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Abstract

The effect of atomic short-range order on macroscopic and microscopic properties of the prototype

of relaxor ferroelectrics, that is lead magnesium niobate Pb(Mg1/3Nb2/3)O3 (PMN), is studied via

the combination of an annealing technique and a large scale effective Hamiltonian method. The

investigated short-range order gradually varies from the case of fully disordered solid solutions to

the situation for which the first three nearest neighboring shells of the B lattice of PMN adopt a

rocksalt ordering between a sublattice made of pure Nb ions and a randomly distributed sublattice

consisting of 2/3 of Mg and 1/3 of Nb. Characteristic temperatures of relaxor ferroelectrics (namely,

the Burns, so-called T∗ and depolarizing temperatures) significantly increase when strengthening

this short-range chemical order, which is accompanied by an overall enhancement of the size of the

polar nanoregions as well as of some antiferroelectric interactions. These results can be understood

by the fact that chemical short-range order strongly modifies the internal electric fields felt by the

Pb ions.
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Relaxor ferroelectrics form an important class of disordered materials that are character-

ized by large and strongly frequency-dependent dielectric permittivity as well as by several

unusual characteristic temperatures [1, 2], with these compounds remaining macroscopically

paraelectric down to 0K. One of these characteristics temperatures is the famous Burns tem-

perature [3], at which it is commonly believed that relaxor ferroelectrics begin to acquire

polar nanoregions that are responsible for their anomalous properties. Another tempera-

ture is often denoted as T ∗ and is associated with an anomaly in acoustic emission and in

the temperature dependence of the lattice constant, and with striking features in the Ra-

man and neutron scatterings [4–9]. A third characteristic temperature is the depolarizing

temperature, at which the poled relaxor system looses its polarization on heating [10–13].

Relaxor ferroelectrics continue to attract attention in order to fully understand their unusual

properties, as, e.g., demonstrated by recent computational studies shedding new light into

them (see, e.g, Refs. [14–19] and references therein).

It is also important to realize that the theory of (classical) ferroelectrics typically considers

the long-range electrostatic interactions as the main cause of ferroelectricity [20], and that

such latter interactions can be modified in relaxors by, e.g., the simultaneous presence of

both ferroelectrically active and inactive ions inside these systems [21, 22] or by the existence

of the so-called random electric fields [10] or random strains originating from the difference

in charge and size, respectively, of the mixed ions. As a result, one may dramatically alter

characteristic temperatures of relaxor ferroelectrics if one can vary these random fields. One

way to change them is to modify the long-range chemical ordering between the mixed ions,

as experimentally found (by changing the growth conditions) and theoretically predicted

in, e.g., Refs. [23, 24] for PbSc1/2Ta1/2O3 and PbSc1/2Nb1/2O3 systems, when going from

disordered to long-range rocksalt-ordered structure.

However, several relaxor ferroelectrics, including the prototype lead magnesium niobate

Pb(Mg1/3Nb2/3)O3 (PMN), do not present a long-range ordering between the mixed ions

but rather possess a chemical order of short-range nature, as, e.g., evidenced by the small

intensity of X-Ray superstructure peaks found in Refs. [25, 26]. Strikingly, the effect of

chemical short-range order on properties of relaxor ferroelectrics is not well-known. For

instance, it is not clear if and how short-range chemical order can affect macroscopic and

local properties of relaxor ferroelectrics, and if the (hypothetical) variation of these quantities

can be understood at a microscopic level. One reason for this paucity of knowledge is that
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it is difficult to experimentally extract the amount (and type) of short-range order present

in a relaxor ferroelectric. Another reason is that simulating short-range order is not a

straightforward task since one needs to mimic very specific short-range atomic correlations,

which also requires the use of large supercells.

The aims of this Letter are to provide the answers to these issues, by combining an an-

nealing technique and an effective Hamiltonian scheme, and to reveal that not only many

properties of PMN strongly depend on chemical short-range order but also that these de-

pendencies are linked to the internal electric fields felt by the Pb ions.

Here, the effect of short-range order on properties of PMN is investigated by first con-

sidering 18× 18× 18 supercells made of the virtual Pb(Nb0.5< Bav >0.5)O3 solid solutions,

where < Bav > is an artificial atom made of 2/3 of Mg and 1/3 of Nb. Chemical ordering

of this Pb(Nb0.5< Bav >0.5)O3 system is then introduced via the concept of the Cowley

parameters [27–30] that are defined as:

αj = 1− 2Pj (1)

where Pj is the probability of finding a Nb (respectively, < Bav >) atom being the jth

nearest neighbor of a < Bav > (respectively, Nb) atom in the mixed B sublattice. Here,

we practically consider j=1, 2 and 3 (that is the first, second and third nearest neighbors’

shells of the B-sublattice) and impose α1 = −α, α2 = +α and α3 = −α, with α varying

between +0.0 (which characterizes perfect disorder between the Nb and < Bav > ions) and

+1.0 (which corresponds to Rock-Salt-ordering of the first three neighboring shells between

the Nb and < Bav > ions) by step of 0.1. Such procedure is technically performed via an

annealing method [30] aiming to reach the desired values of α1, α2 and α3, and therefore

leads to the generation of 11 different supercells, each associated with its own α and thus

representative of different short-range chemical orderings (note that we numerically found

that imposing α1=-1, α2=+1 and α3=-1 results in fact in the long-range atomic ordering of

Rock-Salt type of all the shells, that is the corresponding configuration adopts the long-range

rocksalt-ordering in addition to a short-range rocksalt-ordering; note also that we did not

consider here the existence of rocksalt-ordered regions existing inside a disordered matrix as

in Refs. [16, 17]). For each of these 11 supercells, we then use a random number generator

to replace the virtual < Bav > atoms by real Mg and Nb ions in 2:1 proportion. Note that

we practically use 30 different random numbers, which effectively results in the generation
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of 30 different configurations for any considered α. The properties of these 30 configurations

are then averaged in order to better mimic the disorder inherent to the < Bav > sublattice

(note that such procedure for α = +1 is consistent with the so-called “random site” model

of PMN [25, 26] that is characteristic of a 1 : 1 chemical order, inside which pure Nb planes

alternate along the [111] pseudo-cubic direction with planes containing a random mixture

of 1/3 of Nb and 2/3 of Mg ions).

The atomistic effective Hamiltonian of Ref. [31] is then employed to model the effect of

these chemical orders on properties of PMN by using all the aforementioned constructed

supercells within Monte-Carlo simulations. Its degrees of freedom are (1) the local modes,

ui, at each 5-atom unit cell i and that are centered on Pb ions (these local modes are directly

proportional to local electric dipoles); and (2) the homogeneous and inhomogeneous strains.

More details about this effective Hamiltonian is given in the Supplemental Material [31–34].

Figure 1a shows the predicted averaged diagonal component of the dielectric tensor, χ

(i.e., 1/3 of the trace of this tensor), as a function of temperature for the investigated short-

range-order parameters. Such dielectric response adopts a broad peak for any considered

α, as characteristic of relaxor ferroelectrics [1, 2]. This broad peak is centered around a

temperature that depends on the amount of short-range ordering, that is about 350-400K

for α = 0 versus about 500K for α = 1. Results obtained in Ref. [24] for another relaxor

ferroelectric, that is Pb(Sc0.5Nb0.5)O3, and showing that the diffuse peak of dielectric per-

mittivity shifts to higher temperatures when going from a disordered system to a chemically

rocksalt-ordered compound, are therefore also valid for PMN. It is interesting to realize that

Ref. [26] also observed that the position and intensity of the dielectric permittivity peak in

PMN:Tb changes after thermal annealing at high temperatures, as a result of the emergence

of large rocksalt-ordered domains. Note that, as also characteristic of relaxor ferroelectrics,

[1, 2], PMN is found to be paraelectric down to the lowest investigated temperatures for any

studied α, except for a few configurations that can have non-vanishing polarization below ≃
300K, especially for larger α. For example, at α = 1 and T = 50K, there are three configura-

tions with significant polarization among the 30 investigated supercells. On the other hand,

the magnitude of the local mode, as averaged over the 30 configurations, is rather small for

any α. In other words, PMN can be thought to be paraelectric on average, independently of

our studied short-range chemical ordering. Note that the few configurations that exhibit a

significant polarization are responsible for the enhancements of the dielectric response (for
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which values are above ≃ 2,000) seen in Fig. 1a for temperatures below 300K. Such (anoma-

lous) enhancements indicate that the relaxor and ferroelectric phases are close to each other

in energy in PMN, and that the atomic distribution between Nb and Mg ions can alter their

energetics. Moreover, Figure 1b reports the inverse of χ as a function of temperature. This

function can be well fitted by a straight line for temperatures higher than the Burns tem-

perature [3] (to be denoted as TB in the following), with the interpolation of this straight

line with the zero occurring at a temperature that we estimate to be the T ∗ characteristic

temperature of relaxor ferroelectrics [4–9]. Figure 1c reveals the rather strong dependency

of T ∗ on α. For instance, T ∗ increases from about 397K to ≃ 508K when α varies from 0 to

1. For comparison, different experiments indicated a T ∗ being close to 350K in Ref. 6, near

T ∗ = 400K in Refs. 4, 5, and 8 and as high as 500K in Ref. 7. This observed large variation

can therefore be explained by a difference in atomic short-range ordering according to our

simulations. Figure 1c further indicates that our computed TB are less sensitive on α than

T∗: It is about 605K at α = 0 and 660K at α = 1, that is TB varies by only 9% while T ∗

is enhanced by about 28% when α increases from 0 to 1. Note that our predicted range for

TB also includes the Burns temperature of 620K reported in Ref. [3] for PMN.

Let us now determine if short-range-ordering in PMN has some effect on the microstruc-

ture. For that, we report in the insets of Fig. 2a snapshots of the electric dipolar pattern

for a single configuration of two different α parameters, namely α = 0 and 1, at 50 K. In

these insets, the red lines delimit polar nanoregions (PNRs) inside which the dipoles are

nearly parallel to each other, and existing within our 18× 18× 18 supercells. These PNRs

are determined using the same method as in Ref. [35] and their size is estimated [36] as

s =< N2
PNR > / < NPNR > , where NPNR is the number of the sites belonging to a particu-

lar polar nanoregion while <> denotes averages over the different PNRs. Figure 2a reports

the dependency of s with α (as averaged over the 30 investigated configurations for each α),

which reveals that polar nanoregions typically grow in size if one increases the degree of the

chemical short-range order – as consistent with the comparison between the left and right

insets of this figure. This cluster size nearly doubles in average from 13 to 24 sites when

going from the disordered case to the atomic arrangements corresponding to α = +1.

Moreover, various studies suggested that antiferroelectricity (AFE) also plays some role in

relaxor ferroelectrics [31, 37–39]. To check such fact and determine how such AFE depends

on short-range chemical order in PMN, we computed the magnitudes of the Fourier transform
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[40] of the x-components of the local modes in the considered supercells [41]. The largest

Fourier transforms correspond to the following q-points [42]: 2π(nx, ny, nz)/18alat, where

alat is the 5-atom cubic lattice constant and with (nx, ny, nz) = (2,0,-2), (-2,0,2), (-2,2,0),

(2,-2,0), (-2,-2,0), (2,2,0), (2,0,2), and (-2,0,-2). Figure 2b reports the dependence of the sum

of the magnitudes of these eight largest Fourier transforms on α at 50K, which demonstrates

that short-range order has the tendency to also enhance antiferroelectric correlations – in

addition to strengthen the size of the PNRs in average (as shown in Fig. 2a). Interestingly,

these AFE correlations are not negligible, once realizing that the sum of the magnitudes of

the Fourier transforms [40] of the x-components of the local modes on all q-points amounts

to unity and that the data reported in Fig. 2b varies between ≃ 0.38 and ≃ 0.53. Note also

that both Figs 2a and 2b indicate that this sum as well as the size of the PNRs also strongly

depend on the different configurations used for any given α, as demonstrated by the large

error bars provided in these figures – which further demonstrates the significant effect of the

atomic distribution of Mg and Nb ions on properties of PMN.

In order to have a real-space picture of correlations between electric dipoles, we also

computed:

θx,x(r) =
1

NPb

∑

i

ui,xui+r,x

|ui| |ui+r|
(2)

where the sum runs over all the NPb Pb-sites i of the system. ui and ui+r are the local

modes in cell i and in the cell centered on the Pb atom distant by r from cell i, respectively,

and ui,x and ui+r,x are their x-components, respectively. The two insets of Fig. 2b display

θx,x(r) as averaged over the (001) planes, for the same configurations used for the insets of

Fig. 2a, for α=0 and 1. These two insets both show (i) ferroelectric correlations (for which

θx,x(r) is positive) for distances less than 2alat in the (x,y) plane, as consistent with the

existence of the (small) polar nanoregions depicted in the insets of Fig. 2a; and (ii) strong

antiferroelectric correlations (for which θx(r) is negative and of magnitude of about 0.13 for

α = 0 and 0.18 for α = 1) at, e.g., distances of 4alat and 5alat along the x-axis as well as

those deduced from them by translation along the y-axis by 9alat. Such AFE is in-line with

the significant sum of the Fourier transforms of Fig. 2b and with the predictions of the

importance of the antiferroelectric interactions on relaxor properties [37].

We also conducted simulations corresponding to zero field heating (ZFH) after (i) field
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cooling (FC) PMN down to 50 K under an electric field of
√
3 108 V/m magnitude and

oriented along the [111] direction and (ii) then removing such field before heating the system.

As consistent with known features of PMN [10–13], such procedure leads to the formation of

a polarization along the [111] direction, that we denote here as PZFH−FC. Such polarization

exists from low temperatures up to a specific temperature, that is typically coined the

depolarizing temperature [10–13] and that we will refer to as Tdepol, above which the systems

suddenly reverts to its relaxor state (for which the macroscopic polarization is null). Figure

3 shows the behavior of PZFH−FC vs. temperature for different α which, e.g, allows us to

extract the dependency of two different quantities on short-range order: (i) Tdepol, which is

displayed in Fig. 1c (along with T ∗ and TB); and (ii) PZFH−FC calculated at our lowest

investigated temperature of 10K, which is reported in the inset of Fig. 3. Both Tdepol and

PZFH−FC at 10K increase with α, which indicates that short-range-order clustering has the

tendency to deepen the energy well of the ferroelectric phase in addition to move it to larger

polarization at low temperature. Note that Tdepol in our calculations changes from 280K ±
10K at α = 0 to 459K ± 10K at α = 1, while data of about 210K were reported in Ref. 11.

With the aim to understand the origin of the aforementioned striking dependency of the

macroscopic and local properties of PMN on the degree of the chemical order, we further

calculated the internal electric field, Ei, felt by each Pb ion (and due to the difference

in charges between Nb and Mg ions) in our 18x18x18 supercells (see the Supplemental

Material and Refs. [16, 31, 33, 43, 44] for details about this calculation). An averaged

magnitude of internal electric fields is then defined as Einternal =
√

1

NPb

∑

i | Ei |2. Figure 1d

shows such magnitude and reveals that Einternal decreases as α increases. As shown in the

inset of Fig. 1d, this decrease is linearly correlated (and thus explains) the concomitant

enhancement of the T ∗, TB, and Tdepol temperatures with α. One can thus safely conclude

that properties of PMN are strongly linked to their internal electric fields, as consistent with

Refs [10, 16, 31, and 45]. In particular, Ref. [31] predicted that the full (but unpractical)

annihilation of internal electric fields inside PMN would result in a ferroelectric ground state,

which is consistent with the fact that Tdepol is the highest, and also the closest to T ∗, when

α = 1 in all our investigated short-range ordered configurations.

In summary, we demonstrated that chemical short-range order can highly affect macro-

scopic properties of PMN, such as the diffuse dielectric permittivity peak position, the

polarization in its field-induced ferroelectric phase as well as the Burns, T ∗ and depolarizing
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temperatures. Such ordering has also an overall effect on microscopic quantities, such as the

size of the polar nanoregions and antiferroelectric interactions. These effects originate from

the fact that varying the chemical short-range order is one effective way to alter the internal

electric fields felt by the Pb ions. We therefore hope that this manuscript helps in better

understanding complex solid solutions, in general, and relaxor ferroelectrics, in particular.

It can also motivate the study of chemical short-range order on properties not studied here,

such as dielectric relaxation [18].
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FIG. 1. (color online) Predicted properties of PMN as a function of the chemical short-range order

parameter α: (a) Dielectric permittivity; (b) inverse of the dielectric permittivity; (c) the TB, T
∗,

and Tdepol characteristic temperatures (see text); and (d) the averaged magnitude of the internal

electric field, Einternal, acting on Pb ions. The inset in Figure 1d presents the dependence of TB ,

T ∗, and Tdepol on the inverse of Einternal. The solid lines are guides for the eyes, and error bars

result from the summation over 30 different configurations for each α.

FIG. 2. (color online) Computed microscopic properties of PMN as a function of the chemical

short-range order parameter α, at 50K: (a) the average size s of the polar nanoregions (see text);

and (b) the sum (over the eight specific q-points indicated in the text) of the magnitude of the

Fourier transform of the x-components of the local modes. The left and right insets of Panel a

are snapshots of the local modes’ pattern for a single configuration corresponding to α = 0 and

1, respectively, with the polar regions being delimited in red. The left and right insets of Panel

b reports the θx,x quantity (see Eq. (2)) as averaged over the (001) planes of these two latter

configurations, respectively. The solid lines are guides for the eyes, and error bars result from the

summation over 30 different configurations for each α.

FIG. 3. (color online) Temperature dependence of the PZFH−FC polarization (see text) for the

different investigated α parameters. The inset shows the magnitude of this polarization calculated

at 10K, as a function of α. error bars result from the summation over 30 different configurations

for each α.
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