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We provide analytical and numerical evidence of a spin-triplet FFLO superconductivity in the
itinerant Kitaev-Heisenberg model (anti-ferromagnetic Kitaev coupling and ferromagnetic Heisen-
berg coupling) on the honeycomb lattice around quarter filling. The strong spin-orbit coupling in
our model leads to the emergence of 6 inversion symmetry centers for the Fermi surface at non
zero momenta in the first Brillouin zone. We show how the Cooper pairs condense into these non-
trivial momenta, causing the spatial modulation of the superconducting order parameter. Applying
a Ginzburg-Landau expansion analysis, we find that the superconductivity has three separated de-
generate ground states with three different spin-triplet pairings. Exact diagonalizations on finite
clusters support this picture while ruling out a spin (charge) density wave.

Introduction- Mott insulator and high-Tc superconduc-
tor are closely related since the latter can be obtained
from doping the half-filled Mott insulator [1–5]. One
key element in superconductivity is the emergence of off-
diagonal long-range order which results in the Bardeen-
Cooper-Schrieffer ground state where Cooper pairs have
a zero net momentum. The η pairing, proposed by
C. N. Yang [6], binds electrons with momenta k and
π − k, and therefore involves a superconductivity with
non-zero Cooper pair momentum. This superconductiv-
ity is referred to as the Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) superconductivity [7, 8]. The FFLO supercon-
ductivity, which supports a spatial modulation for the
electron pairing due to the non-trivial Cooper pair mo-
mentum, was first proposed in the ’60s in a system with
significant Zeeman interaction, which shifts the Fermi
surfaces for the up and down spins. Experimental realiza-
tions of FFLO superconductivity have been proposed, for
example, in heavy-fermions [9], ultra-cold atom systems
[10–16], BEC analogues [17] and in magnetic analogue
materials [18–27]. However, this exotic phase of matter
has been observed only in a small number of systems so
far[28, 29]. Indeed, the large magnetic field has a strong
pair-breaking effect and limits the stability region of the
FFLO phase. Models without explicit time reversal sym-
metry breaking have been considered in the context of su-
perfluid 3He[30] and unconventional superconducting[31]
films. Here, we propose a theoretical model where the
time reversal symmetry is not explicitly broken and purely
two dimensional (as opposed to Refs. 30 and 31). Thus
our approach is suitable for the realization of the FFLO
superconductivity in the context of the two-dimensional

“iridate” materials.

Lately, the studies of “iridates”, a family of materials
with significant spin-orbit coupling, have aroused great
interests [32–34] partly because of the emergence of topo-
logical Mott physics [35] and its connection to the Ki-
taev anyon model [36, 37]. It has been shown both
theoretically and experimentally that the existence of
zigzag-magnetic order results from a Kitaev-Heisenberg
magnetic coupling in the two-dimensional sodium iridate
family [38–42]. An additional symmetric-off diagonal ex-
change term can also be added in the analysis [43]. Dop-
ing these spin-orbit Mott insulators has been addressed
theoretically [44–46] and has started to attract some ex-
perimental attention [47]. Here, we address supercon-
ductivity in the presence of a large Hubbard interaction
and adopt a localized magnetism point of view where
the Kitaev-Heisenberg spin Hamiltonian originates from
super-exchange processes [48]. Such magnetic system
with spin-orbit coupling and Kitaev-Heisenberg physics
can also be realized in cold atom systems [49–53]. Using
both analytical and numerical methods, we provide con-
vincing evidences of a spin-triplet FFLO superconductor
thanks to the spin-orbit coupling close to quarter-filling
without breaking the time-reversal symmetry. This pro-
vides an exotic scenario to reach a spin-triplet FFLO su-
perconductor without breaking time-reversal symmetry
with applications in quantum materials and ultra-cold
atoms.

Before showing detailed derivations, we summarize the
main points. The Kitaev-Heisenberg coupling entails
spin-triplet pairing that engenders spinor-condensates
[54–56] in momentum space. One important ingredient
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Figure 1. (a). The Kitaev-Heisenberg model on the honey-
comb lattice: in Eq. 1 α denotes respectively x on the red
links, y on the green links and z on the blue links each of
them corresponding to rx = (−

√
3
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,− 1

2
); ry = (

√
3
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,− 1

2
); rz =

(0, 1); the lattice vectors are Rx = (−
√

3
2
, 3
2
),Ry =

(−
√
3
2
,− 3

2
),Rz = (

√
3, 0). We have taken the lattice spacing

to be 1. (b). The first Brillouin zone, in which, apart from the
center of the FBZ, there are six additional centers of inversion
symmetry for the Fermi surface of the tight binding part. (c).
The band structure of the spin-orbit model (t = 0, t′ = 1). M,
O, K, K’ are denoted in (b). When the chemical potential is
fixed, electrons on the Fermi surface form triplet Cooper pairs
with non-trivial momentum Qx, Qy and Qz. Qα = 2qα. (d)
Energy color plots for the lowest band in units of t′ = 1.

here is the appearance of 6 inversion symmetry centers for
the Fermi surface at non zero momenta in the first Bril-
louin zone. This will allow the Cooper pairs with triplet
pairing to condense at non-trivial momenta. In Fig. 1,
we show the band structure of the spin-orbit coupling
model and the symmetry centers of the Fermi surface.
Electron pairs around these symmetry centers with non-
trivial momenta qα form spin-triplet pairs with Cooper
pair momenta Qα = 2qα. We shall study the super-
conductivity by calculating the Cooper pairs’ response
in the Ginzburg-Landau theory for both spin-triplet and
spin-singlet pairing. We provide compelling evidence
of a triplet FFLO superconductor through a Ginzburg-
Landau expansion and an exact diagonalization analysis.

Model Hamiltonian- For the doped Kitaev-Heisenberg
model, we consider the following Hamiltonian on the hon-

Figure 2. The graphical representation of the 3 times degen-
erate ground state wave function of the FFLO superconduc-
tivity around quarter-filling. The bold line signifies a spin-
triplet pairing on the link ∆α

ij with the spin-triplet type α
(Eq. 4) in correspondence with the type of the link ((a) x red
(b) y green and (c) z blue). The dashed line represents the
same pairing but with a π phase (opposite sign in the wave
function). Here, we only show the nearest-neighbor electron
pairing. Long range electron pairing exists and depends on
the correlation length of the superconductor [60].

eycomb lattice:

H =H0 +HJ

H0 =−
∑
〈i,j〉

Pi[tc
†
iσdjσ + t′c†iσdjσ′τασσ′ + h.c.]Pj

HJ =J1
∑
〈i,j〉

Si · Sj + J2
∑
〈i,j〉

[Sαi S
α
j − S

β
i S

β
j − S

γ
i S

γ
j ],

(1)

here i and j refer to the site index, ciσ and djσ to elec-
tron operators on the lattices A and B in Fig. 1a. σ
and σ′ are the spins of the electrons and τ the Pauli
matrix with α = x, y, z respectively for red, green and
blue links (ri − rj = rα) and β, γ take other components
than α (See Fig. 1a). We note the Gutzwiller projec-
tors as Pi = (1 −

∑
σ c
†
iσciσ) or Pj = (1 −

∑
σ d
†
jσdjσ)

according to the sub-lattice [57–59]. The filling factor
n and the doping level δ are connected by the relation:
n = 1

2 − δ. In contrast to previous analyses [44, 45],
we include a spin-orbit term of the (doped) model [48],
such that the anti-ferromagnetic Kitaev and ferromag-
netic Heisenberg couplings at half-filling are microscop-
ically obtained from second-order super-exchange pro-
cesses: J1 = 4t2

U , J2 = 4t′2

U with U the Hubbard inter-
action. Due to the sign conventions in Eq. 1, positive J2
values favor ferromagnetic correlations. The singlet com-
ponent would rather involve small-Q wavevectors. Set-
ting J = J1−J2 and K = J2, we recover the model used
in Ref. [38] describing the half-filled system. One shall
assume that t′ is real to avoid an induced Dzyaloshinskii-
Moriya interaction. However, an imaginary t′ does not
change the physics in the limit of t = 0. With a purely
imaginary t′, the time-reversal symmetry (TRS) is re-
stored and we will show the presence of FFLO supercon-
ductivity with TRS in this limit.
Band structure around quarter-filling- Around quarter-

filling, which is sufficiently away from half-filling, one can
assume that the effect of the Gutzwiller weights on the
values of t′ is weak and neglect the renormalization of t′.
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We can then diagonalize H0:

H0 =
∑
k

Ψ†kH0(k)Ψk, Ψ†k = (c†k↑, c
†
k↓, d

†
k↑, d

†
k↓)

H0(k) =

(
0 M†(k)

M(k) 0

)
M(k) =tg(k)τ0 +

∑
α=x,y,z

t′gα(k)τα

hα(k) =2t′2 sink ·Rα

+ 2tt′[1 + cosk · (rα − rβ) + cosk · (rα − rγ)]

(2)

in which α 6= β, γ and g(k) =
∑
α e

ik·rα , and gα(k) =
eik·rα (α = x, y, z). We see that in the spin-orbit coupling
limit (t = 0) the Fermi surface has six additional inver-
sion symmetry centers, apart from the inversion symme-
try center O with trivial momentum Q0 = 0, in the first
Brillouin zone (FBZ) k ↔ 2qα − k (α = x, y, z) as indi-
cated in Fig. 1b. This derives from the Sine function re-
maining invariant under the change of k·Rα ↔ π−k·Rα.
In Fig. 1c, we show the band structure at the spin-orbit
coupling limit t = 0, t′ 6= 0: the four bands have a conic
structure for the Fermi surface at half and quarter filling.
Superconducting Instability- The doped itinerant

Kitaev-Heisenberg model in the spin-orbit limit (t = 0)
has 7 symmetry centers around quarter-filling with mo-
menta: ±qα (α = x, y, z) and q0 = 0. There are 4 kinds
of Cooper pairs around these symmetry centers [61, 62]:

∆̂†αQα
(k) = iτyσσ”τ

α
σ”σ′c

†
kσd
†
−k+Qασ′ (α = 0, x, y, z)

(3)
In the direct space, the three types of spin-triplet pairing
and the spin-singlet pairing in competition are:

∆̂x
ij = ci↑dj↑ − ci↓dj↓; ∆̂y

ij = i(ci↑dj↑ + ci↓dj↓);

∆̂z
ij = ci↑dj↓ + ci↓dj↑; ∆̂0

ij = ci↑dj↓ − ci↓dj↑.
(4)

The Kitaev-Heisenberg coupling involves the density
channel χ̂α = c†iσdjσ′τασσ′ + h.c. besides the supercon-
ductivity pairing. We have checked that around quarter-
filling the density channel renormalizes the spin-orbit
coupling term t′ and such renormalization is negligible
[62]. Then we can decompose the Kitaev-Heisenberg cou-
pling at the mean-field level as:

J2
∑
〈i,j〉

[Sαi S
α
j − S

β
i S

β
j − S

γ
i S

γ
j ]

=
3J2Ns

4

∑
α,Q

|∆αQ|2 − J2
∑
α,k,Q

[gα(k)∆αQ∆̂†αQ(k)

− gα(k)∆0Q∆̂†0Q(k) + h.c.],

(5)

in which ∆αQ = 1
Ns

∑
〈i,j〉 e

iQ·rj
〈

∆̂α
ij

〉
is the Fourier

transform of the order parameter
〈

∆̂α
ij

〉
in Eq. 4 with

spatial phase modulation eiQ·rj . Ns denotes here the
number of unit cells.
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Figure 3. The inverse of the vertex function Γ−1
α (Q, T ) at

quarter-filling α = x, y, z as a function of q = Q
2
∈ FBZ (first

Brillouin zone) at quarter-filling for the spin-triplet pairing
∆xQ (a), ∆yQ (b) and ∆zQ (c) at temperature kBT = 0.01t′

and t′ = 1.

We constitute the Nambu spinor for the four Cooper
pairs ΦkQ = (Ψk,Ψ

†
Q−k) (Ψk is defined in Eq. 2) and

write down their Gor’kov-Green function G−1α (ω,k,Q)
(α = 0, x, y, z, Q/2 ∈ FBZ). We then pursue the Landau
expansion [63]. In the spin-orbit coupling limit (t = 0,
t′ 6= 0), we have the second order Landau expansion (here
we fix U = 6 following Ref. [44]):

FBCS ≈ −
∑

α,β=0,x,y,z

∑
Q

NsΓ
−1
αβ(Q, T )∆αQ∆∗βQ (6)

in which FBCS is the free energy and to the lowest (sec-
ond) order is proportional to the inverse of the Cooper
pair vertex function Γ−1αβ(Q, T ) [63]. When α 6= β,
we have checked that Γ−1αβ(Q, T ) is negligible because
of frustration in the momentum space; therefore we fo-
cus our attention on the diagonal part of the inverse
of the Cooper pair vertex function that we denote as
Γ−1α (Q, T ) ≡ Γ−1αα(Q, T ). When Γ−1α (Q, T ) > 0, the
triplet superconductor pairing ∆αQ is stable [64]. In
Fig. 3, we show Γ−1α (Q, T ) as a function of q = Q/2 ∈
FBZ at temperature kBT = 0.01t′, in which we remark
the condensation of spin-triplet Cooper pairs ∆αQ into
the peaks at wave vector qα = Qα

2 . We have three
spin-triplet condensates at different momenta as shown
in Fig. 2 a, b and c.
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Figure 4. In the limit t = J1 = 0: (a) The peak of Cooper pair
vertex function Γ−1

α (Qα, T ) as a function of temperature at
different doping level (δ = 0.25 is the quarter-filling). (b) The
vertex function of singlet Cooper pair Γ−1

0 (0, T ) as a function
of temperature at different doping level.

We also study the peak of the static Cooper pair re-
sponse Γ−1α (Qα, T ) as a function of temperature at dif-
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ferent doping levels δ: the peak remains finite at quarter-
filling, while it has logarithmic divergence at zero tem-
perature when the doping diverts from quarter-filling
(Fig. 4a). Here, Γ−1α (Qα, T ) is proportional to the den-
sity of states at the Fermi level, which vanishes linearly
as δ → 1/4, which means that at quarter-filling super-
conductivity disappears and we have a free electron sys-
tem, assuming J2 is not too large compared to t′. In-
deed, we have checked that at quarter-filling, the crit-
ical value of J2 to reach a superconducting instability
is J2C ' 0.6t′ as shown in Fig. 5b. At low tempera-
ture, the peak of the condensate profile Γ−1x (Qx, T ) =
Γ−1y (Qy, T ) = Γ−1z (Qz, T ) stays positive while the peak
of the spin-singlet condensate profile Γ−10 (0, T ) remains
negative at all temperature (Fig. 4b). This indicates
that in the spin-orbit coupling limit, the doped itinerant
Kitaev-Heisenberg model hosts only the three spin-triplet
ground states. Since the phase related to Qα is π, the
analysis for −Qα remains the same.

The three spin-triplet condensates may interact with
each other and we have calculated the box diagram to
study this effect by extending the Landau expansion to
the fourth order. We note

b†xq =
1

Ns

∑
k

(c†k↑d
†
−k+q↑ − c

†
k↓d
†
−k+q↓)

b†yq = −i 1

Ns

∑
k

(c†k↑d
†
−k+q↑ + c†k↓d

†
−k+q↓)

b†zq = − 1

Ns

∑
k

(c†k↑d
†
−k+q↓ + c†k↓d

†
−k+q↑)

(7)

the creation operators for the three Cooper pairs. Since
the three Cooper pairs condense at different momenta
Qα, the box diagram is actually the only one respecting
momentum conservation. To the fourth order, we obtain
the free energy of the three condensates:

FBCS =Ns
∑

α=x,y,z

{−Γ−1α (Qα, T )|∆αQα
|2 + C1|∆αQα

|4}

+NsC2

∑
α 6=β

|∆αQα |2|∆βQβ
|2, (8)

in which C1 and C2 are positive numbers obtained from
the calculation of the box diagram in the left panel of
Fig. 5a. We have checked that C2 > C1 > 0 and
thus we deduce that mixing of the three superconduct-
ing condensates is not energetically favorable, and there
is phase separation among the three types of fermionic
pairs. Consequentially, the ground state wave function at
zero temperature is three times degenerate (See Fig. 2):
the modulated ∆α

ij (Eq. 4) are represented by bold and
dashed lines ((a) red for X, (b) green for Y and (c) blue
for Z).

When t and J1 are small compared to t′ and J2,
the three FFLO states are still stable when the tem-
perature is low enough (Γ−1x (Qx, T ) = Γ−1y (Qy, T ) =
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Figure 5. Left panel : The box diagram of the 4th order Lan-
dau expansion describing the interaction between the triplet
pairing. Right panel : J2C/t

′ as a function of temperature
at quarter filling δ = 0.25. The critical value of J2C be-
low which superconductivity instability is induced in the limit
t = J1 = 0.

Γ−1z (Qz, T ) > 0) . The FFLO phase remains stable as
long as the energy related to the critical temperature is
bigger than the gap of the free electron system around
quarter-filling opened by the t term i.e. kBTc(δ) > t [65].
In Fig. 5b, we have plotted the critical value of J2C for
the superconductivity instability as a function of temper-
ature T .
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Figure 6. Energy spectra as a function of the linearized mo-
mentum kx +Nxky of the Hamiltonian in Eq. 1 with periodic
boundary conditions and t = J1 = 0, t′ = 1, J2 = 0.667. The
left column and middle column show a system of Nx ×Ny =
4× 2 plaquettes with particle numbers (a) N = 4 (b) N = 6
(c) N = 8 or quarter-filling (d) N = 10 and (e) N = 12. The
right column only provides the (f) N = 8, (g) N = 10, (h)
N = 12 spectra on a 6 × 2 system (the largest Hilbert space
dimension involved for (h) is ' 1.7.108). Note that for this
system, only the few first energy levels are shown.

Exact Diagonalization of the Kitaev-Heisenberg model -
We have done an exact diagonalization of the Kitaev-
Heisenberg model of Eq. 1 in the spin-orbit coupling
limit t = 0, t′ = 1. The exact diagonalization treats
the Gutzwiller projectors exactly in Eq. 1. We fix the
parametrization J1 = 4t2

U , J2 = 4t′2

U (here we choose
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U = 6 as suggested by Ref. [44]). The system has
Ns = Nx × Ny plaquettes with periodic boundary con-
ditions in both directions, and is filled with N electrons
on the 2Nx × Ny sites. Nx and Ny are both even num-
bers in order to avoid frustration of the FFLO conden-
sates. Due to computational constraints, we reduce our
study to three system sizes: Ny = 2, Nx = 2, 4, 6.
For an odd number of Cooper pairs (doped system), the
lowest energy eigenstates appear in momentum sectors
kx = (Nx/2, Ny/2) ky = (Nx/2, 0) and kz = (0, Ny/2)
(in the bases of k1 = 1

Nx
(0, 4π3 ), k2 = 1

Ny
( 2π√

3
,− 2π

3 ).)
as shown in Figs. 6b, d, and g. The degeneracy for the
three spin-triplet states is partially lifted when Nx 6= Ny
which breaks the symmetry of a 2π/3 rotation followed
by a permutation of spin components. For an even num-
ber of Cooper pairs, the ground state appears in mo-
mentum sector k0 = (0, 0) as shown in Figs. 6a, c, e, f
and h. In agreement with the theory, kα coincides with
the three discrete version of the FFLO Cooper pair mo-
menta qα (α = x, y, z) for an odd number of Cooper pairs
while for even number of Cooper pairs k0 ≡ 2kα = 2qα
mod (Nx, Ny). This alternation of ground state mo-
mentum sector as a function of particle numbers dis-
tinguishes the FFLO superconductivity here from other
modulated orders like spin or charge density waves [66].
The quasidegeneracy in Fig.6b is yet to be understood
and might just be a finite size effect.
Conclusion- We have provided both analytical and nu-

merical evidence of a pure spin-triplet FFLO supercon-
ductor in the doped itinerant Kitaev-Heisenberg model
in the spin-orbit coupling limit (t, J1 → 0). When t′ is
purely imaginary, the time-reversal symmetry (TRS) is
restored, which might overcome the difficulties of the ex-
perimental realization of the FFLO phase. The key ingre-
dient of the FFLO superconductivity here is the symme-
try centers of the Fermi surface at non-trivial momenta
instead of a Zeeman field. The ground state is three times
degenerate with respectively the three spin-triplet pair-
ing ∆α

ij in the p-wave state with non-trivial Cooper pair
momentum Qα = 2qα and spatial modulation of π phase
in the direction of lattice vector Rα for the order param-
eter. These results may have relevance for doped iridate
honeycomb materials or in ultra-cold atom systems. This
FFLO state could be detected by possible Josephson ef-
fect measurements, by coupling such an FFLO material
with a usual superconductor as proposed in several works
such as [67]. This FFLO state could also reveal inter-
esting (short-range) magnetic fluctuations in connection
with the zig-zag phase at half-filling, which is beyond the
scope of the present work.
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