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Abstract 
 
     Engineered isotope variation is a pathway toward modulating lattice thermal conductivity (κ) 

of a material through changes in phonon-isotope scattering.  The effects of isotope variation on 

intrinsic thermal resistance is little explored, as varying isotopes have relatively small differences 

in mass and thus do not affect bulk phonon dispersions.  However, for light elements isotope 

mass variation can be relatively large (e.g., hydrogen and deuterium).  Using a first principles 

Peierls-Boltzmann transport equation approach the effects of isotope variance on lattice thermal 

transport in ultra-low-mass compound materials LiH and LiF are characterized.  The isotope 

mass variance modifies the intrinsic thermal resistance via modulation of acoustic and optic 

phonon frequencies, while phonon-isotope scattering from mass disorder plays only a minor role. 

This leads to some unusual cases where κ values of isotopically pure systems (6LiH, 7Li2H and 

6LiF) are lower than the values from their counterparts with naturally occurring isotopes and 

phonon-isotope scattering.  However, these κ differences are relatively small.  The effects of 

temperature-driven lattice expansion on phonon dispersions and calculated κ are also discussed.  

This work provides insight into lattice thermal conductivity modulation with mass variation and 

the interplay of intrinsic phonon-phonon and phonon-isotope scattering in interesting light atom 

systems.   

 
PACS:  66.70.-f, 63.20.Kr, 71.15.-m, 72.15.Jf, 44.10.+i, 63.20dk 
 



I.  INTRODUCTION 

     Isotopes of various materials have played critical roles in the development and advancement 

of scores of technologies that we now take for granted.  For example, isotopic enrichment of 

Uranium (235U) and Plutonium (239Pu) was critical for developing nuclear fission technologies, 

various isotopes are used as radioactive tracers to study physiological processes (e.g., 123I), and 

radioisotopes (e.g., 241Am) are key ingredients in millions of smoke detectors around the world.  

Typically, these technologies rely on radioactive decay of meta-stable isotopes, most often with 

large numbers of protons and neutrons.  However, even light atoms can be useful radioisotopes:      

Positron Emission Tomography (PET) cancer scans use 18F as a positron emitter and radioactive 

dating, typically examining 14C concentrations, is used to determine the age of materials 

important for archaeologic studies and examining geologic history.   

     Varying isotopes can also be interesting and technologically useful beyond radioactive decay.  

Of interest here are the effects of isotopic variations on thermal conductivity (κ) in 

semiconductors and insulators as they alter the transport of thermal energy via lattice vibrations, 

phonons.  These phonons scatter from mass perturbations in the crystal such as isotope variation.  

Thus, depending on the temperature (T) regime and relative strengths of other phonon scattering 

mechanisms, isotopes can play a critical role in determining thermal transport in a material.  For 

example, a peak value in κ as a function of temperature (κ(T)) occurs in Ge for T~20K where 

point defects such as isotope mass variance are important.  Isotopically purified crystals of Ge 

were shown to have a three-fold increase in κ at this temperature [1].  Even at room temperature, 

diamond [2, 3], BN nanotubes [4] and graphene [5] have large enhancements to κ with isotope 

purification, and calculations predict large enhancements to κ in some compound materials:  

GaN [6], BeSe and GeC [7].   



     The focus of this work is not just on the relative importance of phonon-isotope scattering, but 

on the interplay of this scattering with changes that mass variance gives to the intrinsic phonon-

phonon scattering via modulation of the phonon dispersion.  Phonon frequencies critically 

depend on the masses of the constituent elements.  In a multi-component material, optic phonon 

branches are generally governed by light atoms, while acoustic branches are governed by the 

heaviest atoms.  Decreasing the mass of either drives the corresponding phonon branches to 

higher frequencies, while the opposite is true for increasing mass.  Thus, isotope variation can be 

employed to manipulate the phonon spectrum [8], though frequency changes are typically small 

and likely have very little effect on the intrinsic scattering.  In fact, calculations of isotope 

modulated κ typically model the effects of isotope variance by simply introducing mass 

perturbation scattering [9-11], without consideration of phonon frequency modulation.  Here we 

address the questions:  Can frequency changes with isotope variation significantly manipulate 

intrinsic thermal resistance?  More specifically, can higher κ be achieved in systems with more 

mass disorder?  Can acoustic modes be appreciably altered by isotope modification, e.g., 

modulated sound velocities?   

     Such properties require systems for which the constituent elements have small mass so that 

isotope variation can give relatively large changes to the nuclear masses, e.g., ultra-small-mass 

rocksalt compounds LiH and LiF, both of which have a significant amount of measured data for 

both dispersions and κ.  Natural isotopic variance of Li is 7.6% 6Li and 92.4% 7Li, while H and F 

are virtually pure 1H and 19F.  Isotopically modifying light atom materials is fairly inexpensive, 

thus incorporating varying amounts of 2H (deuterium), 6Li and 7Li in these systems is not 

unreasonable.  LiH is often considered for energy storage technologies and shielding in nuclear 

reactors [12], and an isotope variant, 6Li2H, is used as fusion material in thermonuclear weapons.  



LiF is used in radiation detection [13] and ultraviolet optics [14], and LiF salts are used as 

solvents in nuclear reactors [15].   

     In this paper we will examine κ and isotope variation of κ by both phonon-mass defect 

scattering and modification of the phonon dispersions.  This paper is organized as follows:  

Section II outlines the theoretical methods employed.  Section III gives the results and 

discussion:  comparison with measured data and physical analysis.  Section IV gives the 

conclusions and an Appendix gives further theoretical methods and phonon dispersion data. 

II.  THEORY 
 
     We employ a full solution to the steady-state Boltzmann-Peierls phonon transport equation 

(BPE) - ( ) ( )
scatterjqjqjq tnTnTv ∂∂=∂∂∇⋅ // rrr

rr  - to determine the non-equilibrium phonon distributions 

jqnr  arising from an applied temperature gradient T∇
r

 [16-18] in a homogeneous system.  Here, 

jqvrr  is the phonon velocity for phonon mode with wavevector qr  in branch j.  We assume jqnr  is 

the equilibrium Bose distribution 0
jqnr  plus a deviation linear in T∇

r
.  This deviation determines 

the transport lifetimes ατ ,jqr  in Cartesian direction α coinciding with the direction of the 

temperature gradient.  These enter the equation for the lattice thermal conductivity: 

                                                     αβααβ τ ,,,κ jqjqjq jqjq vvC rrr rr∑=                                 (1) 

with jqCr  being the volume normalized mode specific heat and α,jqvr  being the αth component of 

the velocity.  For the rocksalt structures considered here the thermal conductivity tensor can be 

described by a single component κκκκ === zzyyxx ; off-diagonal terms are zero.  For 

calculations presented here the scattering term on the right hand side of the BPE is constructed 

from combinations of intrinsic anharmonic three-phonon scattering [17, 18] (lowest order in 

perturbation theory), phonon-isotope scattering [9-11] and phonon-boundary scattering [17, 19].  



Further details of the scattering rate calculations have been described previously [6, 7, 17, 18].  

The BPE is then solved self-consistently [20, 21], beyond the relaxation time approximation 

(RTA).  Phonon-boundary scattering rates (when included) were determined by Lv jq
bp

jq //1 rr
r=−τ  

with L, system size, empirically chosen to fit the ultra-low temperature κ data for each system.  

We note that boundaries only play a role in determining κ below temperature T~10-20K, also 

below the conductivity peaks.  Like the intrinsic three-phonon scattering, the phonon-isotope 

scattering is derived from quantum mechanical perturbation theory [9-11] and has no adjustable 

fitting parameters. 

     Besides trivial terms such as atomic masses and isotope concentrations, harmonic and third-

order anharmonic interatomic force constants (IFCs), or potential derivatives, are the only 

required inputs for the calculations.  The harmonic IFCs are determined from density functional 

perturbation theory [22] using the Quantum Espresso (QE) package [23, 24] with 100Ry energy 

cutoff for the wavefunctions, 12×12×12 q-point mesh for the electronic structure, 8×8×8 k-point 

mesh for linear response calculations.  The anharmonic IFCs are calculated to 5th nearest 

neighbor of the unit cell atoms via numerical derivatives determined from Hellman-Feynman 

forces from perturbations of 216 atom supercells using density functional theory [25, 26] as 

implemented by the QE package.  Γ-point only calculations were employed, also with a 100Ry 

energy cutoff for the wavefunctions.  For these calculations the norm-conserving Martins-

Troullier pseudo-potential method [27] was employed to characterize the core electrons.  The 

generalized gradient approximation (GGA) and the local density approximation (LDA) were 

both employed.  Input files and calculated IFCs can be found in the supplemental materials.[28]  

     As phonon dispersions play a critical role in determining thermal transport, some care was 

taken to determine the best DFT formalism to describe LiH and LiF systems.  Each structure was 



relaxed by adjusting the lattice constant (a) to find the lowest calculated electronic energy, for 

both LDA and GGA.  For all cases the calculated a values were smaller than experiment:  for 

LiH - aLDA=3.894 Å, aGGA=3.947 Å, aexp=4.083 Å [29] and for LiF - aLDA=3.886 Å, aGGA=4.005 

Å, aexp=4.02 Å [30].  Experimental lattice parameters were measured at room temperature.  For 

the GGA calculations this is surprising as they typically underbind atoms (LDA tends to 

overbind atoms) [31].  For Li2H the resulting GGA phonon dispersion gives reasonable 

agreement with measured data for Li2H, Fig. A1, while the LDA does a poor job describing the 

acoustic modes.  For LiF both the calculated LDA and GGA dispersions fail to describe the 

longitudinal acoustic and low frequency optic modes accurately, Fig. A2.   

     The measured a values and dispersions were taken at room temperature, while DFT 

calculations are for ground state ‘zero temperature’ systems.  We examined the effects of 

temperature on a and the dispersions for the LDA calculations within the quasi-harmonic 

approximation using the following expression for temperature dependent lattice parameter, a(T) 

[32]:  
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This includes zero-point motion of the atoms and thermal shifts due to vibrational energy.  a0 and 

V0 are calculated lattice parameter and volume at equilibrium (T=0K), respectively, B is the bulk 

modulus (B=31.7 GPa for Li2H from Ref. [33] and B=67.1 GPa for LiF from Ref. [34]), jqrω is 

phonon frequency and jqrγ  is the mode dependent Grüneisen parameter defined in the Appendix.  

We note that including lattice expansion for the GGA calculations gives worse agreement with 

measured phonon dispersion data and thus only the LDA is considered further.  Figure 1 gives 

a(T)/a0 for LiH, Li2H and LiF versus temperature; this is also given for GaAs for comparison.  



LiH and LiF have significant zero point motion effects (curves do not go to one at T=0) [32] and 

a(T) varies substantially with T when compared with GaAs, a typical zincblende material.  

Further, there is variation of the LiH and Li2H curves as the phonon frequencies, and thus the 

vibrational energies, depend on the isotopic mass [32].  The lattice expansion does not give 

a(300K) in agreement with measured data, however, using harmonic IFCs calculated for 

a(300K) gives better agreement with measured dispersions for both Li2H (Fig. A1) and LiF (Fig. 

A2).  For the rest of this work we employ harmonic and anharmonic IFCs determined from LDA 

calculations using a(300K) values for LiH (4.004 Å) and LiF (3.951 Å). 

III.  RESULTS AND DISCUSSION 

1. Comparison with experiment 

     Firstly we examine the phonon dispersions of LiH and LiF with different isotope 

concentrations given by Fig. 2 and Fig. 3, respectively.  When the mass number is not given here 

the natural isotope averaged mass is used.  Typically, small variations in mass (m) given by 

different isotopes in a material have very little effect on the phonon frequencies, though may 

play a role in phonon scattering from mass disorder.  However, for these light atom systems 

isotope mass differences alter the dispersions significantly as the relative mass changes are fairly 

large:  m(2H)/m(1H)=2.00 and m(Li)/m(6Li)=1.15.   

     The most dramatic frequency changes occur for the optic modes of LiH when replacing 1H 

(black curves) with 2H (red curves) as seen in Fig. 2.  The black curves are difficult to distinguish 

as they nearly coincide with the blue curves (6LiH) for the optic frequencies and with the red 

curves (Li2H) for the acoustic frequencies.  The optic phonon frequencies of LiH are 33-41% 

higher than those of Li2H.  Note that lighter atoms shift phonons to higher frequencies, while 

heavier atoms shift phonons to lower frequencies.  The optic modes are predominantly governed 



by motion of the light atoms and acoustic modes by motion of the heavy atoms.  Thus, very little 

change is observed for the acoustic branches in LiH and Li2H.  However, when comparing the 

acoustic modes of LiH (black curves) with those of 6LiH (blue curves) there are appreciable 

differences, 6-7% for all of the acoustic modes.  These differences can also be found in the 

Debye temperatures θD (see Table I) which are calculated from the acoustic sound velocities (see 

Appendix). This is unusual, again because the acoustic modes are governed by the heavy atoms 

which have less relative isotope mass variation than lighter atoms in typical systems.  Comparing 

the phonon dispersions of LiF with those of 6LiF in Fig. 3, the acoustic modes are unchanged as 

Li is the lighter atom in this system, while the optic modes are shifted higher by 5-7%.  Again, 

phonon lifetimes and conductivity depend critically on features of the dispersion.  One might 

expect that 6LiH will have higher calculated κ than LiH given that the heat-carrying acoustic 

phonons have higher velocities and there is no mass disorder scattering in 6LiH; however, this is 

not the case (see Table I), due to changes in the intrinsic phonon scattering rates as explained 

later. 

     Next we present a comparison of calculated coefficients of linear thermal expansion (α) with 

measured values as a function of temperature in Fig. 4 for LiH (black curve), Li2H (red curve) 

and LiF (green curve).  α is defined by Eq. 3 in the Appendix, and is a function of both the 

harmonic and anharmonic IFCs.  Thus, the general agreement between the calculated and 

measured α gives confidence that the IFCs give a good representation of the anharmonicity of 

these systems, as the agreement of the calculated and measured phonon dispersions gives 

confidence in the harmonic properties.  The cause for the relatively worse agreement for 

measured and calculated α of LiF compared to those of the LiH systems is unknown.    



     Figs. 5 and 6 give the calculated κ values for various isotope concentrations of LiH and LiF, 

respectively, over a wide range of temperature compared to measured data.  The low T data 

(T<20K) is not fully first principles as the calculated κ was fit to match experiment at 3K in each 

case by adjusting L (system size) in the empirical phonon-boundary scattering term described 

previously.  The L values for LiH systems are:  LiH - 0.175mm and Li2H - 0.150mm (black and 

red curves in Fig. 5, respectively); and for LiF systems are: 99.99% 7Li - 10mm, 97.2% 7Li - 

8mm, 92.41% 7Li - 7mm, 50.8% 7Li - 7mm and 9.6% 7Li - 5mm (black, red, green, purple and 

orange curves in Fig. 6, respectively).  For the LiF systems these sizes are larger than that of the 

samples from experiment (5-7mm) [52, 53] though in reasonable agreement given the crudeness 

of the phonon-boundary scattering model.  For LiH L is remarkably smaller than the sample 

dimensions, ~2.5mm [48].  This will be discussed in more detail below.  The κ calculations for 

T<10K only included phonon-boundary and phonon-isotope scattering as convergence with 

integration grid density was prohibitively costly with inclusion of the intrinsic scattering as more 

sampling of the lower frequency acoustic phonons is required.  For T>10K the κ calculations 

converged with much lower integration grids and thus all scattering mechanisms were included.  

The curves in the intermediate temperature regime around 10K overlapped reasonably well as 

can be seen by the lack of discontinuity of the calculated curves in Figs. 5 and 6.  The intrinsic 

scattering rates were separately calculated for each isotope variation as this gives significant 

differences in phonon dispersions.  Again, this is typically ignored in calculations of isotopically 

modified κ, though is considered in some calculations of κ in alloyed material (mixing of 

elements with differing proton number) within the virtual crystal approximation [56, 57].  We 

note that changes in the calculated IFCs are not considered with variation of neutron number. 



     All calculated curves show the same general and expected κ(T) trends (as does the measured 

data for the most part):   

     Boundary scattering regime:  At low T (<10K) κ(T) is dominated by phonon-boundary 

scattering and κ(T)~T3 with increasing T, behavior dictated by the phonon specific heat [58, 59].  

However, even at the lowest temperatures the LiF systems (excluding the isotopically purified 

99.99% 7Li system) show signs that phonon-isotope scattering is playing a role as the power law 

exponent is sub-cubic, κ(T)~T2.50-T2.85 depending on the isotope variance.  The measured data 

also give sub-cubic temperature dependence, even for the highest purity sample.  The low T 

measured data for LiH is quite unusual, nonlinear on log-log scales with fits to the data giving 

κ(T)~T2 behavior.  Unfortunately, little information is given about the sample and measurements 

in Ref. 48.  Thus, it is hard to draw definitive conclusions as to the discrepancy between the 

model L (0.175mm) used here to fit the κ(T) data and the reported sample size (~2.5mm) [48]. 

     Isotope scattering regime:  At intermediate T (10K<T<75K) phonon-isotope scattering 

becomes the dominant resistance and intrinsic anharmonic scattering becomes more important.  

The interplay of these mechanisms determines the κ(T) peak magnitudes and positions -  stronger 

phonon-isotope scattering relative to the intrinsic phonon-phonon scattering suppresses the peak 

values shifts the κ(T) peaks to lower T.  Both LiH systems have κ(T) peaks at T~35K, while the 

LiF systems have peaks at T~15K-20K.  For the LiF systems the calculated κ(T) curves are in 

agreement with measured values except for the case with 99.99% 7Li (black curve) with a larger 

calculated peak value shifted to slightly higher T.  This is indicative of the presence of other 

extrinsic scattering mechanisms present in the sample (e.g., point defects such as vacancies and 

site substitutions).  The κ(T) magnitude at the peak position is highly sensitive to extrinsic 



scattering as the intrinsic anharmonic scattering is still relatively weak.  Note that this calculated 

peak κ(T) drops an order of magnitude when including just 3.8% 6Li (red curve).  

     Anharmonic scattering regime: At high T (>75K), including room temperature, anharmonic 

scattering is dominant with phonon-isotope scattering playing a lesser role; phonon-boundary 

scattering is negligible.  In Fig. 7 we give calculated κ(T) LiH (black curves), Li2H (green 

curves) and LiF (red curves) with varying Li isotope concentrations:  natural isotope abundance 

(solid curves), pure 7Li (dashed curves) and pure 6Li (dotted curves).  The calculated curves give 

κ(T)~T-1.0-T-1.1 when fitting power law curves to the data for 300K<T<1000K.  κ(T)~T-1 behavior 

is expected when three-phonon scattering is the dominant resistance.  Some of the measured κ(T) 

values give κ(T)~T-1.15-T-1.2 suggesting that some other phonon scattering might be playing a role 

in the experiments.  At high T (above the Debye temperature, near the melting point) higher 

order phonon scattering processes and/or further lattice expansion might play a role in 

determining κ [17, 18, 60].  Again, LDA a(300K) values were used to determine the IFCs and κ 

for these calculations. The melting points of LiH and LiF are reported ~950K and ~1100K, 

respectively.  The calculated and measured κ data for LiF agree reasonably well; however, those 

for LiH do not.  This is surprising given the good agreement with measured phonon dispersion 

data for Li2H (harmonic) and thermal expansion data for LiH (anharmonic), especially in light of 

previous first principles calculations that found good agreement with experiment without 

adjustable parameters [6, 56, 61, 62].  Around room temperature the calculated κ of LiH is nearly 

two times larger than measured.  This disagreement is indicative of either relatively poor sample 

qualities or the importance of including higher order anharmonic effects as described above.  

Further, it was previously noted that the Born-Oppenheimer approximation fails in HF dimers 

[63]; this might also give discrepancies in the calculated properties of the ultralight LiH system 



here.  It is interesting that the calculated κ(T) for Li2H is in better agreement with the measured 

values.  Unfortunately, information of the experimental samples and techniques are difficult to 

obtain as most of the data is from technical government reports from decades ago [48-51]. 

     Including higher order scattering terms (beyond three-phonon interactions) in the calculation 

of the intrinsic κ is beyond the scope of this work, however, here we briefly comment on the role 

of thermal expansion within the quasi-harmonic approximation in determining κ.  From Fig. 1 it 

is apparent that LiH and LiF lattice constants are more sensitive to temperature than the GaAs 

counter example shown, and inclusion of this lattice expansion is necessary for better agreement 

of calculated phonon dispersions with measured values.  The same is true of κ:  using LDA IFCs 

generated with a0 (lattice constant from energy minimization) gives generally higher κ(T) than 

that for a(300K), even higher than measured values.  Table II gives a comparison of calculated κ 

values for LiH and LiF using IFCs generated with a0, a(300K) and a(600K).  Calculated lattice 

constants for LiH are: a0=3.894 Å, a(300K) =4.004 Å and a(600K) =4.048 Å; and for LiF are: 

a0=3.886 Å, a(300K) =3.951 Å and a(600K) =3.999 Å.  Generally, κ decreases with increasing 

lattice parameter as the phonon modes soften for each system.  Further, including the effects of 

lattice expansion within this quasi-harmonic approximation also gives relatively better agreement 

of calculated and measured κ values.  For example, using a(0K) and a(300K) IFCs gives 22.41 

and 14.58 W/m-K, respectively, for LiF at room temperature compared with the measured value 

14.1 W/m-K [55].  

2. Physical analysis 

     Thermal conductivity depends critically on details of the phonon dispersions via phonon 

velocities, mode specific heats, and on changes of the phase space for phonon-phonon scatterings 

as dictated by conservation conditions, crystal momentum and energy.  Thus, details of phonon 



branch shifts due to isotope modification may play a significant role in altering the intrinsic κ of 

these materials.  Firstly we focus on sound velocities by examining changes in the calculated 

Debye temperatures constructed from these (see Eq. 4 in the Appendix).  That is, larger θD 

indicates larger acoustic velocities, and thus typically larger κ (see velocity dependence of κ in 

Eq. 1).  Calculated θD for LiH and LiF systems are listed in Table I with their corresponding 

room temperature κ values.  The θD values generally reflect the low frequency behavior of the 

acoustic modes in Figs. 1 and 2.  From this alone we expect the LiH systems to have higher κ 

than the LiF systems, which is indeed the case for LiH; however, the LiF calculated room 

temperature κ values are higher than the Li2H values.  Further, all of the calculated θD values 

here are higher than those previously calculated for Si, Ge and BAs (707K, 415K and 716K) [64] 

with corresponding calculated room temperature κ values significantly higher (145W/m-K, 

60W/m-K and 2240W/m-K, respectively) than the LiH and LiF systems here.  This suggests that 

the dominant feature governing lattice thermal transport is phonon scattering resistance.  

     Phonon-isotope scattering via mass perturbation of the varying Li isotopes was only included 

in the calculation of κ values in Fig. 6 and Table I for LiH, Li2H and LiF, 6Li and 7Li were 

considered isotopically pure.  As expected, the lack of mass disorder scattering in 7LiF, 7LiH and 

6Li2H gives κ values higher than the corresponding naturally occurring Li systems (see Table I).  

However, the isotopically pure 6LiF, 6LiH and 7Li2H cases have lower κ values despite lacking 

this phonon-isotope scattering.  This suggests that changes in the three-phonon scattering phase 

space with Li isotope enrichment induces more intrinsic resistance in these systems than the 

mass disorder scattering in the natural materials.  

     To understand the intrinsic resistance from three-phonon interactions we characterize 

scattering processes into four types:  aaa, aao, aoo and ooo, where aaa involves three acoustic 



phonons, aao involves two acoustic and one optic phonon, etc.  These scatterings can be 

generally correlated to features of the phonon dispersions by considering the effects of the 

conservation conditions, energy conservation in particular, on the phase space and thus the 

phonon lifetimes:  (i) proximity of the acoustic branches (bunching) dictates possible aaa 

processes [64], (ii) a frequency gap between acoustic and optic branches (a-o gap) dictates 

possible aao processes [6], (iii) optic bandwidth (relative to overall acoustic frequency scale) and 

dispersion dictates possible aoo processes [65, 66], and (iv) energy conservation forbids ooo 

processes in most systems including LiH and LiF here. 

     Despite having significant mass differences between the constituent atoms, these systems 

have little or no a-o gaps, characteristic of the ionic rocksalt bonding structure.  Thus, aao 

scattering is expected to be appreciable in these systems, as it is in other small a-o gap materials 

[6, 67].  The acoustic branches of each system are bunched together throughout much of the 

Brillouin zone so aaa scattering is expected to be relatively weak.  To characterize this bunching 

we calculate )X(/))X()X(( LATALA ωωω −  composed of the TA and LA frequencies calculated at 

the X point.  This gives values of 0.23 and 0.25 for all LiH and LiF systems, respectively.  For 

comparison Si has a value of 0.67 (with appreciable aaa scattering) and BAs has a value of 0.40 

(with a small aaa scattering phase space) [64].  All systems have very large LO-TO splittings 

and significant optic bandwidth with branch dispersion throughout this bandwidth.  These 

features are also characteristics of ionic rocksalt structures, and were recently shown to 

contribute to strong aoo scattering and reduced κ contributions from acoustic modes in rocksalt 

PbX [65] and antifluorite Li2X [66] (X=S, Se, Te).  In contrast, for zincblende structures aoo 

scattering is not important for determining κ.  In Table I we characterize the optic bandwidth of 

LiH and LiF systems.  Note that small values mean only low frequency acoustic phonons can 



participate in aoo scatterings as dictated by conservation of energy, and values ≥1 mean all 

acoustic phonons can scatter in such processes.  Nearly all of the acoustic modes of LiH and LiF 

systems can participate in aoo scattering processes, and ~70% of the acoustic modes in Li2H are 

allowed.  For comparison only the lowest 40% and 35% of acoustic modes in Si and BAs, 

respectively, are allowed in aoo processes [66].  We note that this characterization does not 

include the additional restriction of crystal momentum conservation. 

     To further analyze the relationship of scattering rates and κ in these systems Fig. 8 (LiH) and 

Fig. 9 (LiF) give the relative room temperature scattering rates for the TA and LA modes.  The 

scattering rates for each phonon mode are scaled by the corresponding intrinsic phonon-phonon 

scattering rate for 6LiH (Fig. 8) and 6LiF (Fig. 9).  Note that scaled values greater than one 

designate scattering rates that are greater than the intrinsic rates of the 6Li systems (larger 

thermal resistance) and values less than one designate smaller scattering rates (smaller thermal 

resistance).  Firstly, phonon-isotope scattering is generally weaker than the intrinsic scattering in 

these systems at room temperature, especially for TA modes in the LiF systems.  Thus the 

additional mass disorder scattering is not playing a large role in determining κ.  As temperature 

is decreased the intrinsic phonon-phonon scattering becomes weaker while the phonon-isotope 

scattering is unchanged thus giving the isotope-driven differences in peak κ in Fig. 6 for LiF.  

Next, the intrinsic scattering for LiH and LiF is generally weaker (though nominally so) than in 

6LiH and 6LiF, respectively.  More specifically, the acoustic modes of 6LiH are higher than those 

in LiH, while the optic modes are unaltered (Fig. 2).  This allows for increased coupling of the 

heat-carrying acoustic phonons with the optic phonons due to a smaller a-o gap in 6LiH, and thus 

reduction of their lifetimes.  The weaker intrinsic scattering in 6LiH and 6LiF coupled with weak 

phonon-isotope scattering leads to the unusual behavior of lower κ in the isotopically pure 6Li 



systems compared to their natural counterparts, despite having increased Debye temperatures 

(see Table I).    For Li2H the intrinsic scattering of the TA modes is significantly larger than that 

of 6LiH due to increased interactions of these phonons with the much lower frequency optic 

modes present in Li2H, ultimately giving lower κ in the Li2H system. 

     Finally, Slack [48] explained the low κ of LiH, despite being a simple material composed of 

light atoms, in terms of a relatively large value for its average Grüneisen parameter γ  (defined in 

the Appendix), which gives a measure of lattice anharmonicity.  Indeed, the calculated γ  for the 

LiH systems are 1.1, larger than typical zincblende material values ~0.7.[48]   The LiF systems 

have significantly larger γ  with values of 1.83.  Though γ  has a reasonable correlation with the 

lower κ values for these systems when compared with typical zincblende materials, we note that 

this measure of the anharmonicity does not account for the important effects of fundamental 

conservations conditions toward limiting intrinsic phonon-phonon scattering. 

IV.  SUMMARY AND CONCLUSIONS 

     Using a first principles Boltzmann-Peierls phonon transport equation approach we 

characterized the effects of isotope variance on lattice thermal transport in ultra-low-mass 

compound materials LiH and LiF.  In such light element systems mass fluctuation not only 

modifies thermal conductivity via phonon-isotope scattering, but also modulates the intrinsic κ 

via changes in the phonon dispersions of the optic branches (for H variance in LiH and Li 

variance in LiF systems) and to the acoustic branches (for Li variance in LiH systems).  Isotope 

variation gives significant differences in optic phonon frequencies when comparing LiH and 

Li2H and moderate differences in acoustic frequencies when comparing LiF and 6LiF.  These 

changes in the phonon dispersion give increased phase space for scattering of acoustic phonons 

by optic modes and lead to the unusual case of lower κ values in isotopically pure 6LiH, 7Li2H 



and 6LiF than in their counterparts with natural isotope abundances and mass disorder scattering.  

Good agreement of calculated and measured κ was obtained over a wide temperature range for 

LiF, however, not so for LiH.  Phonon dispersions and scattering rates were compared, and the 

relatively important effect of lattice expansion with temperature on the calculated dispersions 

and thermal conductivities of these systems was discussed.  Variation of intrinsic thermal 

resistance with isotope engineering is possible in these light atom systems, though the relative 

differences are small. 

V.  APPENDIX 

1.  Calculation details 

   The coefficient of linear thermal expansion (α) is determined from [68]: 

                                                           ∑=
jq

jqjqC
B r

rr γα
3
1                                                     (3) 

where B is the bulk modulus, VTnC jqjqjq /)/( 0 ∂∂= rrr hω is the volume normalized mode heat capacity, 0
jqnr  

is the equilibrium Bose distribution, jqrω  is the frequency for phonon with wavevector qr  in branch j and 

V is the crystal volume.  jqrγ  are the mode Grüneisen parameters given as [68]: 
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where lk designates the kth atom in the lth unit cell, qj
k

r

αε  is the αth component of the phonon eigenvector, lR
r

 

is the lattice vector of the lth unit cell, rlkα the αth component of the vector locating the kth atom in the lth 

unit cell, mk is the mass of the kth atom, and ),,( klkllk ′′′′′′Φαβγ  are the third order anharmonic IFCs.  The 

measured values of the bulk moduli for LiH [33] and LiF [34] were used in Eq. 3.  The average Grüneisen 

parameters are calculated as: 
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     The Debye temperature, θD, is given by: 

                                                  3
26

V
Nv

k D
B

D
πθ h=                                                        (6) 
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3
2

3
1 −−− += TALAD vvv                                                      (7) 

where kB and h  are the Boltzmann and reduced Planck constants,  N is the number of atoms, and 

vLA and vTA are the longitudinal and transverse sound velocities in the X→Γ  direction.   

2.  Supplemental phonon dispersions 

Figure A1 

Figure A2 
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Table I:  Calculated thermal conductivity κ, Debye temperature θD and optic bandwidth given by 
aoo
maxminmax /)( ωωω −  for each LiH and LiF system.  Here o

maxω , o
minω  and a

maxω  are calculated 
maximum optic, minimum optic and maximum acoustic frequencies, respectively.  All 
calculations are done using LDA and a(300K) as described in the text.  The unit cell mass (Mcell) 
of each system is also given. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 θD (K) Mcell 
(amu) 

scaled 
optic 

bandwidth 
κ (W/m-K)

LiH 1202 7.95 0.94 23.00 
7LiH 1197 8.02 0.95 24.15 

6LiH 1279 7.02 0.88 22.88 

Li2H 1133 8.96 0.70 13.44 

7Li2H 1129 9.03 0.71 12.82 

6Li2H 1197 8.03 0.67 14.54 

LiF 802 25.94 1.06 14.58 

7LiF 801 26.01 1.06 14.92 

6LiF 817 25.01 1.08 13.49 



Table II:  Calculated thermal conductivities (κ) for LiH and LiF at T=300K and T=600K for with 
IFCs determined using different LDA lattice constants.  a0 is the calculated equilibrium lattice 
constant, and a(300K) and a(600K) include the effects of lattice expansion as determined from 
Eq. 2 for their respective temperatures.  For comparison measured data are also shown.  Bold 
numbers designate κ values for which the temperature used in the calculation matches the lattice 
parameter temperature.  Calculated lattice constants for LiH are: a0=3.894 Å, a(300K) =4.004 Å 
and a(600K) =4.048 Å; and for LiF are: a0=3.886 Å, a(300K) =3.951 Å and a(600K) =3.999 Å. 

 

 

 

 

 

 

 

 

 

aReference 49.  The measurement was taken at 327K. 
bReference 49. 
cReference 55. 
 

 

 

 

  

 
κ  

[a0] 
(W/m-K) 

κ 
[a(300K)] 
(W/m-K) 

κ 
[a(600K)] 
(W/m-K) 

κ 
[measured] 
(W/m-K) 

LiH 
T=300K 

25.51 23.00 20.29 12.47a 

LiH 
T=600K 

11.72 10.73 9.35 6.24b 

LiF 
T=300K 

22.42 14.59 10.55 14.09c 

LiF 
T=600K 

10.63 6.94 5.07 6.19c 



 

Figure Captions 

Figure 1:  Calculated LDA a(T)/a0 versus temperature of LiH (solid black curve), Li2H (dashed 

black curve), LiF (red curve) and GaAs (blue curve).  The calculated equilibrium lattice 

parameters a0 are 3.894 Å, 3.894 Å, 3.886 Å and 5.546 Å for LiH, Li2H, LiF and GaAs, 

respectively.  Room temperature measured lattice constants scaled by the calculated a0 values are 

given for LiH (black circle) [29], Li2H (black square) [29], LiF (red circle) [30] and GaAs (blue 

circle) [35].  Note that the curves do not approach one at T=0 due to zero point motion of the 

atoms [32]. 

Figure 2:  Calculated phonon dispersions in high symmetry directions for LiH (black curves) and 

Li2H (red curves) with natural isotope averaged Li mass and for 6LiH (blue curves).  2H is also 

known as deuterium.  Red circles give measured Li2H data [36].  Calculations were done with 

LDA and a(300K) as described in the text.  The black curves are difficult to distinguish as they 

nearly coincide with the blue curves (6LiH) for the optic frequencies and with the red curves 

(Li2H) for the acoustic frequencies.  

Figure 3:  Calculated phonon dispersions in high symmetry directions for LiF (black curves) and 

6LiF (red curves).  Black circles give measured data for LiF [37]. Calculations were done with 

LDA and a(300K) as described in the text.  

Figure 4:  Calculated coefficient of linear thermal expansion versus temperature for LiH (black 

curve), Li2H (red curve) and LiF (green curve) compared with experimental measurements (note 

that error bars for the measurements are not shown).  Measured data for LiH (black circles [39], 

black triangles [40]) and Li2H (red circles [39], red squares [40] and red triangle [41]) from 



references in Ref. 38, and for LiF from Ref. 42 (green circles) and references therein (green 

triangles [43], green squares [44], green diamonds [45], green Xs [46] and green crosses [47]). 

Figure 5:  Calculated κ versus temperature for LiH (black curve) and Li2H (red curve) with 

naturally occurring Li abundances.  Phonon-boundary, phonon-isotope and phonon-boundary 

scattering are included for T>10K, while only phonon-boundary and phonon-isotope scattering 

are considered for T<10K.  The system size, L, for the phonon-boundary scattering was 0.175mm 

and 0.150mm for LiH and Li2H, respectively.  Low T measured κ data for LiH are given by 

black circles and are from unpublished data in Ref. 48.  High T measured κ data are given by 

green squares [49], blue triangles [50] and purple diamonds [51], also obtained from Ref. 48.  

The red and black curves are nearly identical for T<100K as the only differences in κ arise from 

acoustic-optic phonon scatterings, which become “frozen out” with decreasing T. 

Figure 6:  Calculated κ versus temperature for LiF with differing Li concentrations:  99.99% 7Li 

(black curve), 97.2% 7Li (red curve), 92.41% 7Li (green curve), 50.80% 7Li (purple curve) and 

9.6% 7Li (orange curve).  Measured data for the same isotope concentrations have the same 

corresponding colors (circles [52], squares [53] and diamonds [54]).  Phonon-boundary, phonon-

isotope and phonon-boundary scattering are included for T>10K, while only phonon-boundary 

and phonon-isotope scattering are considered for T<10K.  The system size, L, for the phonon-

boundary scattering was 10mm (black curve), 8mm (red curve), 7mm (green curve), 7mm 

(purple curve) and 5mm (orange curve). 

Figure 7:  Calculated κ versus temperature for LiH (black curves), Li2H (green curves) and LiF 

(red curves) with different Li isotope concentrations:  natural isotope abundances (solid curves), 

pure 7Li (dashed curves) and pure 6Li (dotted curves).  The dashed and dotted curves include 



only intrinsic phonon-phonon scattering, while the solid curves include phonon-phonon and 

phonon-isotope scattering.  Measured κ data for LiH given by black diamonds [50], black 

squares [49] and black circles [51] and for LiF given by red diamonds [52], red squares [52], red 

Xs [52], red triangles [52], red plusses [53] and red circles [55]. 

Figure 8:  Scaled acoustic mode scattering rates for LiH systems versus scaled wave vector 

magnitude at room temperature.  The wave vectors are scaled by 2π/a, while the scattering rates 

are scaled by the intrinsic phonon-phonon scattering rates calculated for isotopically pure 6LiH.  

Solid symbols denote transverse acoustic (TA) modes and hollow symbols denote longitudinal 

acoustic (LA) modes.  Blue triangles give scaled isotope scattering, black circles give scaled 

intrinsic scattering for LiH and red circles give scaled intrinsic scattering for Li2H.  All values 

above (below) one indicate scattering is stronger (weaker) than the intrinsic scattering of 6LiH. 

Figure 9:  Scaled acoustic mode scattering rates for LiF systems versus scaled wave vector 

magnitude at room temperature.  The wave vectors are scaled by 2π/a, while the scattering rates 

are scaled by the intrinsic phonon-phonon scattering rates calculated for isotopically pure 6LiF.  

Solid symbols denote transverse acoustic (TA) modes and hollow symbols denote longitudinal 

acoustic (LA) modes.  Blue triangles give scaled isotope scattering and black circles give scaled 

intrinsic scattering for LiF.  All values above (below) one indicate scattering is stronger (weaker) 

than the intrinsic scattering of 6LiF. 

Figure A1:  Calculated phonon dispersions in high symmetry directions for Li2H with energy 

minimized lattice constants (T=0K) for GGA (green curves, a=3.947Å), for LDA (black curves, 

a=3.894Å) and for LDA at T=300K (red curves, a=4.004Å) compared to measured data (blue 

circles, aexp=4.083Å) [36]. 



Figure A2:  Calculated phonon dispersions in high symmetry directions for LiF with energy 

minimized lattice constants (T=0K) for GGA (green curves, a=4.005Å), for LDA (black curves, 

a=3.886Å) and for LDA at T=300K (red curves, a=3.951Å) compared to measured data (blue 

circles, aexp=4.027Å) [37].  
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Figure 3 
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