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Finite-Q magnetic instabilities are rather common in frustrated magnets. When the magnetic susceptibility is
maximized at multiple-Q vectors related through lattice symmetry operations, exotic magnetic orderings such as
vortex and skyrmion crystals may follow. Here we show that a periodic array of nonmagnetic impurities, which
can be realized through charge density wave ordering, leads to a rich phase diagram featuring a plethora of
chiral magnetic phases, especially when there is a simple relation between the reciprocal vectors of the impurity
superlattice and the magnetic Q-vectors. We also investigate the effect of changing the impurity concentration or
disturbing the impurity array with small quenched randomness. Alternative realizations of impurity superlattices
are briefly discussed.
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I. INTRODUCTION

The emergence of nonzero bulk spin-scalar chirality, known
as chiral order, has drawn considerable interest in condensed
matter physics. Various consequences of a chiral order have
been discussed in different fields ranging from superconduc-
tivity to Mott insulators1–4. An attractive area of research
is generated by potential realizations of chiral liquid states,
i.e., states that exhibit chiral order in absence of magnetic or-
der2,5–7. Another attractive aspect of chiral states is their po-
tential for inducing nontrivial topological phenomena, such as
topological anomalous Hall effect for electrons coupled to a
chiral spin state through the Berry phase mechanism8–13. The
very large fictitious magnetic field produced by this mecha-
nism (103–104 T) may bring major advances for spintronics
applications14. It is then important to understand the physical
mechanisms to stabilize the chiral order.

Noncoplanar magnetic orderings are accompanied by a
nonzero local scalar chirality 〈χjkl〉 = 〈Sj · (Sk × Sl)〉 6= 0,
where j, k, and l are three neighboring lattice sites. Re-
cent theoretical studies on frustrated Kondo lattice mod-
els have unveiled a general mechanism for stabilizing non-
coplanar magnetic orderings in itinerant magnets compris-
ing conduction electrons coupled to localized magnetic mo-
ments13,15–20. The mechanism relies on the generation of four
and higher spin interaction terms, which appear upon expand-
ing in the small Kondo interaction beyond the Ruderman-
Kittel-Kasuya-Yosida (RKKY) level17–19. These multi-spin
interactions are relatively weak in strongly coupled Mott insu-
lators. In terms of a Hubbard model description with hopping
amplitude t and on-site Coulomb potential U , four spin inter-
actions are of orderO(t4/U3), while two-spin interactions are
O(t2/U). Consequently, chiral spin textures are less common
in Mott insulators with isotropic exchange interactions. In-
deed, these systems usually exhibit a conical spiral order with
zero net scalar chirality even in an external magnetic field;

otherwise either collinear or coplanar orderings. However, re-
cent theoretical studies in both classical21–25 and quantum26–28

frustrated spin systems, have shown that the interplay between
geometric frustration, thermal21 or quantum fluctuations,26–28

magnetic anisotropy22–25,29–31, and long-range (dipolar) inter-
actions32–34, can stabilize a plethora of multiple-Q spin tex-
tures in Mott insulators, some of which have net scalar spin
chirality. In this context, it is worth mentioning a recent ex-
perimental confirmation of a triple-Q vortex crystal in the
scandium thiospinel MnSc2S4 induced by a magnetic field,
where geometric frustration and anisotropy seem to play the
key role.35

In this article we demonstrate that frustrated Mott insula-
tors coupled to a superlattice of nonmagnetic impurities can
generate chiral states in the presence of an external magnetic
field. In contrast to Ref. 36, where we have shown that a sin-
gle nonmagnetic impurity nucleates a magnetic vortex over a
finite range of magnetic field values above the bulk saturation
field Hsat, here we focus on the effects of a periodic array of
non-magnetic impurities below the saturation field. A crucial
observation is that the local saturation field, HI

sat, around an
impurity can be higher than Hsat in frustrated magnets with
competing ferro- and antiferromagnetic interactions. Given
that a single impurity nucleates a magnetic vortex around it
for Hsat < H < HI

sat, it is natural to ask about the effect of an
array of impurities when H < Hsat. It is known that nonmag-
netic impurities tend to reorient the surrounding spins into a
less collinear fashion by inducing an effective biquadratic in-
teraction (Sj · Sk)2 with a positive (hence antiferroquadrupo-
lar) coupling constant37–40. This rather general observation
provides an alternative motivation for studying the magnetic
effects of periodic, and nearly periodic, arrays of impurities.

Motivated by these observations we focus on the low tem-
perature (T ) physics of a classical spin model. An impor-
tant prerequisite is to include competing ferro- and antifer-
romagnetic exchange interactions so that the Fourier trans-
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form, J(q), has multiple degenerate minima, Q1,Q2, · · ·
connected by lattice symmetry transformations. The ordered
array of nonmagnetic impurities may be realized in a hole-
or electron-doped system with sufficiently strong off-site
Coulomb interactions so that a charge density wave (CDW)
order leads to an array of holes or doubly-occupied sites. For
instance, certain high-Tc superconductors and related materi-
als are known to have a CDW of holes at a hole concentration
x = 1/8 (Refs. 41 and 42). Other possible realizations will be
discussed later.

The rest of the paper is organized as follows. In Sec. II,
we present our model, outline our Monte Carlo (MC) method,
and list the observables that we evaluate. In Sec. III, we show
the temperature (T )-magnetic field (H) phase diagram for a
perfectly periodic array of nonmagnetic impurities and a sim-
ple relation between the superlattice reciprocal unit vectors
and the Q-vectors (a preliminary account of the discussion in
Sec. III A was presented in Ref. 43). A plethora of multi-Q
phases are obtained from our MC simulations. In Sec. IV,
we provide an analytical analysis that explains all of the nu-
merically obtained phases close to T = 0. In Sec. V, we
discuss the effects of changing the impurity concentration or
introducing small quenched randomness to the impurity lat-
tice. Sec. VI includes a discussion of potential realizations of
periodic arrays of nonmagnetic impurities.

II. MODEL

A. Model

We consider a two-dimensional classical J1-J3 triangular-
lattice Heisenberg magnet in a magnetic field with nonmag-
netic impurities. In the absence of impurities, the Hamiltonian
is

Hpure = J1
∑
〈j,l〉

Sj · Sl + J3
∑
〈〈j,l〉〉

Sj · Sl −H
∑
j

Szj . (1)

In order to realize Hsat < HI
sat, we adopt ferromagnetic

nearest-neighbor (NN) exchange, J1 < 0, and antiferromag-
netic third NN exchange J3 > 0. Note that the qualitative
features derived from the J1-J3 model, Hsat < HI

sat and six
symmetry related ordering wave-vectors, are expected to hold
for a broad class of frustrated Heisenberg magnets. Sj repre-
sents a classical spin located at the site j with |Sj | = 1. The
thermodynamic phase diagram of this model Hamiltonian in-
cludes a magnetic field induced finite temperature skyrmion
crystal phase for21,23–25

J3/|J1| > Jc3/|J1| = 1.0256(53). (2)

The skyrmion crystal is a state with spontaneously broken chi-
ral symmetry, corresponding to the superposition of harmonic
waves with sixfold-degenerate incommensurate wave vectors
±Qν (ν = 1–3). These are the wave-vectors that minimize
the Fourier transform of the exchange interaction

J(q) =
∑

1≤j≤3

(J1 cos q · ej + J3 cos 2q · ej). (3)

Here e1 = x̂, e2 = −x̂/2+
√

3ŷ/2, and e3 = −e1−e2. The
incommensurate minima emanate from the Γ point (Lifshitz
transition) for J3/|J1| > 1/4 (we will adopt a convention
where the lattice spacing is a = a−1 = 1):

±Q1 = ±Qx̂,

±Q2 = ±Q(−x̂/2 +
√

3ŷ/2),

±Q3 = ±Q(−x̂/2−
√

3ŷ/2), (4)

with

Q = 2 arccos

[
1

4

(
1 +

√
1− 2J1

J3

)]
. (5)

Thus, according to Eqs. (2) and (5), the skyrmion crystal phase
is only stable for Q/(2π) > Qc/(2π) = 0.2623(3). For
|J1|/4 < J3 . Jc3 , J(q) resembles the bottom of a wine
bottle near the Γ point, with a weaker C6 anisotropy as the
system approaches the Lifshitz transition point J3 = |J1|/4.
In this regime, the phase diagram comprises only the high-
temperature paramagnetic phase and the single-Q conical spi-
ral phase, both of which have no net scalar spin chirality.25

We will first consider the effect of a periodic array of non-
magnetic impurities forming a perfect triangular superlattice.
The primitive reciprocal superlattice vectors are

K± =
2π

aimp
(1,±1/

√
3), (6)

where aimp is the impurity superlattice constant. The impuri-
ties are introduced in the Hamiltonian by replacing

Sj → pjSj , (7)

where pj = 0 (1) for a nonmagnetic impurity (magnetic) site.
This amounts to introducing the impurity contribution to the
HamiltonianHimp = HJimp +HHimp, so that

H = Hpure +HJimp +HHimp, (8)

with

HJimp = −
∑
j

(1− pj)
∑
η

Jj,ηSj · Sj+η,

HHimp = H
∑
j

(1− pj)Szj . (9)

Here η is the index of the coordination vectors and the dif-
ferent notation Jj,η = J1, J3 for the exchange coupling is
associated with the ηth coordination vector at each site j. Af-
ter presenting phase diagrams for periodic arrays of impurities
(Sec. III), we will introduce a small randomness in the impu-
rity locations around the superlattice sites (Sec. V B).

B. Monte Carlo method

We perform classical MC simulations of our spin Hamil-
tonian H given in Eq. (8) for several impurity configurations
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to be specified below. Our simulations are carried out with
the standard Metropolis local updates supplemented with the
over-relaxation method.44 The lattice has N = L2 sites (in-
cluding impurity sites) with L = 48, 64, 72, 80, and 96
and we impose the periodic boundary conditions in both di-
rections. We first perform simulated annealing for 105–106

MC sweeps (MCS) to find low energy configuration, which
is then followed by equilibration steps and a subsequent sam-
pling process of 105–107 MCS at the target temperature. The
statistical errors are estimated from 5–64 independent runs.

We calculate the specific heat,C, the uniform magnetic sus-
ceptibility dM/dH , and the spin and the chirality structure
factors. The spin structure factor Sααs (q) (α = x, y, z) is
given by

Sααs (q) =
1

N

∑
j,l

〈Sαj Sαl 〉eiq·(rj−rl),

S⊥s (q) = Sxxs (q) + Syys (q). (10)

We define the chirality structure factor Sµχ(q) for the upward
and downward triangles (µ = u, d, respectively) as

Sµχ(q) =
1

N

∑
R,R′∈µ

〈χRχR′〉eiq·(R−R
′), (11)

where R,R′ run over sites of the specified sublattice, µ =
u, d, of the dual honeycomb lattice. χR = Sj · (Sk × Sl)
is the spin scalar chirality associated with a triangle centered
at R, where j, k, l are the sites aligned counterclockwise on
the triangle. We also introduce the following notations for the
total scalar chirality associated with the up (χu) and the down
(χd) triangles,

χµ =
1

N

∑
R∈µ

χR for µ = u, d, (12)

and their sum,

χtot = χu + χd, (13)

which is the total scalar chirality.

III. PERIODIC ARRAY OF IMPURITIES

We start our discussion with the case where magnetic im-
purities form a perfect triangular superlattice. We first require
commensurability between the superlattice reciprocal vectors,
K±, and ±Q1≤ν≤3, which is expected to enhance the con-
structive interference between the impurity superlattice and
the spin texture (we will relax this condition later). For the
sake of concreteness, we fix J3/|J1| = 1/(4− 2

√
2) ≈ 0.854

unless otherwise specified, which corresponds to Q/(2π) =
1/4 according to Eq. (5). Given that J3 < Jc3 , the phase
diagram in absence of impurities only includes the single-Q
conical spiral state shown in Fig. 2(b). Such a state is not chi-
ral because χu and χd cancel each other. For nonzero H , this
quasi-long-range ordered state completely breaks theC6 sym-
metry of H because of the associated bond ordering, whereas

the C6 symmetry is broken down to C3 for H = 0 as there
is a continuous symmetry operation that can change the sign
of the vector chirality. In both cases, our results are consistent
with the single-step first-order transition found for the zero-
field J1-J3 model with classical XY and Heisenberg spins in
Refs. 45–47, where the symmetry is O(2) and O(3), respec-
tively, corresponding to the cases with and without the mag-
netic field in the present consideration.

As described in the introduction, the nonmagnetic impuri-
ties in a frustrated magnet with competing ferro- and antiferro-
magnetic exchanges make the local saturation field for the sur-
rounding spins larger than the bulk value (HI

sat > Hsat). This
is so because the nearest neighbor spins of the non-magnetic
impurity feel a molecular field, parallel to the applied field,
which is lower than the molecular field acting on other spins.
This effect is of course present for any value of the external
field: the spins that surround a non-magnetic impurity have
a lower magnetic susceptibility because the impurity removes
the ferromagnetic (J1) bonds connecting them to the missing
spin (Fig. 1). Because the field inducing the z spin component
is smaller than the average for these spins, their xy component
becomes larger at low energies. Moreover, we can anticipate
that the resulting local spin configuration near each impurity
is likely to be a vortex as in the case with Hsat < H < HI

sat,
36

because of the competition between J1 and J3 for the six spins
surrounding the impurity (Fig. 1). The rest of the spins have to
accommodate their configuration to the local “boundary con-
dition” imposed by each impurity.

Below, we consider two representative cases where the su-
perlattice constant for the periodic impurities is aimp = 8
and aimp = 4. They correspond to simple relations between
the superlattice reciprocal vectors and the Q vectors, namely,
K+ + K− = Q1 and K+ + K− = 2Q1, respectively. We
will demonstrate that such a commensurate impurity superlat-
tice produces a drastic change of the magnetic phase diagram.
Our finite-size scaling analysis to characterize the phases is
summarized in Appendix A.

FIG. 1. Schematic picture for a local configuration in a magnetic
field around a nonmagnetic impurity (at the center). The straight
solid (dashed) lines represent the remaining (removed) ferromagnetic
exchange J1 interactions. The arc lines represent the antiferromag-
netic exchange J3.
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TABLE I. Classification of the ordered phases in the classical J1-J3 Heisenberg model with periodic nonmagnetic impurities. Here J3/|J1| ≈
0.854 and the period of the impurity superlattice is aimp = 8. From the fourth to the sixth column, our notation of “n + nsub(+n

′
sub)” means

that the corresponding structure factor has n dominant peaks as well as nsub subdominant (and n′sub even smaller) peaks.

phase nonzero net
scalar chirality

chirality of up and
down triangles

number of (quasi-)Bragg
peaks in S⊥s (Q)

number of (quasi-)Bragg
peaks in Szzs (Q)

at q 6= 0

number of Bragg peaks
in Su/dχ (Q) at q 6= 0

broken point-group
symmetry (of the lattice

with impurities)
ferrochiral 3QM -6Qχ vortex crystal X χu = χd 3 0 3+3 —
ferrochiral 3QM vortex crystal X χu = χd 3 3 0 —
ferrochiral 3QM -1Qχ spiral X χu = χd 2+1 1 1 C6

ferrichiral 3QM -2Qχ spiral I X |χu| 6= |χd| 1+2 2+1 2+1 C6

ferrichiral 3QM -2Qχ spiral II X |χu| 6= |χd| 1+1+1 1+1+1 1+1+1 C6

antiferrochiral 1QM spiral No χu = −χd 1 1 0 C6

ferrochiral 3QM -2Qχ spiral X χu = χd 1+2 1 2+1 C6

vertical 1QM spiral No — 1 1 0 C6 (C3 for H = 0)

(a)
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FIG. 2. (a) Phase diagram for a perfect periodic array of impurities (aimp = 8) with J3/|J1| ≈ 0.854 (Q = 2π/4). The inset shows the
impurity superlattice. (b) Phase diagram of Hpure. (c) T -dependence of the net scalar chirality at H/J3 = 0.18, (d) magnetization curve and
its H-derivative at T/J3 = 0.05, and (e) H-dependence of (χtot)2 at T/J3 = 0.05, for the model including a periodic array of impurities. (f),
(g) T -dependence of the specific heat at (f) H/J3 = 3.6 and (g) H/J3 = 0.9.

A. Case with aimp = 8

The configuration of impurities is shown in the inset of
Fig. 2(a). The impurities are separated by aimp = 8 sites along
the lattice principal directions. This superlattice spacing is ex-
actly twice as large as 2π/Q = 4.

Figure 2(a) shows the T -H phase diagram obtained with
our MC simulations, which features eight different phases
other than the paramagnetic state (Table I). The phase bound-
aries are determined by analyzing the structure factors in
Eqs. (10) and (11) (Figs. 3 and 4) and the peak in the
uniform magnetic susceptibility [Fig. 2(d)] as a function of
H . Notably, many phases are multiple-Q states that support
long-wavelength modulation of local scalar chirality (chirality
wave), which is not necessarily single-Qχ but some of them
are actually of the multiple-Qχ type (our convention is to use
QM and Qχ, respectively, when it is necessary to make an
unambiguous distinction between spin and chirality textures).
The commensuration between the chirality waves and the im-

purity superlattice leads to a majority of magnetically ordered
phases with net scalar spin chirality [see Figs. 2(c) and 2(e)].
The uniform component arises from uncompensated positive
and negative components of the chirality wave texture: the
impurities remove spins contributing to only one sign of the
modulated chiral structure. Meanwhile, the xy spin compo-
nents only exhibit quasi-long-range correlations in d = 2,
as expected from Mermin-Wagner’s theorem.48 In agreement
with our discussion above, the spins around the impurities
form vortices with enhanced xy components. In what follows,
we describe details of the obtained phases.

a. Ferrochiral 3QM -6Qχ vortex crystal49 This phase
appears right below the saturation field near T = 0. Upon
entering this phase via the thermal transition, the specific heat
shows a single weak anomaly as shown in Fig. 2(f). The
spin configuration is a triple-QM vortex crystal similar to the
one reported recently in 3D frustrated quantum magnets26,27.
This phase may be understood as the natural extension of the
single-impurity vortex for Hsat < H < HI

sat
36. In fact, as
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FIG. 3. Snapshots of the spin (left) and the chirality (middle) configurations in the ordered phases for J3/|J1| ≈ 0.854 (Q = 2π/4) when
periodic impurities (triangles) with aimp = 8 are present. The spin and the chirality structure factors are shown on the right: (a) ferrochiral
3QM -6Qχ vortex crystal (H/J3 = 4.0 and T/J3 = 0.05), (b) ferrochiral 3QM vortex crystal (H/J3 = 1.9 and T/J3 = 0.41), (c) ferrochiral
3QM -1Qχ spiral (H/J3 = 3.0 and T/J3 = 0.05), and (d) ferrichiral 3QM -2Qχ spiral I (H/J3 = 1.5 and T/J3 = 0.05). The circles with
solid (dashed) lines indicate the dominant (subdominant) q 6= 0 peak(s). Note that the q = 0 component is removed from Szzs (q). The
hexagon with a solid (dashed) line shows the first Brillouin zone (of the impurity superlattice). To obtain the smooth spin configurations, we
integrate out short wavelength fluctuations by averaging over 50-500 MCS.
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FIG. 4. Snapshots of the spin (left) and the chirality (middle) configurations in the ordered phases for J3/|J1| ≈ 0.854 (Q = 2π/4) when
periodic impurities (triangles) with aimp = 8 are present. The spin and the chirality structure factors are shown on the right: (e) ferrichiral
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(dashed) lines indicate the dominant (subdominant) q 6= 0 peak(s). Note that the q = 0 component is removed from Szzs (q). The hexagon
with a solid (dashed) line shows the first Brillouin zone (of the impurity superlattice). To obtain the smooth spin configurations, we integrate
out short wavelength fluctuations by averaging over 50-500 MCS.
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shown in Fig. 3(a), each nonmagnetic impurity induces a vor-
tex very similar to the schematic picture in Fig. 1, forming a
triangular vortex lattice as a whole. Upon closer inspection, it
is possible to see that antivortices appear right in the middle
of nearest neighbor vortices, so that the “boundary condition”
by the impurity array is satisfied. The vortices and antivortices
give opposite contributions to the scalar spin chirality. While
this would lead to a total cancellation of χtot in a system with-
out impurities26, the present vortex crystal has net scalar spin
chirality because the local scalar chirality around each impu-
rity has the same sign. The net chirality for up and down tri-
angles is equal, χu = χd, which we refer to as “ferrochiral.”
Interestingly, the chirality wave is primarily characterized by
higher harmonics relative to the wave vectors that minimize
J(q), namely, Qχ

1 = Q1 + 2Q2, etc.
b. Ferrochiral 3QM vortex crystal This phase can be

seen as another type of crystallization of vortices found in
Ref. 36 forHsat < H < HI

sat. It occupies a small corner of the
entire region of the ordered phases, which appears right below
the saturation field in the range of intermediate temperature,
0.37 . T/J3 . 0.43. The spin configuration is character-
ized by the triple-QM modulation and net spin scalar chirality
(χu = χd 6= 0) [Fig. 3(b)]. However, unlike the ferrochiral
3QM -6Qχ vortex crystal phase discussed above, the chiral-
ity texture does not support a static finite-Qχ component in
the thermodynamic limit (namely, the chirality texture is ho-
mogeneous) as shown in Fig. 14(b) in Appendix A; this aspect
distinguishes this phase from the skyrmion crystal phase21, al-
though both phases are triple-QM and chiral. Moreover, the
z component near the impurities is Sz ∼ 0 in the ferrochi-
ral 3QM vortex crystal phase, while it is Sz ∼ −1 in the
skyrmion crystal phase, which implies a different topologi-
cal nature. The scalar chirality shows a peak near the phase
boundary between this and the ferrichiral 3QM -2Qχ spiral II
phase discussed below [Fig. 2(c)].

c. Ferrochiral 3QM -1Qχ spiral This phase occupies a
smaller H region next to the ferrochiral 3QM -6Qχ vortex
crystal phase at low T . As shown in Fig. 3(c), it has a triple-
QM spin texture. In the structure factor for the xy component,
there are two dominant peaks and a single subdominant peak,
while a single-Q peak is in the structure factor for the z com-
ponent. Upon closer looking, it becomes clear that the spin
texture is pinned by the impurities via the parts with local chi-
rality having the same sign; for this reason this state is chiral,
χu = χd 6= 0. In addition to the uniform component, the
chirality texture has a single-Qχ component corresponding to
the stripe modulation.

d. Ferrichiral 3QM -2Qχ spiral I This phase occupies
the largest portion of the phase diagram among the ordered
phases and it is found next to the ferrochiral 3QM -1Qχ spi-
ral upon decreasing H . The spin configuration is character-
ized by the triple-QM noncoplanar modulation. Szzs (q) has
two dominant peaks with an additional smaller peak, which in
S⊥s (q) in turn correspond to two subdominant peaks and the
major peak, respectively [Fig. 3(d)]. We find that the impu-
rities are on the contour Sz ≈ 0 as shown in the left panel
of Fig. 3(d) in accordance with the general argument that the
effect of the magnetic field is effectively weakened for spins

surrounding impurities. The chirality wave is mainly charac-
terized by the double-Qχ modulation, which can be seen as
the “checkerboard” pattern. Note that the ferrichiral 3QM -
2Qχ spiral I phase also possesses a small subdominant peak
at Q1 +Q2 as shown in the chiral structure factor in Fig. 3(d).
A subtle difference is that Suχ(q) and Sdχ(q) have different
profiles in this state. Based on this observation, we call this
state “ferrichiral.”

e. Ferrichiral 3QM -2Qχ spiral II This state is found in
the intermediate-H regime, next to the ferrichiral 3QM -2Qχ

spiral I phase upon increasing T . While this is very similar
to the ferrichiral 3QM -2Qχ spiral I, the intensities of the two
dominant components of the chiral structure factor are differ-
ent in this phase [Fig. 4(e)] , while the ones for the ferrichiral
3QM -2Qχ spiral I phase are the same.

f. Antiferrochiral single-QM spiral This state appears
next to the ferrichiral 3QM -2Qχ spiral II state upon decreas-
ing H . The spin configuration shown in Fig. 4(f) resem-
bles the conical spiral state that is obtained without impuri-
ties [Fig. 2(b)]. The difference, however, is that the impurities
introduce the additional weak longitudinal modulation. The
C6 symmetry is broken in this phase as in the single-Q spi-
ral phase in the pure J1-J3 model with easy-plane anisotropy,
where the symmetry of the global spin rotation, U(1), is the
same as in the present case.46 The obtained specific heat curve
[Fig. 2(g)] is consistent with the single first order phase transi-
tion reported by Tamura et al. 46 in the pure easy-plane model,
although a more careful finite size scaling is required to settle
this point. This state is not chiral because χu and χd cancel
each other out: χu = −χd. For this reason we refer to this
phase as “antiferrochiral.”

g. Ferrochiral 3QM -2Qχ spiral This phase occupies
the low-field and low-T region of the phase diagram
[Fig. 2(a)] and appears next to the ferrichiral 3QM -2Qχ spi-
ral I phase with decreasing H . The spin configuration [see
Fig. 4(g)] closely resembles a single-QM vertical spiral state
(see below) though the small additional QM components ren-
der the spin configuration noncoplanar with the triple-QM

modulation. Meanwhile, the chirality wave texture shows the
double-Qχ modulation with a single-Qχ subdominant compo-
nent, which is very similar to that of the ferrichiral 3QM -2Qχ

spiral I state. The difference is that the net chirality for up and
down triangles in the present state is equal, χu = χd, while
it is different in the ferrichiral 3QM -2Qχ spiral state. Once
again, it is evident that the spin texture is pinned by the impu-
rities where the local chirality has the same sign, which leads
to nonzero uniform scalar chirality. The ferrochiral 3QM -
2Qχ spiral state extends its stability down toH = 0, as shown
in Fig. 2(e).

h. Vertical single-QM spiral This phase occupies a re-
gion at higher T next to the ferrochiral 3QM -2Qχ spiral
phase. This is a single-QM coplanar state in an arbitrary
plane containing the vertical c-axis when the magnetic field
is applied in the c direction. Thus, this state has no net chi-
rality. The difference relative to the ferrochiral 3QM -2Qχ

spiral state is the disappearance of the subdominant compo-
nents in the spin structure factor induced by thermal fluctua-
tions [Fig. 4(h)]. The transition from the paramagnetic state
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FIG. 5. (a) Phase diagram of the model with a periodic array of
impurities with aimp = 4 and J3/|J1| ≈ 0.854 (Q = 2π/4). The
inset shows the impurity configuration. (b), (c) T dependence of the
specific heat at (b) H/J3 = 3.3 and (c) H/J3 = 0.5.

is suggested to be a single-step first-order phase transition
(not shown). This is similar to the case in the pure J1-J3
model,45–47 albeit with a subtle difference that the state in the
latter is the conical spiral.

B. Case with aimp = 4

Next, we briefly discuss the case where the superlattice
constant aimp = 4 is half of the previous case, as illustrated
in the inset of Fig. 5(a). This corresponds to the relation
K+ + K− = 2Q1. Even though the commensurability still
holds, the obtained phases summarized in Table II are very
different from the previous case, except for the fact that a vor-
tex crystal still appears right below the saturation field.

a. Nonchiral 2QM -3Qχ vortex crystal As it is shown in
Fig. 6(a), the high field state is another vortex crystal, in which
both the vortices and anti-vortices are nucleated by the impu-
rities. The vortex and antivortex-chains alternate creating the
stripe pattern shown in the middle of Fig. 6(a). This stripe pat-
tern breaks the translational symmetry of the system. Vortices
and antivortices have opposite scalar spin chirality, producing
a chirality wave with a wave vector equal to half of the impu-
rity lattice reciprocal vector: Qχ = K+/2 [Fig. 6(a)]. Given
that both vortex structures, the vortices and the antivortices,
are nucleated around the impurities, the net chirality is per-
fectly cancelled, rendering this state non-chiral. Figure 5(b)
shows the specific curve heat near the thermal phase transi-
tion. Though it is suggestive of a single-step continuous phase
transition, a more careful analysis will be required to draw a
final conclusion about the critical behavior.

b. Nonchiral 3QM -2Qχ spiral The spin configuration
in the low field phase has a single-QM longitudinal modu-
lation and a double-QM transverse modulation [Fig. 6(b)]. A
closer inspection reveals that both S⊥s (q) and Szzs (q) have
additional peaks induced by the impurities, such as the peaks

at q = π/(
√

3) ≈ 1.814 and q = π/(2
√

3) ≈ 0.907. This
fact is more evident for the double-Qχ chirality wave texture,
in which the subdominant component is induced by the im-
purities. The spin configuration accommodates itself to the
impurity superlattice in such a way that the impurities are on
the nodal line of the chirality wave texture [Fig. 6(b)]. As de-
picted in Fig. 6(b), the net chirality vanishes. The specific heat
near the thermal phase transition is suggestive of a single-step
continuous phase transition also in this case [Fig. 5(c)].

IV. VARIATIONAL ANALYSIS

Our numerical calculation indicate that multiple-Q ground
states are realized instead of the single-Q conical ground state
that is obtained for the pure system. Below we provide a vari-
ational analysis confirming that the commensurability relation
between the Q-vectors and the superlattice reciprocal vectors
K± renders the single-Q conical state unstable towards more
complex multiple-Q structures. For the sake of concreteness,
we consider below the case aimp = 8 where K+ + K− = Q1.

First we note thatHJimp in Eq. (9) can be written as

HJimp = −ρimp

∑
q,q′∈FBZ

2J(q)

∑
Gimp

δq′,q+Gimp

Sq · S−q′ ,

(14)

after taking the Fourier transform Sq =√
1/N

∑
j e
−iq·rjSj . Gimp runs over the set of impu-

rity superlattice reciprocal vectors and ρimp = a−2imp is
impurity concentration. Thus, because of the commensura-
bility relation, HJimp couples the different Q vectors and the
q = 0 component induced by the magnetic field. Likewise,
HHimp is written as

HHimp =
√
NρimpH

∑
Gimp∈FBZ

SzGimp
, (15)

where the Q vectors and q = 0 are both included in the sum-
mation.

A. Stability analysis of the conical spiral

We start from showing that the impurity-induced coupling
makes the single-Q state unstable at T = 0. To this end, we
consider the following deformation of the single-Q conical
state, which satisfies the fixed-length constraint required for
classical spins:

Sxj =

√
sin2 θ̃ − δ2 cos(Q1 · rj) + δ cos(Q2 · rj),

Syj =

√
sin2 θ̃ − δ2 sin(Q1 · rj)− δ sin(Q2 · rj),

Szj =

√
cos2 θ̃ − 2δ

√
sin2 θ̃ − δ2 cos(Q3 · rj), (16)
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TABLE II. Classification of the ordered phases for J3/|J1| ≈ 0.854 in the model with periodic impurities (aimp = 4).

phase nonzero net
scalar chirality

number of (quasi-)Bragg
peaks in S⊥s (Q)

number of (quasi-)Bragg
peaks in Szzs (Q)

at q 6= 0

number of Bragg peaks
in Su/dχ (Q) at q 6= 0

broken point-group
symmetry (of the lattice

with impurities)
Nonchiral 2QM -3Qχ vortex crystal No 2 0 2+1 C6

Nonchiral 3QM -2Qχ spiral No 2 1 1+1 C6
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FIG. 6. Snapshots of the spin configuration (left), the chirality texture (middle), and the spin and the chirality structure factors (right) in
the model with periodic impurities (triangles) with aimp = 4 for J3/|J1| ≈ 0.854 (Q = 2π/4): (a) nonchiral 2QM -3Qχ vortex crystal
(H/J3 = 3.9) and (b) nonchiral 3QM -2Qχ spiral (H/J3 = 1.6). The circles with solid (dashed) lines indicate the dominant (subdominant)
peak(s) at q 6= 0. The q = 0 component is removed from Szzs (q). The hexagon with a solid (dashed) line shows the first Brillouin zone (of
the impurity superlattice). We average over 50-500 MCS to integrate out short wavelength fluctuations.

where δ parametrizes the magnitude of the deformation and θ̃
[which is equal to cos−1(Szj ), ∀j for δ → 0] is a variational
parameter. Following Ref. 25, we introduce

x = δ cos−2 θ̃

√
sin2 θ̃ − δ2, (17)

and Szj can be expanded as

Szj = cos θ̃
∑
n≥0

fn(x) cos (nQ3 · rj) , (18)

where, toO
(
δ5
)
, f0(x) = 1−x2/4−15x4/64, f1(x) = −x−

3x3/8, f2(x) = −x2/4− 5x3/16, f3(x) = −x3/8, f4(x) =

−5x4/64, and fn≥5(x) can be neglected at this order. We find〈
HHimp

〉
= NρimpH cos θ̃

(
1− x− x2

2
− x3

2
− 35x4

64

)
+O

(
δ5
)
. (19)

Also, by splitting Eq. (14) into different spin components as
HJimp = Hxximp +Hyyimp +Hzzimp and denoting JnQ = J(nQ1) =

J(nQ2) = J(nQ3) and J0 = J(0), we find〈
Hxximp

〉
= −2NρimpJQ

(
sin2 θ̃ + 2x cos2 θ̃

)
,〈

Hyyimp

〉
= 0, (20)

which are independent of the deformation, and
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〈
Hzzimp

〉
= −2Nρimp cos2 θ̃

1

4
J0f

2
0 (x) +

1

2
f0(x)

∑
n≥1

(J0 + JnQ) fn(x) +
∑
n≥1

JnQfn(x)
∑
m≥1

fm(x)


= −2Nρimp cos2 θ̃

[
J0
4
− J0 + JQ

2
x− 2J0 − 8JQ + J2Q

8
x2 +

−2J0 + 3JQ + 4J2Q − J3Q
16

x3

+
−34J0 + 112JQ − 8J2Q + 16J3Q − 5J4Q

128
x4

]
+O

(
δ5
)
. (21)

These results show that 〈H imp〉δ − 〈H imp〉δ=0
includes a

linear contribution in the deformation parameter δ. In the
meantime, the change in Hpure was evaluated in Ref. 25 as
〈Hpure〉δ−〈Hpure〉δ=0

= N cos2 θ̃ (J2Q−J0)x4/32+O
(
δ5
)
.

Thus, 〈H〉δ−〈H〉δ=0 decreases linearly in δ, implying that the
conical spiral is indeed unstable in the presence of periodic
array of impurities, which is commensurate with the ordering
wave vectors.

B. Luttinger-Tisza analysis

The next question is whether the numerically found field-
induced phases can be analytically explained in a simple man-
ner. Below we first perform a soft-spin variational analysis at
T = 0 by adopting the following ansatz,

S̃j = M0 +
∑

1≤µ≤3

(
Mµe

iQµ·rj + c.c.
)
, (22)

where M0 = N−1
∑
j S̃j is a three-component real vector

for the uniform component and Mµ = N−1
∑
j e
−iQµ·rj S̃j

(1 ≤ µ ≤ 3) are three-component complex vectors. The tilde
attached to the spin variable indicates that the fixed-length
constraint is replaced by the average normalization condition
given by a quadratic function

N−1
∑
j

∣∣∣S̃j∣∣∣2 = |M0|2 + 2
∑

1≤µ≤3

|Mµ|2 = 1. (23)

This average constraint can be easily taken into account with
the Lagrange multiplier method.

The variational energy density extended by the Lagrange
multiplier λ is Evar = Epure

J + Eimp
J + EH + Eλ with

Epure
J = J0 |M0|2 + 2JQ

∑
1≤µ≤3

|Mµ|2 ,

Eimp
J = −2ρimpJ0 |M0|2

− 2ρimpJQ

∣∣∣∣∣∣
∑

1≤µ≤3

(
Mµ + M∗

µ

)∣∣∣∣∣∣
2

− 2ρimp (J0 + JQ)
∑

1≤µ≤3

M0 ·
(
Mµ + M∗

µ

)
,

EH = −(1− ρimp)HMz
0

+ ρimpH
∑

1≤µ≤3

[
Mz
µ +

(
Mz
µ

)∗]
,

Eλ = −λ

|M0|2 + 2
∑

1≤µ≤3

|Mµ|2 − 1

 . (24)

By rewriting M0 = A0 and (Re Mµ, Im Mµ) = (Aµ,Bµ)

for 1 ≤ µ ≤ 3, we first look into the quadratic part Equad
var =

Evar(λ)− EH ,

Equad
var =

(
A0 A1 A2 A3

)
ω0 ∆0Q ∆0Q ∆0Q

∆0Q ωQ ∆Q ∆Q

∆0Q ∆Q ωQ ∆Q

∆0Q ∆Q ∆Q ωQ


A0

A1

A2

A3


+ 2JQ

∑
1≤µ≤3

|Bµ|2

=
∑

0≤κ≤3

εκ |Φκ|2 + 2JQ
∑

1≤µ≤3

|Bµ|2 , (25)

where ω0 = (1 − 2ρimp)J0 − λ, ωQ = (2 − 8ρimp)JQ − 2λ,
∆0Q = −2ρimp(J0 + JQ), and ∆Q = −8ρimpJQ. Here we
have diagonalized the 4×4 real symmetric coefficient matrix,
obtaining the eigenvalues, ε0 = ε1 = 2(JQ − λ), ε2 = ε+,
and ε3 = ε− with

ε± =
ω0 + ωQ + 2∆Q ±

√
12∆2

0Q +
(
ω0 − ωQ − 2∆Q

)2
2

.

(26)

{Aµ} → {Φκ} is the associated orthogonal transformation,
Φ0

Φ1

Φ2

Φ3

 =



0 2√
6

− 1√
6

− 1√
6

0 0 1√
2

− 1√
2

c+√
c2++3

1√
c2++3

1√
c2++3

1√
c2++3

c−√
c2−+3

1√
c2−+3

1√
c2−+3

1√
c2−+3




A0

A1

A2

A3

 ,

(27)

with

c± =
ε± − ωQ − 2∆Q

∆0Q
. (28)
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By adding the Zeeman contribution, we have

Evar =
∑

0≤κ≤3

εκ |Φκ|2 + 2(JQ − λ)
∑

1≤µ≤3

|Bµ|2

−
(1− ρimp)c+ − 6ρimp√

c2+ + 3
HΦz2

−
(1− ρimp)c− − 6ρimp√

c2− + 3
HΦz3. (29)

Form Eq. (29), the magnetic field is expected to induce a
collinear triple-Q state because of the magnetic-field cou-
pling to the triple-Q modes Φz2,3 [see Eq. (27)] within the
Luttinger-Tisza approximation. In fact, by taking derivatives
of Evar with respect to Φx,y,zκ and Bx,y,zµ , we find that a
collinear triple-Q state is stable above a threshold magnetic
field Hs ∼ 3.39, whereas it is replaced with a single-Q or
other multiple-Q states with different amplitudes for Q1, Q2,
and Q3 below Hs. This behavior is qualitatively at least con-
sistent with that observed in our Monte Carlo simulations.
However, the resulting triple-Q state is collinear, implying
a rather strong violation of the fixed-length constraint. Al-
though, strictly speaking, the violation of the constraint means
a breakdown of the Luttinger-Tisza approach, the important
implication in this analysis is that mixing of different Q com-
ponents is indeed expected as a result of the combination of
the magnetic field and the special periodic impurities com-
mensurate to modulation of spin texture. In other words, the
Luttinger-Tisza approximation provides a simple understand-
ing of the stabilization mechanism of a triple-Q solution, al-
though a more sophisticated variational approach is necessary
in order to determine the magnetic structure, as given in the
following section.

C. Real-space variational analysis

The above Luttinger-Tisza analysis suggests that a more
strict treatment of the constraint is crucial, and the correspond-
ing nonlinear effect is expected to drive the collinear triple-Q
state into a noncoplanar multi-Q state. To proceed, we note
that the commensurate Q vectors allow to work on a real-
space variational calculation based on the following simple
ansatz,

Sj =
1

Nj

M0 +
∑

1≤µ≤3

(
Mµe

iQµ·rj + c.c.
) , (30)

where Nj is a normalization factor which enforces the S ·
S = 1 constraint exactly and Mµ = M∗

−µ. The variational
parameters are seven: M0 and three pairs of (ReMµ, ImMµ)
(µ = 1-3).

Figure 7 shows theH dependence of (a) the energy density,
(b) magnetization, (c) the xy component of the spin structure
factor, and (d) the z component of the spin structure factor,
which are obtained by variational calculations at T/J3 = 0.00
and Monte Carlo simulations at T/J3 = 0.05. The Monte
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FIG. 7. H-dependences of (a) the energy per site, (b) magnetization,
M , (c) S⊥s (Qν)/N , and (d) Szzs (Qν)/N (ν = 1 − 3) for Q =
2π/4 and aimp = 8. “V” and “MC” represent the results obtained
by T = 0 variational calculations and Monte Carlo simulations at
T/J3 = 0.05.

Carlo calculations are consistent with the variational results
except for the region 1.6 . H/J3 . 2.1. The slight devi-
ation around this region is due to a finite-temperature effect
in the Monte Carlo simulations. In fact, another phase transi-
tion occurs at T/J3 ∼ 0.03 for H/J3 = 2.0. Thus, most of
the low-temperature phases obtained from the finite tempera-
ture Monte Carlo simulations shown in Fig. 2(a) remain stable
down to T = 0.

V. TOWARDS MORE REALISTIC CONSIDERATIONS

So far, we have assumed a periodic array of impurities,
which is commensurate with the spin texture. Below, we dis-
cuss the stability of the chiral phases upon relaxing this con-
dition.

A. Different impurity concentrations

First we investigate the stability of the chiral phases shown
in Fig. 2 upon changing the impurity concentration. Our nu-
merical results and the stability analysis have shown that the
multiple-Q structures arise from the fact that Qν and Qν′

(ν 6= ν′) are connected by K±. Below we demonstrate that
the multiple-Q structure is suppressed upon changing the pe-
riodicity of impurity array, i.e., upon reducing the commensu-
rability effect.

Figure 8 shows the H-dependence of the square of the
scalar chirality at a low enough T for several different im-
purity concentrations and J3/|J1| ≈ 0.394 (corresponding to
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FIG. 8. H-dependence of (χtot)2 for J3/|J1| ≈ 0.394 (Q = 2π/6)
at T/J3 ≈ 0.1268 in the model with or without periodic impurities:
aimp =∞ (no impurities), aimp = 12, and aimp = 11.

Q = 2π/6 < Qc). In addition to the case without impuri-
ties, we show the results for aimp = 11 and aimp = 12. The
case with aimp = 12 is similar to the case we discussed in
Sec. III A, in the sense that aimp = 12 is twice as large as
2π/Q = 6 and K+ + K− = Q1 holds. In fact, the H-
dependence of (χtot)2 is qualitatively very similar to the pre-
vious case shown in Fig. 2(e). Strictly speaking, the other
case with aimp = 11 is also commensurate with the optimal
magnetic order. However, the minimal period of the com-
bined structures is 44 lattice spacings, which is significantly
large and thus almost incommensurate. Interestingly enough,
we find that the net chirality is finite in the intermediate mag-
netic field range, although the functional form is rather differ-
ent. The spin configuration is triple-QM with vortices located
around each impurity (Fig. 9). The corresponding chirality
wave has a multiple-Qχ ferrichiral structure with slightly dif-
ferent profiles in Suχ(q) and Sdχ(q). Our results suggest that
chiral states resulting from nonmagnetic impurities are rather
robust against changing the impurity concentration when Q is
small.

B. Skyrmion crystal induced by small randomness

Finally, we introduce small quenched randomness into the
array of impurities. In the example of a CDW, nonmagnetic
ions (holes or doubly-occupied sites) can be frozen at posi-
tions slightly away from the perfect superlattice sites. Thus,
it is natural to ask what would the consequence of such small
quenched randomness in terms of the magnetic ordering.

To simplify our discussion, we consider the following three
cases where, as illustrated in Fig. 10, each nonmagnetic ion is
uniformly and randomly placed at (i) one of seven sites com-
prising a site of the perfect superlattice and its six NNs of the
underlying lattice, (ii) one of 13 sites comprising a perfect su-
perlattice site, the six NNs, and the six second NNs or (iii)
one of 19 sites that include up to the third NN sites. For each
case, we take statistical averages by generating 32–144 differ-

ent impurity configurations.
First, we show the impurity structure factor

Simp(q) =
1

N

∑
j,l

〈(1− pj)(1− pl)〉eiq·(rj−rl), (31)

for the different randomness (i)–(iii) in Fig. 11. In the
case of an ideal impurity array, the Bragg peaks appear at
c1K+ + c2K− (c1 and c2 are integer) with the same intensity,
as shown in Fig. 11(a). With increasing the degree of random-
ness from the case (i) in Fig. 11(b) through the case (iii) in
Fig. 11(d), the amplitudes of the Bragg peaks for large q di-
minish. In particular, the amplitude at q = Qν remains finite
(almost disappears) for the cases (i) and (ii) [the case (iii)].
This difference is crucial for the emergence of the skyrmion
crystal (see Fig. 12) that we discuss below.

As shown in Figs. 13(a)–13(c), we compute (χtot)2 at a low
T for J3/|J1| ≈ 0.854 (Q = 2π/4). While there is no net
chirality in the low and high magnetic field regions, we find
that the scalar chirality is drastically enhanced in the inter-
mediate field regime 1.2 . H/J3 . 1.6 for the moderate
impurity randomness, i.e., the cases of (i) and (ii), as shown
in Fig. 13(c). Such a drastic enhancement indicates the emer-
gence of a new phase induced by the quenched randomness.
The spin configuration corresponds to a triple-QM hexagonal
skyrmion crystal (Fig. 12), similar to the state found by Okubo
et al. in a different parameter regime of the same model with-
out impurities21. A similar phase is also obtained for the same
model with easy-axis anisotropy.23–25 We note that, unlike the
ferrochiral 3QM spiral state in Fig. 4(f), the chirality struc-
ture factor of this state shows six peaks at q = ±Q1≤ν≤3, in
addition to the q = 0 peak (see also Appendix A).

The local spin reorientation induced by impurities is central
to explain why the skyrmion crystal appears only for small
charge randomness in the range of 1.2 . H/J3 . 1.6. With-
out the randomness, the ferrichiral 3QM -2Qχ spiral I phase
is realized in this region, where the spin texture creates the
vortex configuration with Sz ≈ 0 around each impurity. This
state is more stable than the skyrmion crystal in the absence
of randomness, because impurities would be near the center
of the skyrmions (commensurability effect). Such a situation
is energetically unfavorable due to the large |Sz| value of the
spins near the skyrmion core. (According to our preliminary
considerations, the energy is minimized by increasing the xy
components of the spins near the nonmagnetic impurities rel-
atively to the other spins.) By introducing the small quenched
randomness, as shown in the left panel of Fig. 12, the impuri-
ties can escape from the skyrmion core towards the perimeter
region where Sz ≈ 0 and nucleate antivortices around them-
selves. While the chirality structure is to a large extent char-
acterized by the q = 0 component, as shown in the middle
panel in Fig. 12, there are spots with the opposite sign around
the impurities because of the induced antivortices. In contrast,
the randomness increases the energy of the ferrichiral 3QM -
2Qχ spiral I phase because it pushes the impurities away from
their “comfortable” Sz ≈ 0 zone. This is also the reason why
the skyrmion phase is destabilized when the randomness be-
comes too strong, i.e., in the case (iii) (see Fig. 13). Once the
typical deviation exceeds the skyrmion radius, the impurities
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FIG. 9. Snapshots of the spin configuration (left), the chirality texture (middle), and the spin and the chirality structure factors (right) in the
model with perfect periodic impurities (triangles) with aimp = 11 for J3/|J1| ≈ 0.394 (Q = 2π/6) at H/J3 ∼ 0.634. The q = 0 component
is removed from Szzs (q). We average over 500 MCS to integrate out short wavelength fluctuations.

are pushed into the large |Sz| region again. This result points
to a new mechanism of stabilizing skyrmion crystals, namely,
moderate randomness in the array of nonmagnetic impurities
can induce a chiral phase when combined with frustrated ex-
change interactions.

VI. SUMMARY AND DISCUSSION

As we discussed above, CDW ordering of a strongly-
coupled single-band model away from half-filling can provide
a natural realization of our periodic array of non-magnetic im-
purities. Moreover, it is natural to expect that charge orderings
which are commensurate with the magnetic ordering wave-
vectors will be naturally selected at the corresponding filling
fractions of the Hubbard model. Our previous analysis of the
effect of small randomness in the periodic array of impurities
suggests the interesting possibility of having skyrmion crys-

FIG. 10. Allowed positions of a nonmagnetic impurity. Partial ran-
domness is included by locating the nonmagnetic impurities either at
a regular superlattice site (the open circle at the origin) or at one of
its neighbors (see the text). The filled circles, triangles, and squares
denote the NN, second NN, and the third NN sites, respectively. The
average distance between closest impurities is aimp = 8.

tals stabilized by the zero point fluctuations of the CDW.
What are the alternative realizations of the model studied

in this work? Here we present three additional proposals
for realizing periodic arrays of nonmagnetic impurities. The
first realization involves surface science technology.50 For in-
stance, a selective atom substitution based on the scanning
tunneling microscope technique enables manipulate of atoms
on the surface of Mott insulators with spiral order, such as
FexNi1−xBr251 and ZnxNi1−xBr2.52 The second possibility
is through Kondo lattice systems with long-range Coulomb
interaction between conduction electrons. Even not taking
into account Coulomb interaction explicitly (i.e., in the usual
Kondo lattice model) charge ordering can be induced by mag-
netic ordering53–57 and produce a periodic potential for the
spin degrees of freedom similar to the one induced by the
periodic array of nonmagnetic impurities. Coulomb interac-
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FIG. 11. The impurity structure factors (a) for the regular super-
lattice site and with a randomly distribution up to (b) NN sites, (c)
second NN sites, and (d) third NN sites.
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FIG. 13. (a) H-dependence of (χtot)2 for the model with partial
randomness of the impurity array [J3/|J1| ≈ 0.854 (Q = 2π/4)
and T/J3 = 0.05]. (b), (c) Enlarged views of (a).

tions can enhance this tendency producing an even stronger
CDW ordering. In a similar manner, the Hubbard-Holstein
model58,59 and the Hubbard (or t-J) model discussed in the
introduction might provide alternative realizations of a peri-
odic array of nonmagnetic impurities by charge ordering. The
third proposal is based on selective Kondo screening: some
heavy fermion compounds are known to exhibit partially or-
dered magnetic states. For instance, the partially-disordered
compound, UNi4B, exhibits a magnetic vortex structure60–62.
A possible scenario is that the partial disorder is produced by a
site-selective formation of Kondo singlet states.63–65 The site-
selective Kondo screening is then an alternative mechanism
for producing a nonmagnetic superlattice.

To summarize, by taking the classical J1-J3 Heisenberg
model on the triangular lattice as an example, we have shown
that exotic multiple-Q states can be induced by periodically
distributed nonmagnetic impurities. The interplay between
the spin configuration and the underlying impurity superlat-
tice renders most of the states chiral (i.e., with net scalar chi-

rality). We have also shown that weak randomness in the
impurity positions, relative to the periodic array, induces a
skyrmion crystal phase for intermediate magnetic field val-
ues. Our results suggest that a variety of magnetically ordered
states with nonzero net scalar chirality can be realized by
changing the concentration of nonmagnetic impurities, mag-
netic field, and temperature.
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Appendix A: Characterization of each phase

Figures 14, 15, and 16 show the 1/L dependence of the xy
and z components of the spin structure factor and the chiral-
ity structure factor normalized by the system size N . They
should scale S(q) ∼ O

(
1
)
, L2−η , and N , respectively, when

the corresponding mode is disordered, critical, and long-range
ordered. Note that the Mermin-Wagner theorem precludes the
long-range order in the xy component at finite T .
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FIG. 14. Size dependence of the order parameters for each phase described in the phase diagram of Fig. 2(c): the chirality structure factor
evaluated at q = 0, 0′, Q1, Q2, Q3 [Sχ(q) = Suχ(q)+S

d
χ(q) for q = 0, Q1, Q2, and Q3 and Sχ(0′) = Suχ(0)−Sdχ(0)] and the magnetic

structure factor at q = Q1, Q2, Q3 in (a) the ferrochiral 3QM -6Qχ vortex crystal phase (H/J3 = 3.8), (b) ferrochiral 3QM vortex crystal
phase (T/J3 = 0.41), (c) ferrochiral 3QM -1Qχ spiral phase for Q = 2π/4 (H/J3 = 3.0), and (d) ferrichiral 3QM -2Qχ spiral I phase
(H/J3 = 1.0) for Q = 2π/4 and different temperature and magnetic fields.
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FIG. 15. Size dependence of the order parameters for each phase described in the phase diagram of Fig. 2(c): the chirality structure factor
evaluated at q = 0, 0′, Q1, Q2, Q3 [Sχ(q) = Suχ(q)+S

d
χ(q) for q = 0, Q1, Q2, and Q3 and Sχ(0′) = Suχ(0)−Sdχ(0)] and the magnetic

structure factor at q = Q1, Q2, Q3 in (e) ferrichiral 3QM -2Qχ spiral II phase (H/J3 = 2.0), (f) antiferrochiral single-QM spiral phase
(H/J3 = 1.0), (g) ferrochiral 3QM -2Qχ spiral phase (H/J3 = 0.2), and (h) vertical single-QM spiral phase (H/J3 = 0.2) for Q = 2π/4
and different temperature and magnetic fields.
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FIG. 16. Size dependence of the order parameters for two phases described in the phase diagram of Fig. 5(b): (a) the xy- and z-components
of the spin structure factor evaluated at q = Q1, Q2, Q3 and the chirality structure factor evaluated at q = Q1 and Q′1 [Q′1 = π/(2

√
3)] in

the nonchiral 3QM -2Qχ spiral phase (H/J3 = 1.0) and (b) the z(xy)-component of the spin structure factor evaluated at q = Q′′1 , Q′′2 , and
Q′′3 where Q′′ν = π/

√
3 (q = Q1, Q2, and Q3) and the chirality structure factor evaluated at q = Q1 and Q′1 in the nonchiral 2QM -3Qχ

vortex crystal phase (H/J3 = 3.0).
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