 (8) 4.6 (3) 0.27 (1) 0.958 4.14 (9) 4.6 (3) 0.27 (1) 

18.9 GPa 8.09-29.99 0.969 3.25 (6) 5.4 (3) 0.26 (1) 0.969 3.85 (8) 5.3 (3) 0.26 (1) 

33.8 GPa 7.99-29.99 0.957 3.06 (7) 6.7 (5) 0.26 (1) 0.958 3.60 (9) 6.6 (5) 0.26 (1) 
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