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Several experimental and theoretical arguments have been made in favor of a d−wave symmetry
for the superconducting state in some Fe-based materials. It is a common belief that a d−wave gap
in the Fe-based superconductors must have nodes on the Fermi surfaces centered at the Γ point of
the Brillouin zone. Here we show that, while this is the case for a single Fermi surface made out of a
single orbital, the situation is more complex if there is an even number of Fermi surfaces made out of
different orbitals. In particular, we show that for the two Γ-centered hole Fermi surfaces made out
of dxz and dyz orbitals, the nodal points still exist near Tc along the symmetry-imposed directions,
but are are displaced to momenta between the two Fermi surfaces. If the two hole pockets are close
enough, pairs of nodal points can merge and annihilate at some T < Tc, making the d−wave state
completely nodeless. These results imply that photoemission evidence for a nodeless gap on the
dxz/dyz Fermi surfaces of KFe2As2 does not rule out d−wave gap symmetry in this material, while
a nodeless gap observed on the dxy pocket in KxFe2−ySe2 is truly inconsistent with the d−wave gap
symmetry.

PACS numbers: 74.20.Rp,74.25.Nf,74.62.Dh

I. INTRODUCTION

One of the most interesting features of Fe-based super-
conductors (FeSC) is the observation of different struc-
tures of the superconducting (SC) gap in different mate-
rials, which may indicate that the gap symmetry in FeSC
is material dependent. [1] Weakly or moderately doped
FeSC have both hole and electron pockets, and the gap
symmetry there is very likely s−wave, with a π phase
shift between hole pockets and electron pockets – the so-
called s+−-wave state [2]. The situation is less clear in
materials with only one type of Fermi pocket, such as
strongly hole doped KFe2As2, which contain only hole
pockets [3], and KxFe2−ySe2 or monolayer FeSe, which
have only electron pockets [5]. Thermal conductivity
and Raman scattering measurements in KFe2As2 [6–8],
as well as the observation of a neutron resonance peak
in the superconducting state of KxFe2−ySe2 [9], were
interpreted as evidence for a d−wave gap symmetry in
these materials. Theoretical studies also found a strong
enhancement of the d−wave superconducting suscepti-
bility [11, 13], and at least one study of KFe2As2 have
found [12] a much stronger attraction in the d−wave
channel than in the s+− channel.

The arguments in favor of a d−wave gap symmetry,
however, have been questioned by angle-resolved pho-
toemission (ARPES) measurements [4, 14]. For hole-
doped KFe2As2, these measurements have found [14]
that the gap on the inner hole pocket centered at the
Γ point (k = 0) displays some angle variation but has no
nodes [15]. The conventional wisdom is that a d−wave
gap must vanish on all Fermi surfaces (FSs) centered at
k = 0 along symmetry-imposed directions in momen-
tum space – specifically, a dx2−y2 gap, which we consider

hereafter, must vanish on the FS points along the diago-
nals kx = ±ky in the 1-Fe Brillouin zone (1Fe BZ). The
non-vanishing of the gap on the inner FS along these di-
rection in ARPES measurements was interpreted [14] as
the smoking-gun evidence ruling out a d−wave gap in
KFe2As2. Similarly, in KxFe2−ySe2, the gap has been
measured on the electron pocket centered at the Z-point
(kx = ky = 0 and kz = π), and was found to be almost
angle-independent [10]. Again, the conventional wisdom
is that this result is fundamentally inconsistent with a
d−wave gap symmetry.

It was argued in Ref. [16] that the d−wave or-
der parameter in FeSCs necessarily contains both intra-
pocket and inter-pocket components, and by this reason
a d−wave gap has no nodes along the Fermi surfaces. A
similar effect was previously shown to impact the behav-
ior of accidental nodes in an s+− superconductor [17, 18].
In this paper, we revisit this issue and investigate the fate
of the d−wave nodes in FeSCs on the FSs centered at the
high symmetry Γ and Z points. We argue that one has
to distinguish between the cases when a FS centered at
kx = ky = 0 is made out of a single orbital, like the Z-
centered electron pocket of certain compounds, and the
cases when the FSs centered at these points are made out
of even number of orbitals, like the Γ-centered hole pock-
ets present in most compounds, which are made out of
dxz/dyz orbitals. In the first case, the symmetry-imposed
d−wave nodes remain on the FS. In the second case, the
d−wave gap does not have nodes on the normal state
FSs (see Fig. 1a.) We demonstrate, however, that this
does not imply that the electronic spectrum is gapped. We
show that the nodes remain along the high-symmetry
directions, but get displaced from the original FSs, at
least near Tc, when the gaps are small. If the difference
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FIG. 1: The Fermi surfaces (FS) and the location of the nodal
points near the two Γ-centered dxz/dyz pockets. Panel (a)
shows the two FS in the normal state, highlighting the orbital
that gives the largest spectral weight at each point along the
FS (yellow for dxz and green for dyz). Panel (b) illustrates
the location of the d−wave nodes on the two FS (blue and red
lines) if the band off-diagonal gap term was absent. Panel (c)
presents the actual location of the nodal points (red and blue
dots) for the case ∆ = 0.8∆cr. The dispersions are given by

Ea,b =
√

∆2 cos2 2θ + ε2a,b and the terms εa,b vanish along the

two gray lines adjacent to the FS.

between the Fermi momenta of the two pockets is sub-
stantial, the nodes persist down to T = 0. If, however,
the pockets are close to each other, pairs of nodes with
opposite winding numbers can annihilate at Tcr < Tc,
rendering the spectrum gapped.

The displacement of the nodes from the FSs is re-
lated to how intra-orbital pairing in the orbital basis
is displayed in the band basis [16, 19]. Namely, in the
absence of spin-orbit interaction, tetragonal symmetry
requires that the d−wave gap on these pockets must
be diagonal in the orbital basis, i.e. 〈dxz,−k↓dxz,k↑〉 =
∆, 〈dyz,−k↓dyz,k↑〉 = −∆. However, to analyze the gap
structure near the FS, one needs to change basis from or-
bital space to band space. The latter is characterized by
the band operators c1,kσ and c2,kσ, which describe exci-
tations near the two hole FS. As a result, in band basis,
the same d−wave gap acquires both diagonal and off-
diagonal components: 〈c1,−k↓c1,k↑〉 = −〈c2,−k↓c2,k↑〉 =
∆ cos 2θ and 〈c2,−k↓c1,k↑〉 = 〈c1,−k↓c2,k↑〉 = ∆ sin 2θ, re-
spectively. For circular and small hole FS, θ coincides
with the angle along the FS.

Because the off-diagonal gap term mixes the two FS,
the d−wave gap varies as function of θ but does not have
nodes. The strength of the variation depends on the in-

terplay between ∆ and the splitting between the two hole
FS, as we discuss below. Such an effect does not happen
for an s-wave gap, since the orbital and band representa-
tions are identical in this case, implying that off-diagonal
terms do not emerge, unless there is hybridization be-
tween the pockets. The orbital and the band represen-
tations are also identical, for any gap symmetry, on a
pocket made out of a single orbital, such as the dxy Z-
pocket in KxFe2−ySe2.
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FIG. 2: The evolution of the d−wave nodes as ∆ increases
beyond the critical value ∆cr. The blue and red lines are the
normal state FS. The gray lines denote the locations of εa,b =

0, and the dispersions are given by Ea,b =
√

∆2 cos2 2θ + ε2a,b.

The nodal points are marked by the red and blue dots. Four
pairs of nodal points are present for ∆ < ∆cr and disappear
for ∆ > ∆cr. In this figure, we used circular band dispersions
with m2 = 3m1.

However, by extending the analysis to momenta away
from the normal state FS, we found that the nodes in the
d−wave excitation spectrum near the dxz/dyz hole pock-
ets do survive, and are just displaced from the normal
state hole FSs. Specifically, the excitation spectrum has
the form [16]

E2
a,b = ∆2 cos2 2θ + ε2a,b (1)

with

εa,b = sgn (ε1,k + ε2,k)

√(
ε1,k + ε2,k

2

)2

+ ∆2 sin2 2θ

±
(
ε1,k − ε2,k

2

)
(2)

where ε1,k and ε2,k are the normal state dispersions of
bands 1 and 2, respectively. If the off-diagonal term
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∆ sin 2θ was absent, εa = ε1,k, εb = ε2,k, and the dis-
persions would be the conventional ones for a d−wave
SC, namely, E2

a,b = ∆2 cos2 2θ + ε21,2. In this case,
each dispersion would have nodal points on the FS at
θ = θn ≡ (2n+ 1)π/4, with n = 0, 1, 2, 3 (see Fig. 1b).
Because of the off-diagonal term, however, εa does not
vanish when ε1 = 0 and εb does not vanish when ε2 = 0.
However εa (εb) does vanish along the lines specified by
ε1,kε2,k = −∆2 sin2 2θ, which are displaced from the ac-
tual FS, see Fig. 1c.

When the magnitude of the d−wave gap is small, the
two lines are well separated and cross the direction θ = θn
at the momenta ka > kF,1 and kb < kF,2. At these cross-
ing points, the full quasiparticle energy Ea (Eb) vanishes.
These are new d−wave nodal points, shifted from their
corresponding FS by the mixing term. For small ∆, this
shift is small, of order ∆2. However, as temperature de-
creases, ∆ becomes larger and the nodal points become
closer. If the gap reaches the critical value ∆cr, which
depends on the radii of the two pockets, the two nodal
points merge and annihilate each other. In particular,
at the Lifshitz transition taking place for ∆ = ∆cr, the
εa = 0 and εb = 0 lines mix and split in the orthogo-
nal direction, see Fig. 2. For ∆ > ∆cr, these lines no
longer cross the directions θ = θn, i.e. εa,b and ∆ cos 2θ
do not vanish simultaneously. In this situation, Ea,b do
not have nodal points, implying that the excitations of
the d−wave superconductor are fully gapped.

When nodal points are present, the excitations near

Ea,b = 0 are Dirac-cones, Ea,b =
√
k̃2
x + k̃2

y, where x̃

and ỹ are directions along and transverse to the lines
εa = εb = 0, defined by k̃x = 2∆(θ − θn) and k̃y =

(
dεa,b

dk ) (k − ka,b), where the derivative is taken at θ =
θn. At the critical gap value ∆ = ∆cr, because dεa,b/dk

vanishes we find k̃y ∝ (k−ka,b)2. This dispersion has the
same form as the dispersion of fermions at the critical
point between a semi-metal and an insulator [20–22]. It
was argued [21] that for such a dispersion the system
with dynamically screened Coulomb interaction should
display a highly non-trivial quantum-critical behavior in
both fermionic and bosonic sectors. Our study shows
that a d−wave FeSC provides an interesting realization
of such behavior.

The displacement of the nodes to momenta away from
the normal state FSs has been previously discussed for
accidental nodes on electron pockets in an s+− super-
conductor. In this case, the displacement is due to
hybridization between these pockets [17, 23]. The au-
thors of Ref. [17] argued that, as the hybridization
parameter gets larger, pairs of accidental nodes come
close, and at some critical hybridization merge and an-
nihilate. The same effect occurs [18] when one in-
creases the pnictogen/chalcogen-induced interaction be-
tween fermions on Fe sites (i.e. interaction with momen-
tum non-conservation by (π, π) in the 1Fe BZ). For a
d−wave superconductor, the lifting of the nodes on the
normal state FSs was first discussed in Ref. [16]. These

authors concluded that, for arbitrary ∆, the nodes are
lifted not only on the normal state FSs, but that the
whole electronic spectrum is generally gapped, except for
possible accidental nodes. We, on the contrary, argue
that, at least for small ∆, the symmetry-imposed nodes
do survive and just shift from the original FSs to mo-
menta located between the original FSs. This is similar
to what happens with the accidental nodes in an s+−

superconductor in the presence of hybridization. From a
generic perspective, the persistence of the nodal points is
associated with the fact that each Dirac node has a non-
zero winding number. Only when the two nodal points
with opposite winding numbers come close to each other
under the variation of some parameter (the magnitude of
the gap in the d−wave case), they can merge and anni-
hilate. We discuss the comparison with earlier works in
more detail later in the paper.

We also emphasize that the nodal points in the d−wave
case are true symmetry-imposed d−wave nodes, and the
damping near each nodal point is the same as near a
d−wave node on the FS in a conventional case. There-
fore, all thermodynamic properties of the system are also
the same as in a conventional d−wave superconductor.
Only in ARPES one can distinguish between a conven-
tional d-wave case with nodes on the original FS and the
case when the nodes are shifted away from the normal
state FS due to the presence of the inter-pocket pairing
component.

The paper is organized as follows: in Section II, we
introduce the model, in Section III we derive the exci-
tation spectrum, in Section IV we compare our results
with the case of a semi-metal to insulator transition. In
Sec. V we compare our results with earlier studies and
in Section VI we present comparisons with experiments.
We present our conclusions in Section VII.

II. MODEL FOR d-WAVE
SUPERCONDUCTIVITY

To focus on the main message of this paper, we con-
sider a simplified model of an FeSC with two Γ-centered
hole pockets made out of the dxz and dyz orbitals (Fig.
1a), and assume that 4-fermion interactions give rise to
d−wave superconductivity with dx2−y2 gap symmetry
(for a dxy gap symmetry, the results are analogous to
the ones that we obtain below). The attraction in the
d−wave channel may be due to the interactions within
the dxz/dyz subset, as we assume for simplicity, or it
can be induced by the coupling to other orbitals. In
the dx2−y2 ordered state, which belongs to the B1g irre-
ducible representation of the D4h group, the gap func-
tion in the orbital basis is given by 〈dxz,−k↓dxz,k↑〉 =
∆, 〈dyz,−k↓dyz,k↑〉 = −∆. There are no inter-orbital
terms 〈dyz,−k↓dxz,k↑ ± dxz,−k↓dyz,k↑〉 as they belong to
the different irreducible representations B2g (plus sign)
and A2g (minus sign).

Although the anomalous terms 〈di,−k↓dj,k↑〉 are diag-
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onal, the kinetic energy near the Γ point does contain
terms describing hoping from one orbital to the other.
The kinetic energy is diagonalized by converting from
the orbital to the band basis, yielding:

H0 =
∑
k,α

(
ε1,kc

†
1,kαc1,kα + ε2,kc

†
2,kαc2,kα

)
. (3)

The dispersions ε1,k and ε2,k are C4-symmetric. We as-
sume for simplicity that the system parameters are such
that the hole pockets can be approximated as circular
[24], i.e. ε1,k = µ − k2/(2m1) and ε2,k = µ − k2/(2m2).
The two dispersions are not identical when m1 6= m2,
but are degenerate by symmetry at k = 0 in the absence
of spin-orbit coupling [25, 26].
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FIG. 3: The diagrammatic representation of the linearized
gap equations, Eqs. 8. Blue and red lines denote fermions
from bands c1 and c2.

The transformation from the orbital operators dxz/dyz
to the band operators c1 and c2 is a U(1) rotation:

dxz,kα = cos θkc1,kα + sin θkc2,kα,

dyz,kα = cos θkc2,kα − sin θkc1,kα, (4)

For circular Fermi pockets the rotation angle θk co-
incides with the polar angle θ along the FS [24]. Us-
ing Eq. (4) we also re-express the anomalous term

H∆ = ∆
∑

k

(
d†xz,k↑d

†
xz,−k↓ − d

†
yz,k↑d

†
yz,−k↓

)
in the band

basis. We obtain a combination of inter-band and intra-
band terms:

H∆ = ∆a

∑
k

(
iσyαβ

)(
c†1,kαc

†
1,−kβ − c

†
2,kαc

†
2,−kβ

)
+

∆b

∑
k

(
iσyαβ

)(
c†1,kαc

†
2,−kβ + c†2,kαc

†
1,−kβ

)
+ h.c (5)

where σ are Pauli matrices and in the d−wave case ∆a =
∆ cos 2θ and ∆b = ∆ sin 2θ. Without loss of degeneracy,
one can set ∆a to be real. ∆b is, in general, a complex
variable.

Note that in the d−wave case, the inter-band anoma-
lous terms are of the same order ∆ as intra-band terms
and differ only by their angular dependence. This may
seem counterintuitive, as the pairing kernel involving
fermions from different bands is much smaller than the
kernel involving fermions from the same band. To see
why inter-band and intra-band pairing terms are never-
theless comparable, one can explicitly solve for the intra-
band and inter-band pairing vertices by using a micro-
scopic interaction that favors d−wave. For concreteness,
consider a toy model with pair-hopping interaction:

Hint =
g

2

∑[
d†xzαdyzαd

†
xzβdyzβ + d†yzαdxzαd

†
yzβdxzβ

]
(6)

where the summation over momenta and spin indices is
left implicit. A positive g favors B1g pairing as one can
verify in a straightforward way by solving the gap equa-
tion in the orbital basis. Converting this Hamiltonian
into band basis and projecting onto the B1g channel, we
obtain

Hint = −g
4

∑[
η†1,kη1,p cos 2θk cos 2θp + η†2,kη2,p sin 2θk sin 2θp +

(
η†1,kη2,p + η†2,kη1,p

)
sin 2θp cos 2θk

]
(7)

where η†1,k = c†1,kαc
†
1,−kβ − c†2,kαc

†
2,−kβ , η†2,k =

c†1,kαc
†
2,−kβ + c†2,kαc

†
1,−kβ , and the summation is

over momentum and spin indices. Introducing

the two anomalous vertices ∆1

(
iσyαβ

)
η†1,k cos 2θk and

∆2

(
iσyαβ

)
η†2,k sin 2θk, and solving the BCS-like gap
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equations shown graphically in Fig. 3, we obtain

∆1 =
g

4

(
Π11 + Π22

2

)
∆1 +

g

4
Π12∆2

∆2 =
g

4
Π12∆2 +

g

4

(
Π11 + Π22

2

)
∆1 (8)

where Π11,Π22, and Π12 (all positive) are particle-
particle polarization bubbles made out of c1 and c2
fermions in the superconducting state. Near Tc, we ob-
tain

Π11 =
1

2

ˆ
d2k

tanh
( ε1,k

2T

)
|ε1,k|

, Π22 =
1

2

ˆ
d2k

tanh
( ε2,k

2T

)
|ε2,k|

,

Π12 =
1

2

ˆ
d2k

tanh
( ε1,k

2T

)
+ tanh

( ε2,k
2T

)
|ε1,k + ε2,k|

. (9)

Comparing the two expressions in Eq. (8), we see
that ∆1 = ∆2 = ∆, no matter what is the ratio of
the inter-pocket and intra-pocket polarization operators.
This holds as long as the interaction g is momentum-
independent. If momentum dependence is included, the
intra-pocket and inter-pocket interaction terms in (7) dif-
fer more than by their distinct angular dependences. In
this situation, the r.h.s. of the two equations in (8) are
no longer identical, and generally ∆1 > ∆2. In the limit-
ing case ∆2 → 0 one recovers the conventional case with
only intra-band pairing condensate.

III. EXCITATION SPECTRUM

We now return to Eqs. (3) and (5). The quadratic
Hamiltonian H0 + H∆ can be straightforwardly diago-
nalized and yields

H =
∑
k,α

Ea(k)a†kαakα +
∑
k,α

Eb(k)b†kαbkα (10)

where

E2
a,b(k) =

ε21,k + ε22,k
2

+ ∆2
a + |∆2

b | ±√√√√(ε21,k − ε22,k
2

)2

+ (ε1,k − ε2,k)2|∆b|2 + 4∆2
a(Re∆b)2(11)

In the d−wave case (∆a = ∆ cos 2θ and ∆b =
∆ sin 2θ), Eq. (11) can be simplified to

Ea,b(k) =
√

∆2 cos2 2θ + ε2a,b(k), (12)

where

εa,b(k) = sgn (ε1,k + ε2,k)

√(
ε1,k + ε2,k

2

)2

+ ∆2 sin2 2θ

±
(
ε1,k − ε2,k

2

)
(13)

(a)

�������� �
� cr

���

��	

��


���

���

�

� � �( ) / 0


 �/ 
 �
 �/ �


�

(b)

�������� �
� cr

�

� � �( ) / 0

���

��	

��


���

���

� 
 �/ 
 �
 �/ �


FIG. 4: The dispersion of the d−wave gap along the two FS,
Eq. 14, for two values of ∆. Blue (red) lines denote band
c1 (c2). There is substantial angular variation but no nodes.
Note also that the minimum value of the gap is different in
both bands.

Eq. (11) was first obtained in Ref. [17] for an s+−

superconductor with accidental nodes (∆a = ∆, ∆b =
i∆α cos 2θ, α > 1). For a d−wave superconductor, Eqs.
(12), (13) were first derived in Ref. [16].

The dispersions Ea,b in Eqs. (12), (13) have the same
forms as in a conventional d-wave superconductor, but
are actually more complex because εa,b themselves de-
pend on ∆. For a vanishing ∆, εa and εb coincide with
the normal state dispersions, εa = ε1,k and εb = ε2,k,
as they indeed should. At a finite but small ∆ (i.e.,

near Tc), εa = ε1,k + ∆2 sin2 2θ
ε1,k+ε2,k

and εb = ε2,k + ∆2 sin2 2θ
ε1,k+ε2,k

.

We see that εa (εb) does not vanish on the FS, where
ε1 = 0 (ε2 = 0), except along the particular directions
sin 2θ = 0. For such values of θ, however, ∆2 cos 2θ has
a maximum value ∆2. As a result, there are no zeroes of
Ea,b along each of the two FSs, despite the fact that the
gap is d−wave. At arbitrary T < Tc we have at ε1,k = 0
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(and ε2,k > 0)

Ea =

√√√√√∆2 cos2 2θ +

√ε22,k
4

+ ∆2 sin2 2θ − ε2,k
2

2

(14)
We plot the excitation energies Ea and Eb as a function

of θ along both FS in Fig. 4 for two values of ∆. We see
that there is substantial angular variation of Ea,b(θ), but
no nodes.

We now analyze the excitation energies Ea,b away from
the FS. A straightforward analysis of Eq. (13) shows that
εa,b vanish along the lines where

ε1,k ε2,k = −∆2 sin2 2θ (15)

For small ∆ (i.e, near Tc), Eq. (15) is satisfied along
two separate lines, one adjacent to the inner FS, (ε1,k =
0) and another adjacent to the outer FS (ε2,k = 0). We
show the lines εa = 0 and εb = 0 in Fig 2 for different
values of ∆. Because these lines cross the directions along
which cos 2θ = 0, Ea or Eb vanish at the crossing points,
i.e. the full excitation energy vanishes. This implies that
the nodal points of the d−wave superconductor still exist
near Tc, but get shifted away from the normal state FS
by the inter-band component of the d−wave gap. The
nodal points are located along cos 2θ = 0, at k = ka,b
given by

k2
a,b =

(
k2
F,1 + k2

F,2

2

)
±

√√√√(k2
F,1 − k2

F,2

2

)2

− 4m1m2∆2,

(16)
where k2

F,i = 2miµ.
The behavior of Ea,b at smaller temperatures depends

on the interplay between the gap value and the difference
between m2 and m1, or specifically, between ∆(T ) and

∆cr = µ

(
m2 −m1

2
√
m1m2

)
(17)

If ∆cr is large enough, the nodes survive down to T =
0. However, if m2 −m1 is small enough (i.e., the inner
and the outer hole pockets are close), ∆(T ) reaches ∆cr at
some T = Tcr below Tc. At this temperature, a Lifshitz
transition occurs when the two nodal points merge at
k = kcr and then split in orthogonal directions, see Fig.
2c.

On a technical side, we found that, when ∆ is slightly
below ∆cr, the two nodal points of the dispersion are the
nodes of εb (and Eb), while the dispersion εa has no nodes.
The change of the behavior from the nodes in both εa and
εb to two nodes in εb occurs when ∆ reaches the value

∆∗ = µ
(
m2−m1

m1+m2

)
, which is comparable but smaller than

∆cr. The ratio ∆∗/∆cr = 2
√
m1m2/ (m1 +m2) < 1.

This change does not affect the location of the zeros of
εa,b in momentum space (gray lines in Fig. Fig. 2), just

the identification of these lines with εa or εb becomes
more complex.

At ∆ > ∆cr, the lines where εa,b = 0 form four discon-
nected closed loops (see Fig. 2d). Along these loops
the excitation energy becomes E = ∆| cos 2θ|. How-
ever, because the closed loops do not cross the directions
cos 2θ = 0, the nodes disappear, i.e. the excitation spec-
trum of a d−wave superconductor becomes fully gapped.

IV. ANALOGY WITH SEMI-METAL TO
INSULATOR TRANSITION

There is a close analogy between the Lifshitz transition
at T = Tcr in our problem and the transition from a 2D
massless Dirac semi-metal to an insulator. In the latter
case, the semi-metal phase has two separate Dirac nodal
points with the winding numbers ±1 [27]. Upon varia-
tion of some system parameter (e.g., strain in graphene),
the distance between the two nodal points decreases un-
til they merge and annihilate at a critical value of such
parameter. At the critical point, the system is described
by fermions with linear dispersion in one spatial direc-
tion and quadratic in the other. [20–22] Similarly, in our
case, near Tc, the dispersion along one of the four di-
rections specified by cos 2θ = 0 has two nodal points
with Dirac-like dispersions. Just as in the semi-metal
to insulator transition, the winding numbers near the
two Dirac points are ±1. At T = Tcr (if it exists),
the Dirac points merge. At this temperature the excita-
tion spectrum around the single nodal point is quadratic
along the direction in which cos 2θ = 0 and linear in the
transverse direction. At a smaller temperature, the ex-
citation spectrum is fully gapped, like in an insulator.
Recent studies of the semi-metal to insulator transition
have shown [21] that at the critical point the dynamically
screened Coulomb interaction gives rise to a highly non-
trivial quantum-critical behavior in both fermionic and
bosonic sectors. A d−wave state in the FeSC will provide
a realization of such behavior if Tcr can be tuned to zero
by changing some external parameter, such as pressure.
An s+− superconductor, in which accidental nodes can
be lifted by varying an external parameter [17, 18], is
another realization of such semi-metal to insulator tran-
sition [28–30].

V. COMPARISON WITH EARLIER WORKS

Several earlier studies of the pairing involving fermions
from two different bands have already pointed out that
an intra-pocket pairing condensate generates an inter-
band pairing condensate, generally of the same order as
the intra-band one [16, 31]. Ref. [31] focused on the
system with only electron pockets. When inter-pocket
repulsion is dominant, the analysis within 1Fe BZ shows
that the system develops d-wave superconductivity with
sign change of the gap on the two electron pockets [32].
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FIG. 5: The quasiparticle dispersion in the d−wave super-
conducting state for the two-orbital model of Raghu et al.
[35]. The dispersion has the form E2

k = ε2k + ∆2 cos2 2θk,

where εk = (ξ2+ + ∆2 sin2 2θk)1/2 ± | ~B| (see Eqs. (12), (13)
and Ref. [16]). Ref. [16] used the parameters from Ref.
[35]: ξ+ = −0.3t(cos kx + cos ky) + 3.4t cos kx cos ky − 1.45t,

| ~B| = t
[
2.32(cos kx − cos ky)2 + 3.42 sin2 kx sin2 ky

]1/2
, and

sin 2θk = 3.4t sin kx sin ky/| ~B|, where t sets the overall energy
scale. Nodal points of the dispersion are the ones for which
cos 2θk = 0 and εk = 0. We plot εk as a function of momen-
tum k along the direction k = kx = ky (for which cos 2θk = 0)
for different gap values ∆. A pair of nodal points is observed
unless ∆ exceeds the critical value ∆c ≈ 3.08t, which is about
a quarter of the bandwidth.

However, the result holds only as long as one neglects
the coupling between electron pockets, i.e., the processes
with momentum non-conservation by (π, π) in the 1Fe
BZ. Hybridization, which is the combined effect of glide
plane symmetry and of spin-orbit interaction, triggers the
appearance of a inter-pocket pairing condensate in terms
of the band fermions, in analogy to what happens in our
case. This effect does not affect substantially the d−wave
gap on the electron pockets, which in 2D has no nodes
anyway, but it gives rise to a novel s+− pairing between
inner and outer hybridized electron pockets [31, 33], when
the coupling associated with the hybridization exceeds a
certain critical value.

A shift of the nodal points to momenta away from the
FS and their subsequent merging and annihilation (a Lif-
shitz transition) has been analyzed in several publica-
tions [17, 18, 23] in the context of the behavior of acci-
dental nodes under a change of system parameters such
as hybridization [17], interaction with momentum non-
conservation by (π, π) in the 1Fe BZ [18], or application
of strain [34]. The key features in the s+− case are the
same as in the d−wave case, namely, under a change of
some parameter, which induces inter-pocket pairing term
in the band basis, nodal points initially survive, but shift
away from the FS, into the region between the pockets
(electron pockets in s+− case). As the strength of the
inter-pocket pairing term increases, neighboring nodal
points come closer to each other and eventually merge
and annihilate. There is one distinction to our case,
however – the merging of accidental nodes in s−wave

superconductor involves neighboring nodal points which
were originally on the same FS, i.e., nodal points have to
travel in the direction along the FS.

The non-trivial interplay between the d−wave order
parameter in the orbital and the band basis has been
first analyzed in Ref. [16]. The authors of [16] correctly
pointed out that the inter-band pairing component makes
the excitations along the FS nodeless despite that the gap
has a d-wave symmetry. In Ref. [16] the d−wave order
parameter in the orbital basis was assumed to have the

form ∆(k) = gk

〈
d†xz,k↑d

†
xz,−k↓ − d

†
yz,k↑d

†
yz,−k↓

〉
, with gk

changing sign between hole and electron pockets (such an
order parameter has been listed previously among other
singlet pairing order parameters in Eq. D1 of Ref. [25]).
For the purposes of comparison with our paper, where
only hole pockets are studied, it is sufficient to consider
gk near hole pockets, where it can be approximated by a
constant.

Our result for the electronic dispersion, Eqs. (12) and
(13), reproduces Eq. (5) of Ref. [16], yet the conclusions
are somewhat different. The authors of Ref.[16] con-
cluded that the presence of inter-pocket pairing compo-
nent makes the electronic spectrum generically gapped,
except for possible accidental nodes. We, on the contrary,
argue that the true symmetry-imposed d−wave nodal
points survive, at least near Tc, and just shift away from
the normal state FS. We further argue that a d−wave
superconductor can be fully nodeless, but this happens
only when pairs of nodal points with opposite winding
numbers come close, merge, and annihilate. The pres-
ence of two nearly-located hole FSs is crucial for this last
effect, otherwise the critical ∆cr, above which the spec-
trum becomes nodeless, is comparable to the bandwidth,
and the gap ∆ necessary remains smaller than ∆cr down
to T = 0.

As one illustration of their analysis, the authors of Ref.
[16] considered the two-orbital lattice model with tight-
binding parametrization of Ref. [35]. This model is dif-
ferent from two-orbital low-energy model and has one
hole pocket at the center of the 1Fe BZ and another hole
pocket at the corner of the 1Fe BZ. We argue that in
this model, ∆cr is large – a fraction of the bandwidth.
To demonstrate this, in Fig. 5 we plot the dispersion
along the kx = ky direction, showing that the symmetry-
imposed d−wave nodes are indeed present at ∆ smaller
than the hopping integral t, only their position shifts
from the normal state FS. The nodes annihilate and fully
gapless spectrum appears only for ∆ > ∆cr = 3.08t. The
large value of ∆cr is due to the fact that the two hole
pockets are centered at different points of the 1Fe BZ.
When both hole pockets are centered at Γ, ∆cr is much
smaller.

We emphasize that at ∆ < ∆cr the nodal points are
not accidental – they are true symmetry-imposed d−wave
nodal points, protected by the fact that each is a Dirac
point with a non-zero winding number. Accordingly, be-
cause the damping near these new nodal points is the
same as near d−wave nodes on the FS in a conventional
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case, all thermodynamic properties are the same as in a
conventional d−wave superconductor. Only in ARPES
one can distinguish between a conventional d-wave case
with the nodes on the original FS and the case when the
nodes move away from the original FS due to the pres-
ence of the inter-pocket pairing component. Still, this is
a non-trivial effect as the shift in εk in Eqs. (12) and
(13) vanishes along the directions sin 2θ = 0 and in this
respect is qualitatively different from the overall shift of
the FS due to a change of the chemical potential.

The authors of Ref. [16] also argued that the pres-
ence of inter-pocket pairing component eliminates the
nodes on the electron FS near Z point in KxFe2−ySe2

(Z = (0, 0, π)). We, on the contrary, argue that this is
not so, because the Z-pocket is made out of single dxy
orbital, with negligibly small admixture of dxz and dyz
orbitals, which at Z point are located far way from the
chemical potential. In this situation, the nodes should
remain, if the pairing symmetry is d−wave. Moreover,
the displacement of the nodes from the FS is negligibly
small, even if the pocket itself is tiny, because the dis-
placement is determined by the ratio of the small ∆ and
the large distance between the energies of dxy and other
orbitals at Z.

VI. RELATION TO EXPERIMENTS

Our results have important consequences for the ex-
perimental identification of d-wave states in FeSC, par-
ticularly for strongly hole doped systems, like KFe2As2,
which contain only hole pockets [3], and KxFe2−ySe2 or
monolayer FeSe, which have only electron pockets [5].

Like we said earlier, thermal conductivity and Raman
scattering measurements in KFe2As2 [6, 8], were inter-
preted as evidence for a d−wave gap symmetry in this
material. On the other hand, ARPES measurements on
KFe2As2 have found [14] that the gap on the inner hole
pocket centered at the Γ point (k = 0) displays some
angle variation but has no nodes [15].

The results of Ref. [16] and of this work show that the
fact that ARPES does not see nodes at the momenta cor-
responding to the inner dxz/dyz Fermi surface of KFe2As2

is, in principle, not inconsistent with a d−wave state be-
cause a d−wave superconducting gap has no nodes at
these momenta. We argue, however, that the d−wave
nodes are still present, if the gap is small enough, but
are located away from the normal state Fermi surfaces. If
the gap value exceeds a certain threshold, the nodes dis-
appear, and the d−wave superconducting state become
fully nodeless.

The values of the gap and of the radii of the dxz/dyz
hole pockets can be extracted from ARPES data from
Ref. [37]. Based on this data, we found that kF,1 ≈
0.22/A and kF,2 ∼ 0.3/A on the two dxz/dyz pockets,
and the Fermi velocity is, roughly vF ∼ (50−100)meV A.
Then vF (kF,2 − kF,1) ∼ 4 − 8 meV . The superconduct-
ing gap ∆ ∼ 1 − 2 meV , hence vF (kF,2 − kF,1) > ∆. In

this situation the nodes must still be present along the
diagonal directions at momenta in between the normal
state Fermi momenta of dxz/dyz pockets, if the pairing
symmetry in KFe2As2 is d−wave. We call for ARPES
measurements on KFe2As2 at momenta away from the
normal state Fermi surfaces. These measurements should
truly distinguish between d−wave and s−wave gap sym-
metries.

We also argued that a d−wave gap should retain nodes
along a pocket made predominantly out of a single or-
bital. This result has consequences for KxFe2−ySe2.
ARPES measurements on this material [10] have found
a pocket centered at Z pocket (kx−ky = 0, kz = π). Ac-
cording to calculations [36], this pocket is predominantly
made out of a single dxy orbital. If the pairing state in
KxFe2−ySe2 was d−wave, the gap on this pocket should
have nodes along the diagonal direction. ARPES mea-
surements [10], however, found a nodeless gap along the
Z-pocket. According to our calculations, this result is
inconsistent with d−wave gap symmetry in KxFe2−ySe2.

VII. CONCLUSIONS

In this work we analyzed the d−wave gap structure
of multi-orbital FeSC, as several experimental and theo-
retical studies suggested that such a state may be real-
ized in materials with only hole-like or only electron-like
Fermi pockets. We showed that the common belief that
a d−wave gap must have nodes right on the Fermi sur-
faces located at the center of the BZ is correct only if this
Fermi surface is made out of a single orbital, but it is not
true if there is an even number of pockets made out of
different orbitals. In FeSCs, there are two pockets made
out of dxz and dyz orbitals. We argued that symmetry-
imposed d−wave nodal points near Γ-point remain, at
least near Tc, but are shifted away from the normal state
FSs into the momentum region between the pockets. De-
pending on the magnitude of the gap, as compared to the
relative radii of the two Fermi surfaces, the dx2−y2 -wave
nodal points either persist down to T = 0, or come closer
with decreasing T and merge and annihilate at a finite
T < Tc via a Lifshitz transition. This transition, in which
the Dirac gap nodes annihilate, is analogous to a transi-
tion from a 2D massless Dirac semi-metal to an insulator.
Because the electron pockets are small and centered at
(π, 0) and (0, π), they do not cross the diagonals of the
Brillouin zone, i.e. there are no d−wave gap nodes on
these pockets as well. Thus, a d−wave FeSC with two
dxz/dyz hole pockets and two electron pockets may dis-
play a completely nodeless d−wave superconductivity.

With regard to experiments, we argued that the fact
that ARPES does not see nodes right on the inner
dxz/dyz Fermi surface of KFe2As2 is, in principle, not in-
consistent with a d−wave gap symmetry. However, based
on the values of the gap and of the radii of the dxz/dyz
hole pockets extracted from ARPES, it is likely that in
KFe2As2 the nodes are still present, but are located away
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from the normal state Fermi surfaces. We call for ARPES
measurements at momenta in between the two dxz/dyz
Fermi surfaces in KFe2As2. We also argued that the ob-
servation of a nodeless gap in KxFe2−ySe2 on a Z-pocket,
consisting of a single orbital, provides strong evidence
against a d−wave gap symmetry in this material.
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