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The response of nonlinear metamaterials and superconducting electronics to two-tone excitation
is critical for understanding their use as low-noise amplifiers and tunable filters. A new setting for
such studies is that of metamaterials made of radio frequency superconducting quantum interference
devices (rf-SQUIDs). The two-tone response of self-resonant rf-SQUID meta-atoms and metamaterials
is studied here via intermodulation (IM) measurement over a broad range of tone frequencies and tone
powers. A sharp onset followed by a surprising strongly suppressed IM region near the resonance is
observed. Using a two time scale analysis technique, we present an analytical theory that successfully
explains our experimental observations. The theory predicts that the IM can be manipulated with
tone power, center frequency, frequency difference between the two tones, and temperature. This
quantitative understanding potentially allows for the design of rf-SQUID metamaterials with either
very low or very high IM response.

I. INTRODUCTION

Nonlinearity is a key consideration in a wide range of im-
portant applications including amplifiers [1–3] and tunable
filters [4]. Introduction of nonlinearity into metamaterials
facilitates tunability, design flexibility, and self-induced
nonlinear responses [5, 6], giving rise to developments in
metamaterial-based amplifiers [7, 8] , filters [9–11] and
antennas [12–14]. However, as data streams containing
multi-frequency signals pass through these nonlinear com-
ponents, they generate intermodulation (IM) products
via frequency mixing [15]. The same issue appears in in-
trinsically nonlinear superconducting electronics. The IM
between two input frequencies f1 and f2 leads to products
at frequencies pf1±qf2 (p and q are integers), forming side
bands and additional noise that could diminish the perfor-
mance of superconducting devices [4, 16–27]. On the other
hand, IM generation can be used as a diagnostic to deter-
mine various types of defects in superconductors [28–31],
to study unconventional superconductors [28, 29, 31–41],
and to amplify microwave signals [2, 27, 42, 43], even
at the quantum limit in Josephson parametric amplifiers
[1, 3] and Josephson metamaterials [7]. Therefore, IM
is of mutual research interest in wireless communication,
nonlinear metamaterials, as well as in quantum infor-
mation processing, and superconducting electronics and
materials. Extensive measurement and theory have been
devoted to IM in these fields [18, 25, 44–52].

Rf-SQUID metamaterials combine the advantages of
superconducting electronics and nonlinear metamaterials
[5, 53, 54]. An rf-SQUID is the macroscopic quantum
version of a split ring resonator (SRR) with the gap
capacitance in the SRR replaced by a nonlinear Josephson
junction. SQUIDs can be very sensitive to dc and rf
magnetic flux, on the scale of the flux quantum Φ0 =
h/2e = 2.07× 10−15 Tm2, where h is Planck’s constant
and e is the elementary charge. Previous work reveals that

rf-SQUID meta-atoms and metamaterials have a resonant
frequency tunability of up to 80THz/Gauss by varying
the dc magnetic flux when the driving rf flux amplitude
is low [55–57]. In Ref. [58] the authors studied the
bistability of rf-SQUID meta-atoms and metamaterials
driven by intermediate rf flux amplitudes. The bistability
results in a lower resonant frequency and a nearly full
disappearance of resonance absorption (transparency).
Such broadband transparency can be switched on and off
via drive frequency, signal amplitude, or dc flux hysteresis
[58]. These properties make rf-SQUID metamaterials
attractive for tunable filters, gain-modulated antennas
[59], and wideband power limiters for direct-digitizing rf
receivers [60] in next-generation wireless communication
systems.

Basically, an rf-SQUID is a nonlinear resonator with
a manipulatable resonant frequency and absorption that
depend on the dc and rf flux amplitudes, the temperature,
and the drive signal history [55–58, 61–69]. We will study
IM generation around this tunable, bi-stable resonance.

In this paper we report comprehensive results from
experimental and theoretical IM studies of rf-SQUID
meta-atoms and metamaterials around resonance. We
focus on the case where two input signals have the same
amplitude, as opposed to IM amplification experiments
where one tone is much stronger than the other. We
find that under certain combinations of tone power and
frequency, the SQUID shows a sudden onset of the 3rd

order IM generation followed by a near-zero 3rd order
IM generation (gap). This phenomenon is a result of the
bi-stable properties of rf SQUIDs. This intrinsic suppres-
sion of IM generation may be useful as a mechanism for
depressing signal mixing in communication applications.
A detailed theoretical model is presented to explain this
surprising gap feature in IM generation. The intensity of
IM generation sensitively depends on the parameters of
the rf-SQUIDs, and can be modulated by dc/rf magnetic
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field, and temperature, potentially allowing one to design
and tune the IM generation to meet various requirements
for applications.

II. EXPERIMENT DETAILS

Two dimensional metamaterials were constructed by
positioning rf SQUID meta-atoms in a square grid array
on a planar substrate (Fig. 1 (a)). The single rf SQUID
meta-atoms, and the metamaterials, were fabricated using
the Hypres 0.3 µA/µm2 Nb/AlOx/Nb junction process on
silicon substrates, and the meta-atom has a superconduct-
ing transition temperature Tc = 9.2 K. A 3D perspective
drawing of a single rf-SQUID is shown in Fig. 1 (a) . Two
Nb films (135 nm and 300 nm thick) connected by a via
and a Josephson junction make up the superconducting
loop with geometrical inductance L. The capacitance C
has two parts: the overlap between two layers of Nb with
200 nm thick SiO2 dielectric in between, and the Joseph-
son junction intrinsic capacitance. A single rf SQUID can
thus be treated as a Resistively and Capacitively Shunted
Josephson Junction (RCSJ-model) in parallel with super-
conducting loop inductance (Fig. 1 (c)). The rf SQUIDs
are designed to be low-noise (Γ = 2πkBT/(Φ0Ic) < 1
where T is the temperature , Ic is the critical current
in the Josephson junction, Φ0 = h/2e is the quantum
flux, and LF = (kBT )−1[Φ0/(2π)]2 >> L [70]) and non-
hysteretic (βrf = 2πLIc/Φ0 < 1). No dc magnetic flux is
applied for this set of experiments.

In the experimental setup Fig. 1 (b), the rf-SQUID
array sits in a rectangular waveguide orientated so that
the rf magnetic field of the TE mode is perpendicular
to the rf-SQUIDs. Before each two-tone experiment, a
single-tone transmission experiment is conducted to de-
termine the resonant frequency at which the system has
maximum power absorption. IM products are then mea-
sured systematically around the resonance; two signals
of frequencies f1 and f2 having the same amplitude and
a small difference in frequency ∆f = f2 − f1 > 0 are
injected. The output signal contains the two main tones
and their harmonics, as well as IM products.

An example of the generation of an IM spectrum in
the metamaterial around resonance (of a 27×27 array of
rf SQUIDs) is shown in Fig. 1 (d) with ∆f = 1MHz.
This spectrum was measured under a fixed tone center
frequency and a fixed tone power. The output signal at
frequency fi = pf1 + qf2 is called the (|p|+ |q|)th order
IM. We focus on nearby IM products which are of the
3rd, 5th, 7th, ... order. The IM signals generated at nearby
frequencies f3 = 2f1 − f2 and f4 = 2f2 − f1, called the
lower and upper 3rd order IM (f2 > f1), respectively,
are of most concern in communications and mixing ap-
plications. When the metamaterial is superconducting
(measured at T = 4.6 K), there is strong IM generation
observed above the noise floor up to 51st order. There is
no observed IM output when temperature is above the
transition temperature, Tc = 9.2 K.

FIG. 1. (a) Left: The optical image of meta-atoms of a
27 × 27 array metamaterial. Inset shows details of a single
SQUID. Right: The 3D structure of a single rf-SQUID. The
distance between two Niobium layers is exaggerated to show
the overlap capacitance. (b) The experimental setup for our
IM measurements. (c) The circuit model for a single SQUID.
(d) Experimental measurements of output power from the
27×27 rf SQUID metamaterial at a temperature of T = 4.6
K as a function of frequency when two signals of the same
amplitude are injected at a center frequency of 21.499 GHz
and a difference frequency of 1 MHz.

The IM spectrum changes considerably as the center
frequency and tone power are varied. We mainly examine
the modulation of the 3rd order IM power. Again we first
search for resonance in a single-tone experiment as the
input power varies. In the intermediate power regime,
higher input power results in a shift of the resonant fre-
quency to lower values [58], as seen in the purple curve in
Fig. 2 (a). The 3rd order IM power is then measured with
two-tone input around the resonance. Fig. 2 (a) shows
the upper 3rd order IM power Pf4 (colors) generated from
a single rf-SQUID meta-atom as a function of the input
tone power (horizontal axis) and the center frequency (ver-
tical axis) of the two tones. The IM generation generally
follows the resonant frequency curve. Intermodulation
is small for low input tone powers (< −80 dBm), with
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FIG. 2. The upper 3rd IM power Pf4 generated from a single
rf-SQUID meta-atom as a function of the applied rf flux and
the center frequency of the two tones for (a) experiment and
(b) numerical simulation. The purple curve indicates the
resonant frequency for a single-tone excitation. The frequency
cut for output power at the third IM Pf3 (blue solid line) and
Pf4 (black dashed line) at -65 dBm for (c) experiment and (d)
simulation. Note that (c) is plotted by averaging the measured
frequency cut at the tone power ranging from -65.2 to -64.8
dBm (with a step of 0.1 dBm) to reduce the noise. The spacing
between the two input tones is 10 MHz, and the temperature
is 4.6 K.

a peak just below the resonant frequency. As the input
power increases, the IM generation also increases while
shifting to lower frequencies. At the same time a second
peak appears above the resonant frequency, forming an
IM gap where the IM is reduced to nearly the noise level
around the resonant frequency. The same phenomenon
is observed for a 7×7 array rf-SQUID metamaterial and
an 11×11 array rf-SQUID metamaterial. Operating the
meta-atom or metamaterial in the gap regime minimizes
the 3rd order IM frequency mixing.

Figure 2 (c) compares the measured lower and upper
3rd order IM products (Pf3 and Pf4) as a function of
frequency around the gap feature at -65 dBm. Both IM
powers show a sharp onset above the noise level at around
17 GHz, and decrease to a minimum value at 18 GHz, then
reach another peak at around 18.4 GHz before dropping
continuously at higher frequencies. However, the upper
tone Pf4 has a higher peak and a substantially lower dip
than the lower tone Pf3 . This asymmetry between two
same-order IM tones was also observed in other SQUID
samples and in our numerical simulations. We now wish
to explore the origins of the features seen in the data,
including the sharp onset and the dip in the 3rd IM
generation, as well as the asymmetry between the upper

and lower IM output signals.

III. MODELING

A. Numerical Simulation

In this section we explore a simple circuit model that
reproduces the effects seen in the previous sections. The
circuit model suggests treating a single rf SQUID as an
RCSJ in parallel with superconducting loop inductance
(Fig. 1 (c)). We assume a uniformly driven and uncoupled
SQUID array metamaterial can also be described by the
single junction RCSJ-model. The macroscopic quantum
gauge-invariant phase difference across the junction δ
determines the current through the junction I = Ic sin δ
(Ic is the critical current of the junction). In a closed
superconducting loop δ is related to the total magnetic
flux inside the loop: δ − 2πΦtot/Φ0 = 2πn, where n is an
integer, and again Φ0 = h/2e. Here we can take n to be
0 without loss of generality as shifting δ by 2π leaves the
current I unchanged [71]. The voltage across the junction
can be written as V = 2πΦ0dδ/dt.

The time evolution of the phases is determined by the
RCSJ circuit equation [71], obtained by demanding that
the total flux through the loop Φtot is the combination of
the dc and rf applied flux (Φdc+ Φrf (t)), and the induced
flux due to the self inductance L of the loop,

Φtot = Φdc + Φrf (t)− L(Ic sin δ +
V

R
+ C

dV

dt
). (1)

Here, Ic sin δ+V/R+CdV/dt is the total current through
the loop, which flows through the parallel combination
of the junction, shunt resistance R and capacitance C in
the RCSJ model. Replacing Φtot by Φ0δ/2π and V by
Φ0dδ/dt in Eq. (1) and rearranging terms, we obtain the
dimensionless RCSJ equation:

d2δ

dτ2
+

1

Q

dδ

dτ
+ δ + βrf sin δ = φdc + φrf (τ) (2)

where βrf = 2πLIc/Φ0, φdc = 2πΦdc/Φ0, φrf =

2πΦrf/Φ0, ωgeo = (LC)−1/2, τ = ωgeot, and Q =

R
√
C/L.

Typical parameter values are as follows. The induc-
tance, L = 280 pH, of the single SQUID meta-atom is
calculated numerically by Fasthenry based on its geo-
metrical structure [72]. Other parameters such as the
capacitance, C = 0.495 pF, the shunt resistance in the
junction, R = 1780 Ohm (4.6 K), and the critical cur-
rent, Ic = 1.15µA, are determined by fitting to the mea-
sured geometrical resonant frequency ωgeo/2π = 13.52
GHz, the measured quality factor Q = 75, and the quan-
tity βrf = 0.98. The quantities ωgeo, Q, and βrf were
directly measured in previous single-tone transmission
experiments [57, 58]. For our setup, the rf flux φrf driv-
ing the loop results from the injected rf power inside
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the rectangular waveguide. Note that the single SQUID
meta-atom has an inner diameter of 200µm, and an outer
diameter of 800µm. Other meta-atoms in our SQUID
metamaterials all have smaller sizes. Thus the rf flux am-
plitude through the SQUID loop is always much smaller
than the flux quantum in the rf power range we consider
in this work. Thus, |φrf | < 2π.

The time-dependent functional form of the rf flux is
determined by the driving signal. To study intermodula-
tion, the circuit is driven with two tones, which generally
can be written

φrf = φrf,1 sin(Ω1τ + θ1) + φrf,2 sin(Ω2τ + θ2) (3)

where Ω1,2 = 2πf1,2/ωgeo and f1 and f2 are the frequen-
cies of the two injected signals. Here the two tones have
different amplitudes φrf,1 and φrf,1, and phases θ1 and
θ2.

The driving flux can also be written in the form of a
complex phasor envelope modulated by a carrier at the
mean frequency Ω = (Ω1 + Ω2)/2,

φrf,a = Re[eiΩτ−iπ/2φe(τ)] (4)

where the envelope function φe(τ) = φrf,1 exp(−i∆Ωτ/2+
iθ1) + φrf,2 exp(i∆Ωτ/2 + iθ2) and ∆Ω = Ω2 − Ω1 >
0 is the difference frequency. For the situation in our
experiment, ∆Ω << Ω, i.e., the carrier frequency is much
greater than the envelope frequency. This will lead to
a number of simplifications in the analysis. At present
it allows us to argue that the results will not depend
on the relationship between the carrier and the envelope
phases. Since the relative phase between the carrier and
the envelope is unimportant we may shift the time axis in
the carrier and the envelope independently. Shifting time
in the carrier by τsc = −Ω−1(θ1 + θ2) and in the envelope
by τse = ∆Ω−1(θ1 − θ2) removes the phases θ1 and θ2

from the problem. Equivalently we can set θ1 = θ2 = 0.
We first consider the case of equal amplitude tones

(set φrf,1 = φrf,2 = φs to be the amplitude) and set
θ1 = θ2 = 0. We then solve Eq. (2) for δ(τ) using the
previously described circuit parameters. Under all circum-
stances explored here δ(τ) is observed to be sinusoidal
to a good approximation. Figure 3 (c) is an example of
the solution to δ(τ) at an input power of −65 dBm, with
tone frequencies f1 and f2 centered around f = 17.35
GHz and separated by of ∆f = 10 MHz. The dense blue
curves are the fast carrier oscillations and the vertical
extreme of the blue represents the slowly varying envelope.
More precisely, δ(τ) can be represented in the form of
a modulated complex phasor envelope, the same as the
form of the driving rf flux in Eq. (4). In this example,
the envelope varies on a time scale 3 orders of magnitude
longer than the carrier period. One beat period of the
envelope is shown in Fig. 3 (c) .

Further to investigate IM, we extract the amplitude
and phase of δi for frequency component fi via Fourier
transform of δ(τ). Since magnetic flux is related to δ

FIG. 3. The lower and higher main tone output amplitudes
δ1 and δ2, and third order tones δ3 and δ4 for a single rf-
SQUID meta-atom at -65 dBm calculated with (a) numerical
simulation and (b) analytical model. Plots of δ(t) over a beat
period at 17.35 GHz and -65 dBm calculated by (c) numerical
simulation and (d) steady-state analytical model. The dashed
boxes in (c) point out the overshooting ringing features in
numerical simulation. The spacing between the two input
tones is 10 MHz, the temperature is 4.6 K, and the applied dc
flux is set to zero.

through δ = 2π(Φtot/Φ0), we can extract the generated
third order IM magnetic flux Φ3,4. The IM flux translates
into an IM magnetic field inside the SQUID loop of area A,
i.e., B3,4 = Φ3,4/A. The excited IM magnetic field trans-
mits through the rectangular waveguide and generates
the third order IM powers at the detector. The SQUID
is inductively coupled to the waveguide via a coupling
coefficient g [73], so only part of the IM power couples
to the waveguide mode. The final simulated output IM
power is adjusted by varying g (g ≈ 0.015 for the single
SQUID meta-atom), and plotted as a function of center
frequency and tone power in Fig. 2 (b) for the upper
third order IM tone Pf4 , with a cut through -65 dBm
plotting both lower and upper third order IM powers (Pf3
and Pf4) in Fig. 2 (d). The cut through the simulated
IM power displays a similar sharp onset and gap feature
as observed in the experiment, as well as the prominent
asymmetry between the two IM tones.

Since δi is a surrogate for the output tone power Pfi
(δi ∼

√
Pfi) and a direct solution of the nonlinear equa-

tion, we use this quantity to analyze the degree of IM
generation. Figure 3 (a) shows amplitudes of δ1 to δ4 as
a function of tone center frequency at an input power of
-65 dBm, which shows the same asymmetric gap feature.
The upper third order IM output δ4 reduces to nearly
zero inside the gap. We plot δ(t) during one beat period
of the input rf signal at the onset center frequency (17.35
GHz) of the abrupt IM generation peak in Fig. 3 (c).
The δ(t) envelope stays at a higher amplitude in the first
quarter of the signal beat period, suddenly decreases to a
low amplitude, and gradually increases before it jumps to
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FIG. 4. Analytical solutions of steady-state model (Eqs. (5)-
(7)) at an rf power of -65 dBm which is around the gap feature

. (a) The relationship between δ̃ and φ̃rf for five remarkable
frequencies. φlh denotes the value of rf flux required for
transitions of δ̃ from low to high amplitude solution branch,
and φhl denotes the rf flux value for the transition from high
to low amplitude solution. (b) to (f): Blue curves represent
δ(t) calculated by the analytical model for (a) 17.3 GHz, right
before the onset of strong IM generation, (b) 17.35 GHz, at
the onset (c) 17.7 GHz, at the gap (d) 18.4 GHz, at the 2nd

peak, and (e) 19.5 GHz, low IM generation. The red curve is

φ̃rf as a function of time during a beat period. φlh and φhl
are marked in the figures as black and green lines. All assume
φdc = 0.

a higher amplitude again. Note that each abrupt jumps
comes with an overshoot feature (labeled as dashed boxes
in Fig.3 (c)) with a frequency around 1.5 GHz. The
overshoot frequency is intermediate to the fast oscillation
(17.35 GHz) and the slow modulations (10 MHz).

B. Steady-State Analytical Model

In this section we develop an analytical model to under-
stand the unique phenomena revealed in the experiment
and the numerical solutions of the previous sections. We
adopt the observation that the gauge-invariant phase δ(τ)
and the driving flux can be represented as in Eq. (4) as a
rapidly varying carrier modulated by an envelope. Thus,
we insert Eq. (4) on the right hand side of Eq. (2). We
first look for solutions where the time variation of the
envelope is so slow that the temporal derivatives of it

can be ignored. This leads (after neglecting harmonics of
the drive signal, which will be justified below) to a time
dependent gauge-invariant phase:

δ(τ) = δ̄ + δ̃ sin(Ωτ + θ)

where Ω = (ω1 + ω2)/(2ωgeo) and δ̄, δ̃ and θ are taken
to be constants that depend parametrically on τ through
the slow variation of φrf (τ) = φ̃rf = φe. Here δ̄ and δ̃
denote the dc part and the slowly varying envelope of
δ, respectively, θ is the phase of δ (which can also vary
slowly with time).

For the nonlinear term in Eq. (2) we have sin δ = sin[δ̄+

δ̃ sin(Ωτ+θ)] = sin δ̄ cos[δ̃ sin(Ωτ+θ)]+cosδ̄ sin[δ̃ sin(Ωτ+
θ)]. In principle this term will contain all harmonics of the
carrier, nΩ (n = 0, 1, 2, ...), and induce harmonics in the
gauge-invariant phase δ(τ). However, higher harmonics
in the gauge-invariant phase are suppressed by the second
derivative term in Eq. (2) (capacitive current). This is
confirmed in our numerical solutions where the amplitudes
of higher harmonics (components of frequency 2Ω and
3Ω) of δ are at least 2 orders of magnitude lower than
the fundamental frequency component. We note that
for the examples considered here the dc phase, δ̄, is zero
and consequently only odd harmonics are present. We
thus neglect these higher order harmonic terms when we
expand sin[δ̃ sin(Ωτ+θ)] and cos[δ̃ sin(Ωτ+θ)]. As a result,

we obtain sin δ ≈ sin δ̄J0(δ̃) + 2 cos δ̄J1(δ̃) sin(Ωτ + θ)

where J0(δ̃) and J1(δ̃) are Bessel functions. Separating
the dc, in-phase, and quadrature components of Eq. (2),
leads to three coupled equations for the three unknowns
(δ̄, δ̃ and θ),

(1− Ω2)δ̃ + 2βrf cos δ̄J1(δ̃) = φ̃rf cos θ (5)

Ω

Q
δ̃ = −φ̃rf sin θ (6)

δ̄ + βrf sin δ̄J0(δ̃) = φdc (7)

We construct δ(t) by solving Eqs. (5) - (7) to find δ̄, δ̃,

and θ for a given φ̃rf and φdc. The relationship between

δ̃ and φ̃rf at different frequencies (f1 + f2)/2 is plotted in
Fig. 4 (a) for our standard parameter set, φdc = 0, Q = 75,

and βrf = 0.98. The oscillation amplitude δ̃ as a function

of rf flux amplitude φ̃rf is symmetric about the origin, so

only positive φ̃rf is shown. Figure 4 (a) indicates that

δ̃ can be single-valued or multi-valued depending on the
fast-oscillation frequency and the slowly-varying envelope
amplitude φ̃rf . For cases where δ̃ is multivalued, we let
φhl and φlh denote the lower and upper critical rf flux
values (as labeled in Fig. 4 (a)) between which there are

three solutions for the oscillation amplitude, δ̃. When this
occurs (φhl < φ̃rf < φlh) the middle solution is always
unstable and the largest and the smallest solutions are
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stable. Thus, if φ̃rf is in the bistable regime, and δ̃ is on

the lower (higher) stable branch, then, as φ̃rf is slowly

increased (decreased) through φlh (φhl), the solution for δ̃
will experience a jump transition from the lower (higher)
stable branch to the higher (lower) stable branch.

For two equal amplitude input tones with a fixed center
frequency and a fixed tone power, φ̃rf is a sinusoidal
function with a peak value of 2φs, and a frequency of
∆Ω/2, i.e. φ̃rf = 2φs cos ∆Ωτ/2.

Figures 4 (b) - (f) show the evolution of δ(t) at differ-
ent center frequencies (blue), as well as the relationship

between the envelopes of the rf flux φ̃rf (red curves), the
transition rf flux values φlh (black horizontal lines) and

φhl (green horizontal lines) for positive and negative φ̃rf
values during a beat period (ωgeo∆Ω/2π = 10 MHz). For

tone center frequencies below 17.3 GHz, although δ̃ is
bistable, the envelope of rf flux φ̃rf is always below φlh,

so δ̃ remains on the low amplitude branch during a beat
period. Above 18.6 GHz, δ̃ as a function of φ̃rf becomes
single valued. Both cases give rise to low IM generation.

Between 17.3 GHz to 18.6 GHz, however, the peak
value of φ̃rf exceeds the upper bi-stable transition rf

flux amplitude φlh, while the minimum value of φ̃rf is
below φhl, so there are four discontinuous jumps in δ(t)
during a beat period. Changing the center frequency from
17.35 GHz to 17.7 GHz makes the solutions for δ̃ stay on
the high-amplitude branch longer (Fig. 4 (d)). This is
because φlh is smaller for higher frequencies (as seen in

Fig. 4 (a)), so it is easier for φ̃rf to pass the low-to-high
transition. The sudden asymmetric state jumps during a
beat period generates rich IM products.

We extract the IM components of δ by Fourier trans-
form as discussed for the numerical simulation, and extract
the amplitude of two main tones and two third order IM
tones of δ, plotted in Fig. 3 (b). The analytically calcu-
lated amplitudes of IM tones are almost the same as those
in the full numerical simulation. However, comparison of
time dependent gauge-invariant phase δ(t) between the
full numerical calculation and the analytical calculation
in Fig. 3 (c) and (d) indicates that the dynamical ringing
appears around the state jumps in the full-nonlinear nu-
merical calculation but is not present in the steady-state
solutions to Eqs. (5) to (7). These will be investigated
subsequently.

C. Dynamical Model

The ringing behavior of δ(t) during state jumps indi-
cates that the system requires time to transition from one
stable state to another. We study this process using a
dynamical model for the complex amplitude of the phase

δ̂, where δ(τ) = δ̄ +Re[δ̂(τ)eiΩτ−iπ/2].

For two equal amplitude input tones, the enve-

lope of the rf flux φ̂rf = φe = 2φs cos(∆Ωτ/2) is

real. In this case, sin δ is expanded as sin δ̄J0(|δ̂|) +

2 cos δ̄J1(|δ̂|)Re(δ̂eiΩτ−iπ/2)/|δ̂| with negligible higher or-
der terms assuming that the higher harmonics of δ are
much smaller than the base frequency component. In
deriving an equation for the envelope, we adopt the ap-

proximations that Q >> 1 and that δ̂(τ) changes slowly,

|Ωδ̂| >> |dδ̂/dτ |. Thus in Eq. (2) we replace d/(Qdτ)
with iΩ/Q, and d2/dτ2 with −Ω2 + 2iΩd/dτ . This yields

a first-order nonlinear equation for the phasor δ̂ and a
transcendental equation for the steady part of δ(t),

iΩ[2
d

dτ
+

1

Q
]δ̂+ [1−Ω2 + βrf cos δ̄

2J1(|δ̂|)
|δ̂|

]δ̂ = φ̂rf (8)

δ̄ + βrf sin δ̄J0(|δ̂|) = φdc (9)

To analyze the dynamics, we express δ̂ as an in-phase

part and a quadrature part, i.e. δ̂ = δR + iδI , and write
the real and imaginary parts of Eq. (8). We note that
in the absence of losses (Q → ∞) one can construct a
Hamiltonian function for the nonlinear system. Including
losses we have

d

dτ
δR = − 1

2Q
δR −

∂

∂δI
H(|δ̂|) (10a)

d

dτ
δI = − 1

2Q
δI +

∂

∂δR
H(|δ̂|) (10b)

where

H =
1

4Ω
[(1− Ω2)|δ̂|2]− 2βrf cos δ̄J0(|δ̂|)− δRφ̂rf

is the Hamiltonian. Equilibrium states of the system
Eq. (10b) are the same as those described by Eqs. (5) -
(7). However, we note that the Q-value for our system
is quite large, Q ≈ 75. As a result we look for equilibria
of the lossless system, Q→∞, which are located in the
δR − δI plane at the stationary values of the Hamilto-
nian, ∂H/∂δR = ∂H/∂δI = 0. Equilibria will be stable
if they are at maximal or minimal points of H when
(∂2H/∂δ2

I )(∂2H/∂δ2
R) > 0. Note that the Hamiltonian is

symmetric about δI = 0.
In Figs. 5 (a) - (c) we plot the Hamiltonian as a

function of δR and δI at a center frequency of 17.35 GHz

and -65 dBm tone power, when the rf flux amplitude φ̂rf
is at its peak (0.23), zero (0.0), and negative maximum
(−0.23) during a beat period. Figure 5 (e) shows a cut
through the δI = 0 plane, plotting H as a function of
δR at various rf flux values. In Fig. 5 (f) a blow-up
of the dashed region is shown that traces the minimum
and maximum of H as the rf flux envelope evolves with
time. Note that the state transition occurs at an rf flux
amplitude of 0.22 for this frequency. When rf flux is zero,
the Hamiltonian H is symmetric around the origin, and
has a local minimum (stable point) centered at the origin.
As the rf flux increases, the H(δR) curve tilts so that
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FIG. 5. The calculated Hamiltonian of a single rf SQUID
as a function of δR and δI for rf flux amplitudes of (a) 0.23,
(b) 0.0, and (c) -0.23. (d) The colormap of the calculated
Hamiltonian as a function of δR and δI for rf flux amplitude
of 0.23, with contours from −1 to −0.5 with a step of 0.05. (e)
The calculated Hamiltonian as a function of δR when δI = 0
with different values of rf flux. (f) A zoom-in plot of the
dashed box in (e). The transition rf flux value to bistability is
around 0.22. All assume a center frequency of 17.35 GHz.

the peak located in the positive region of δR decreases
and moves towards the origin; gradually meeting the dip
which moves away from the origin along the δR axis. At
the same time another peak rises up. As the rf flux value
reaches 0.23, the lower peak and the dip between the two
peaks disappear. The system then has to transition to
another stable state located at the higher peak in the
negative δR region. At an rf flux of −0.23, H tilts to the
other side (Fig. 5 (c)).

Because of the high value of Q, the system’s transition
trajectory from one stable state to another follows the
constant contour lines of the Hamiltonian surfaces in a
spiral manner. Figure 5 (d) shows the contour lines (from
−1 to −0.5 with a step of 0.05) on top of the Hamiltonian

colormap at φ̂rf = 0.23.

We can find the trajectory of δ̂(t) for φdc = 0 by solving

Eq. (8) to obtain δR and δI during a beat period as φ̂rf
changes. Again, we look at the solutions for a center
frequency of 17.35 GHz at -65 dBm input tone power. The

time trajectory of the phase envelope δ̂ in the δR-δI plane
during the beat period as calculated by the dynamical
model is shown in Fig. 6 (a). Compare this with Figs. 6

(b) and 6 (c) which present the δ̂ trajectories extracted
from δ(t) in the full nonlinear numerical calculation and
the steady-state model, respectively. Figure 6 (a) and
(b) are almost identical to each other, serving to validate
the dynamical model. In the trajectory plots Fig. 6 (a)
and (b) we see four colored in-spiraling orbits centered
around four corresponding dense regions (red and black
dense regions are close to each other near the origin); the
dense regions denote the steady-state solutions right after
a state jump. We can clearly see these four states in the
steady-state trajectory (Fig. 6 (c)) labeled as A, B, C

FIG. 6. The time elapsed trajectories for δ̂(t) for one beat pe-
riod calculated by (a) the dynamical model, (b) the numerical
simulation, and (c) the steady-state model. The inset of (c)
zooms in on the trajectory around the origin by five times.
(d) shows δ(t) calculated from the dynamical model, and (e)
is a zoom-in of the dashed box in (d) showing the ringing
behavior.

and D. The blue dense region in Fig. 6 (a) and (b) is the
solution at the beginning of a beat period, corresponding
to state A. As the rf flux amplitude during a beat period
reduces below φhl, the high-amplitude state has to jump
to state B (red). For the steady-state solution (Fig. 6
(c)), the system oscillates in the high-amplitude branch
following the blue curve, then directly jumps to state
B (red dot). In numerical simulation of Eq. (2) and
the dynamical model Eqs. (10a) and (10b) though, the
system goes through several orbits before settling down
at the low-amplitude stable state B (red dense region)
near the origin in the δ-plane. It follows from Eqs. (10a)
and (10b) that the area in phase enclosed by the orbit
decreases exponentially at a rate 2/Q during approach
to the equilibrium point. The boundary between the two
colors denotes the time when the system starts to jump
to another state.

The in-spiraling orbits during a transition are predicted
by the Hamiltonian analysis. The shape of the trajectory
before jumping to state A matches the contour lines in
Fig. 5 (d), except that the trajectory is not symmetric
about δI axis due to the losses (parameterized by Q)
which is not included in the Hamiltonian. The number
of trajectory orbits during the transition illustrates the
relaxation time of a state jump. The relaxation time also
depends on the losses.

Figure 6 (d) displays the δ(t) calculated by the dynam-
ical model; Fig. 6 (e) is a zoom-in for the selected region
near a state jump. The colors match the colored curves
in the trajectory plots Fig. 6 (a) to (c). There are very
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clear ringing features during a jump, which is a reflection
of damped spiral orbits. The ringing feature oscillates at
a frequency of around 1.5 GHz, and can cause sidebands
in the IM spectrum.

IV. DISCUSSION

Three models for IM generation in rf-SQUIDs have been
discussed. The solutions to the full numerical nonlinear
model contain the most complete information for the
response of rf-SQUIDs to two-tone excitation, yet gives
little insight into the underlying physics. The steady-state
analytical model greatly simplifies the 2nd order nonlinear
differential equation to three coupled algebraic equations,
and sheds light on the origin of the unique IM features -
the state jumps during a beat period cause an abrupt in-
crease in IM products. While it predicts the same level of
IM generation as calculated by numerical simulation (Fig.
3), the steady-state model lacks the dynamics accompany-
ing each state jump, which can be understood using the
nonlinear dynamical model. This model reduces the full
nonlinear equation to a complex first order differential
equation, and allows for construction of a Hamiltonian
for the SQUID. The topology of the Hamiltonian surfaces
evolves continuously as the envelope of the drive signal
changes. The topology determines the form of the trajec-

tories, δ̂(t), to be spirals during transitions as the SQUID
switches from one stable state to another, resulting in
ringing features in δ(t).

The models all include dc flux as a variable that affects
the response of the SQUID. In this paper we focus on
the zero dc flux case. Varying the dc flux value would
modify the relationship between the envelope of δ and
the envelope of φrf (zero flux case shown in Fig. 4 (a)),
but would preserve bistability and thus the discontinuous
jumps during a beat period. In the future we plan to
explore the effect of non-zero dc flux on IM generation.

We also note that utilizing two equal-amplitude tone in-
puts always results in the rf flux envelope passing through
zero during the beat period. Thus the IM products of
the SQUID are independent of the system’s history, even
in the bistable regime. As long as the rf flux envelope
peak (determined by tone power) exceeds the transition
point φlh, the SQUID will experience four discontinuous
jumps during a beat period. However, if the two tones
have different amplitudes, so that the minimum value
of the envelope is higher than φhl, the amplitude of the
phase envelope depends on the direction of tone power

sweep. In an upward sweep the phase amplitude δ̂ resides
in the low-amplitude branch during the whole beat period

until the tone power increases to the point that the rf flux
envelope peak exceeds φlh; δ will then keep oscillating
in the high-amplitude branch during a beat period. In
a downward tone power scan though, δ would modulate
with the beating rf flux in the high-amplitude branch
until the peak drops below φhl. The IM amplification
experiment of an 11 × 11 SQUID array metamaterial,
where the power amplitude of one tone is always 20 dB
higher than the other, shows significantly more hysteresis
in rf power scanning than the equal-amplitude IM case.
The lack of discontinuous jumps during a beat period
in the hysteretic IM amplification process brings in new
phenomena worth investigating in the future.

V. CONCLUSION

We have shown that the rf-SQUID meta-atoms and
metamaterials have a rich nonlinear spectrum due to the
nonlinearity of the Josephson junctions. Experiment, nu-
merical simulation, and analytic models all show a sharp
onset, followed by a dip, in the third order IM output.
Rf-SQUID array metamaterials display behaviors that
are similar to those of single rf-SQUID meta-atoms. The
sharp onset of IM generation comes from a series of asym-
metric jumps between two stable states of the rf SQUID
as the drive amplitude modulates during a beat period of
the input signal. Each state jump creates a transient re-
sponse appearing as ringing in the time domain. The time
evolution of the junction gauge-invariant phase δ(t) can
be explained by a dynamical model employing a Hamil-
tonian analysis with damping. Our analytical models
can potentially be used to design SQUID metamaterials
to generate either very high or very low IM products in
response to multi-tone excitation. In addition, these mod-
els can also be applied to design other nonlinear systems
employing Josephson junctions, such as the Josephson
parametric amplifiers.
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