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Uranium nitride (UN) is a candidate fuel for current GEN III fission reactors, for which it is
investigated as an accident-tolerant fuel, as well as for future GEN IV reactors. In this study, we
investigate the kinetic properties of gas fission products (Xe and Kr) in UN. Binding and migration
energies are obtained using density functional theory, with an added Hubbard correlation to model
f -electrons, and the Occupation Matrix Control scheme to avoid metastable states. These ener-
gies are then used as input for the Self-Consistent Mean Field method which enables to determine
transport coefficients for vacancy-mediated diffusion of Xe and Kr on the U-sublattice. The mag-
netic ordering of the UN structure is explicitly taken into account, for both energetic and transport
properties. Solute diffusivities are compared with experimental measurements and the effect of var-
ious parameters on the theoretical model is carefully investigated. We find that kinetic correlations
are very strong in this system, and that despite atomic migration anisotropy, macroscopic solute
diffusivities show limited anisotropy. Our model indicates that the discrepancy between experimen-
tal measurements probably results from different irradiation conditions, and hence different defect
concentrations.

PACS numbers: 28.41.Bm,31.15.ve,61.50.Ah,66.30.Dn,71.15.Mb

I. INTRODUCTION

Uranium nitride (UN) has been proposed as an
accident-tolerant fuel for current GEN II and III nuclear
reactors, as well as for future GEN IV and space reactors.
This fuel presents various interesting properties such as
high fissile density, excellent thermal conductivity and
good tolerance for minor actinide inclusion. However,
experimental data on nitride fuels is scarce since it suf-
fers from several drawbacks: it should optimally be en-
riched in 15N, it was believed not to be compatible with
water until a recent study in steam1 and the focus has
historically been on oxide fuels. Modeling has an impor-
tant role to play in the characterization, choice of exper-
iments and licensing process, especially because exper-
imental fuel testing is expensive and burdensome (need
for hotcells). Nevertheless, various past experiments have
been dedicated to the measure of Xe and Kr diffusion in
UN, and the data has been reviewed by Deforest2. The
results show discrepancies of several orders of magnitude
at usual operating temperatures (under 1000 K), which
might be attributed to different sample purity, measure-
ment methods, irradiation conditions, and samples being
either monocrystals or polycrystals. Among these val-
ues, modeling can bring some insight in migration mech-
anisms and provides estimate values for diffusion coeffi-
cients in various conditions.

Energetic properties (formation, binding and migra-
tion energies) in 5f materials are challenging to compute
properly due to the strong correlation between electrons
that is not taken into account correctly in conventional
density functional theory (DFT). Methods such as the

dynamical mean-field theory are supposed to provide a
much better description of strongly-correlated materials,
but are still too computationally demanding to model
hundreds of atoms in a systematic way, and so far, only
bulk studies have been done3,4. A more suitable correc-
tion to DFT has been proposed, by adding an ad-hoc
correlation term, in a method known as DFT+U5. A
drawback of this method is that it has been shown to in-
troduce local minima known as metastable states6, that
have to be dealt with. These states are purely numeri-
cal and carry little physical meaning. Hence, converging
to one of them should be avoided. This can be done
using several scheme: ramping6,7, quasi-annealing8, con-
trolled symmetry reduction9 and occupation matrix con-
trol (OMC)10 for instance. Most of them have been used
to model UN systems11–13. In an extensive study of the
ground state and metastable states in bulk UN, the OMC
method has been shown to be adequate12. In this study,
the ground state at low temperature has been found to be
antiferromagnetic for an introduced correlation greater
than about 1.8 eV and the structure has been computed
to be an orthorhombic rocksalt. The OMC and geometry
reported in ref 12 have been used in the present work.

Point defects in UN have been investigated with var-
ious methods, using either GGA or GGA+U or inter-
atomic potentials to compute the formation energies of
various vacancy, antisite, Frenkel and Schottky defect
configurations14–16. They were found to be different de-
pending on the studies and methods used, but in the
most comprehensive of them15, the formation energy of
a U vacancy, a N vacancy and a Schottky defect were
found to be, respectively, 6.89 eV, 7.81 eV and 13.81 eV,
using GGA+U (Ueff=1.85 eV) and the isolated atoms as
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reference states. The incorporation energy of Xe in vari-
ous defects has been investigated in previous studies12,17,
showing that it is most stable in a Schottky defect if these
defects already exist. Taking into account the formation
energies reported above and the incorporation energies
of these studies, the lowest solution energy was found
to be for Xe in a uranium vacancy. In a recent study,
vacancy-mediated diffusion of Xe in UN was studied, and
a few migration paths were considered18 using the quasi-
annealing approach to deal with metastable states intro-
duced in the DFT+U scheme.

The diffusion of xenon in other types of nuclear fu-
els has also been studied. The work on silicide19–22
or carbide23 is only starting but the work on oxide
fuels has already received many contributions. It is
outside the scope here to mention all of them, but
Xe has been studied in UO2

24, other actinide oxide
fuels25, and its diffusion following complex paths has
also been investigated26, as well as the effect of non-
stoichiometry and irradiation conditions on its diffusion
properties27.However, krypton has never been considered
in such works either for UN, except when swelling was
the sole phenomenon being investigated17. Even in some
fuel performance codes, Xe and Kr are assumed to have
the same coefficient28, an assumption that merits verifi-
cation.

Historically, the modeling of diffusion in actinide com-
pounds considered simple Arrhenius laws or Le Claire’s
model20,23. However, the influence of the magnetic or-
dering has never been studied and the kinetic correlation
effects between the vacancy and the solute are only ap-
proximated in Le Claire’s model. The large differences
in migration barriers in these systems prevent us from
measuring diffusivities out of atomic kinetic Monte Carlo
simulations because of kinetic trapping issues. The Self-
Consistent Mean-Field method (SCMF) is a promising
path to provide kinetic properties for complicated sys-
tems. First developed for vacancy-mediated diffusion
in BCC lattices29, it has since then been extended to
various structures30–33 and migration mechanisms34–36.
Basically, the SCMF method uses linear response the-
ory to compute the flux resulting from a uniform driving
force, which allows for identification of the Onsager ma-
trix. It is based on a microscopic master equation, and
thus provides a general way to link atomic-scale informa-
tion (atomic jump frequencies) to macroscopic transport
coefficients. In the framework of the thermodynamics of
irreversible processes, transport coefficients relate chem-
ical species fluxes to chemical potential gradients, which
are the driving forces for diffusion. The Onsager ma-
trix containing the transport coefficients is an n2 matrix,
where n is the number of species in the system. The di-
agonal coefficients can be related to diffusion coefficients
in the dilute limit, while the off-diagonal coefficients dic-
tate the flux coupling phenomenon which is responsible
for effects such as radiation-induced segregation37 and
radiation-induced precipitation38,39.

In this paper, we combine two state-of-the-art methods

(DFT+U+OMC and SCMF) to get an accurate descrip-
tion of the vacancy-mediated migration of Kr and Xe in
UN. We first introduce the aforementioned methods in
Sec. II. Then we present the energetic calculations (incor-
poration, binding and migration) in Sec. III A, followed
by a detailed study of solute transport coefficients and
migration mechanisms in Sec. III B. A comparison with
available experimental solute diffusivities is provided in
Sec. III C. Finally, Sec. IV shows the impact of various
model parameters on the computed kinetic properties.

II. METHODS

A. Density-functional theory calculations

All DFT calculations in this paper have been per-
formed using the Vienna Ab initio Simulation Package
(VASP). To handle correctly the strong correlation of
the 5f electrons, the Liechtenstein implementation of
the Hubbard correlation5 is used, and the introduced
metastable states, demonstrated to exist in a previous
study12, are handled with the occupation matrix control
(OMC) scheme10. U and J were taken to be respectively
2.0 eV and 0.1 eV11,12,40. Wavefunctions were described
using the projector augmented wave method41. The
exchange-correlation functional chosen was the general
gradient approximation with the PBE parametrization42.
The potentials were taken from VASP database, treating
14 and 5 electrons as valence for, respectively, uranium
and nitrogen. Xenon and krypton have 8 valence elec-
trons. The cut-off energy has been set to 600 eV, al-
though this high value was not needed for the elements
studied here. This was done to have calculations consis-
tent with systems containing oxygen (which requires a
large cut-off energy) that are the focus of on-going work.
To account for elastic interactions between periodic im-
ages of the supercell, we use the correction introduced
by Varvenne et al.43 in the calculation of incorportation
energies.

The supercell contains a rocksalt structure, which con-
sists of two interpenetrating face centered cubic (FCC)
lattices, one occupied by U atoms, and the other by N
atoms. It has been shown that this structure presents
antiferromagnetic (AFM) ordering and the exact struc-
ture used in our study was reported in Ref. 12. This
magnetic ordering is stable up to 53K44. The structure
is depicted in Fig 1.

To calculate the kinetic coefficients of solutes, one first
needs to know where these solutes are most likely to be
located in the crystal. Therefore the first step is to look
at the solution energy of these solutes in different crys-
tal positions. Here, four positions are investigated, for
both Xe and Kr solutes: as substitutional atoms in the
uranium and nitrogen sites, in the center of a Schottky
defect and as an interstitial atom. These positions are
shown in Fig 2.

The solution energy of a solute is calculated as the sum
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Figure 1. Uranium nitride in the antiferromagnetic rocksalt
structure. White: uranium atoms, black: nitrogen atoms.
Spin orientations are represented by arrows.

U subs.

N subs.

Inter

Schottky

Figure 2. 4 possible positions for Xe and Kr solutes in UN:
substitutional position on an uranium site, substitutional po-
sition on a nitrogen site, interstitial position and center of
Schottky defect.

of the formation energy of a defect and of the incorpora-
tion energy of the impurity in this defect.

Esol = Ef + Einc (1)

Formation energies are not calculated in this study, but
taken from Ref. 15.

The incorporation energies of xenon and krypton, pre-
sented in a previous paper12 have been recalculated with
a higher k-point density to make sure the system was well
converged. For these simulations, the reference supercell
for the incorporation energy calculations contained 32
atoms of each type. The k-point discretization has been
increased from 2 × 2 × 2 to 5 × 5 × 5. The energies are
converged to less than 1 meV/atom with respect to the
k-point density.

For the binding and migration energy simulations, the
reference cell was made larger, containing 108 atoms of
each type, in order to avoid boundary effects. The energy
convergence was set at 10 meV per atom. The k-point
discretization was chosen to be 2 × 2 × 2, to keep a k-
point density similar to the one used to calculate the in-
corporation energies. The binding energy was calculated
following Eq 2, yielding a positive value when there was
attraction and a negative value otherwise.

Eb = Edefect + Esolute − Edefect+solute − Eref (2)

where Edefect+solute is the total energy of the system with
the defect and the solute which binding energy we are
investigating, Eref is the energy of the supercell without
defect, and Edefect and Esolute are the energy of the su-
percells with either the defect or the solute.

Migration energies are computed using the nudged
elastic band45 method as implemented in VASP with a
spring constant of 5 eV/Å2.

B. Self-consistent mean field method

The self-consistent mean field (SCMF) method uses
linear response theory to compute a flux of species in re-
sponse to a driving force, here a chemical potential gradi-
ent. It is derived from a microscopic master equation and
thus provides a general way to obtain transport coeffi-
cients from a set of atomic jump rates. In the framework
of the thermodynamics of irreversible processes, trans-
port coefficients relate fluxes to driving forces

(
JV
JS

)
= −

(
LV V LV S
LSV LSS

)( ∇µV

kBT
∇µS

kBT

)
, (3)

where JV and JS denote the flux of vacancies and so-
lutes, respectively, LV V , LV S = LSV and LSS are the
transport coefficients, ∇µV and ∇µS are the chemical
potential gradient for each species, kB is the Boltzmann
constant, and T is the temperature. Note that all of these
quantities are related to a particular direction.

In this study we apply the SCMF to compute transport
coefficients for vacancy-mediated solute diffusion in anti-
ferromagnetic rocksalt UN. Solutes Kr and Xe are more
stable on the U-sublattice (FCC), it is thus assumed that
they diffuse on this sublattice only. Because of the AFM
ordering, the diffusion network has the same symmetry
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as a tetragonaly strained FCC cell. The SCMF equa-
tions have already been used for such system31 and are
identical to the one derived for isotropic systems. The
difference resides in the application of these equations,
and the proper identification of jump rates tangential
to spin planes (T direction) and jump rates normal to
spin planes (N direction). Below we provide the SCMF
equations for the flux of vacancies in dilute alloys, and
their derivation can be found in previous references (e.g.
36). The flux of solute S is obtained by inverting V (va-
cancy) and S and taking into account the fact that the
exchange rate between solute S and host atom h is al-
ways zero. The projected microscopic flux between sites
i and s along the chemical potential gradient direction is

− JVi→s

=

〈
nVi n

α
s ω

V α
is

~is.~∇ (µV − µα)

kBT

〉(0)

+

〈
nVi n

α
s ω

V α
is

∑
k

nSk
ξV Sik − ξV Ssk

kBT

〉(0)

, (4)

where α ∈ {S, h}, nγi is a site occupation number, and
is equal to 1 if site i is occupied by species γ, and 0 if
not. ωV αis is the jump rate corresponding to the exchange
between V at site i and species α at site s. ξV Sik denotes
the effective interaction between V at site i and S at site
k. These interactions account for the deviation from the
equilibrium system, and provide a quantitative estima-
tion of kinetic correlation effects. Steady-state values for
these interactions are obtained by solving a linear sys-
tem containing one of the following equations for each
effective interaction ξV Sij

−

〈
nVi n

S
j n

α
s ω

V α
is

~is.~∇ (µV − µα)

kBT

〉(0)

=

〈
nVi n

S
j n

α
s ω

V α
is

∑
k

nSk
ξV Sik − ξV Ssk

kBT

〉(0)

. (5)

In both equations, 〈.〉(0) denotes the ensemble aver-
age over all possible configurations of the system using
the equilibrium probability of each configuration as the
weight function.

Equations 4 and 5 use an effective pair interaction
Hamiltonian. In this framework, the accuracy of the cal-
culation is controlled by the range Rkin of effective pair
interactions, which is greater than the range of thermo-
dynamic interactions. Unless specified otherwise, all cal-
culations in this paper use Rkin = 2.5a, where a denotes
the lattice parameter. The convergence of the results
with respect to this parameter is discussed in Sec. IV.

We follow previous developments for dilute systems
and write transport coefficients as a sum of cluster
transport coefficients weighted by cluster volumetric

concentrations36. In a dilute system, it is assumed that
when a vacancy meets a solute atom to form a pair they
will have time to reach a local thermodynamic equilib-
rium between their various microscopic configurations
before another vacancy or solute meets the pair. Hence
the kinetic properties of a V X pair cluster are identical
to those which would be obtained in an infinitely dilute
system and the Onsager matrix can be broken into clus-
ter contributions that are independent of one another.
In the dilute system under study there are only three
possible clusters (higher order clusters being neglected
because the probability that they form is small): the iso-
lated vacancy, the vacancy-solute pair and the isolated
solute. The latter being immobile, it does not partici-
pate to transport coefficients. Furthermore, each cluster
transport coefficient is split into two contributions: the
mobility M , a scalar which is nothing but the diffusiv-
ity of a cluster treated as an isolated indivisible object,
and the association/dissociation contribution AD which
contains the contribution of cluster association and dis-
sociation to the global transport coefficients. Obviously
the isolated vacancy cannot dissociate so we are left with
three contributions: vacancy mobility M(V ), vacancy-
solute pair mobility M(V S) and vacancy-solute pair as-
sociation/dissociation contribution AD(V S).

(
LV V LV S
LSV LSS

)
= [V ]M(V )

(
1 0
0 0

)
+ [V S]M(V S)

(
1 1
1 1

)
+ [V S]

(
AD(V S)V V AD(V S)V S
AD(V S)SV AD(V S)SS

)
.

(6)

[V ] and [V S] denote the volumetric concentrations
of isolated vacancies and vacancy-solute pairs, respec-
tively. The main advantage of writing things this way
is that cluster transport coefficients are intrinsic equilib-
rium properties of each cluster, and it is not assumed
beforehand that cluster populations obey local equilib-
rium. Clusters with highly attractive binding energies
do not dissociate often, which can lead to AD (V S)αβ �
M (V S) (α, β ∈ {V, S}). It is the case in our system
(VXe and VKr migration on the U-sublattice of UN),
so most of our discussion will be focused on mobilities.
Because there are two non-equivalent directions in our
system (T and N), all of the above cluster contributions
will be calculated in each of these directions. Note that
in the dilute limit

lim
[S]→0

LSS = ([S] + [V S])D∗S , (7)

where [S] is the volumetric concentration of isolated
solutes, and D∗S is the solute tracer diffusion coefficient,
simply called solute diffusivity. Assuming AD(V S)αβ �
M(V S), then LSS ' [V S]M(V S) such that
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Table I. Incorporation and solution energies [eV] of fission
products in UN, without and with elastic correction43. Most
stable configurations are in bold font.

Position Sub. U Sub. N Schottky Inter
Einc(Kr) 2.87 6.26 2.17 11.54
Corrected value 2.75 5.91 2.08 10.59
Einc(Xe) 3.76 8.60 2.78 14.62
Corrected value 3.59 7.89 2.65 13.09
Ef defect15 6.89 7.81 13.81 0
Esol(Kr) 9.64 13.72 15.89 10.59
Esol(Xe) 10.48 15.70 16.46 13.09

M(V S) '
(

1 +
[S]

[V S]

)
D∗S . (8)

It must be kept in mind that M (V S) is an intrinsic
property of V S clusters, while D∗S is an averaged solute
property which depends on the relative proportions be-
tween isolated solutes and V S pairs.

III. RESULTS

A. Energetics of the system

To access diffusion properties, a careful parametriza-
tion of the energetics of the system has to be carried
out. We evaluate the incorporation energy of solutes in
different defects and compute the vacancy-solute bind-
ing energy, as well as vacancy migration energies, either
when it exchanges position with the impurity or with a
uranium atom in the vicinity of the impurity.

1. Solution energies

The solution energy of Xe and Kr in UN has been
computed in four different crystallographic positions, as
shown in Fig. 2. The gas atoms have been set in sub-
stitutional positions, either located on a uranium or a
nitrogen site. They have also been put in a tetrahedral
interstitial position and in a Schottky defect. Due to the
limited size of the supercell, a correction for elastic in-
teractions between periodic images has been applied43.
One can notice that the results are only slightly differ-
ent (less than 2%) compared with those of our previous
publication12 which is due to the fact that we increased
the k-point density.

The results are reported in Table I and although both
Xe and Kr are found more stable in a Schottky defect if
all types of defects are already present, the formation en-
ergy of such defect has been calculated to be very high15
and for the present diffusion study, we focus on the sub-
stitutional uranium since the solution energy is the lowest

for both solutes. One can also notice that the interstitial
position, that seemed very unlikely from the incorpora-
tion energy, becomes more likely than the substitutional
N and the Schottky defect positions when formation en-
ergies are taken into account.

2. Binding energies

To calculate the interaction range of the considered
gas atoms with a vacancy, the binding energy has been
computed. Here, several things have to be taken into ac-
count. For a given distance, the symmetry is broken by
the spin planes. For instance, two atoms in third nearest
neighbor (3NN) position can have the same or an opposed
spin. Even when the spins are oriented in the same di-
rection, there exist two 3NN configurations that are not
symmetrically equivalent. Another example is the case
of the second and 4NN, which are always between sites
with spins oriented in the same directions. Thus these
configurations can be either normal to the spin plane (N
configuration) or tangential to the spin plane (T con-
figuration). To distinguish between these, we will use
subscripts T or N.

All the configurations up to the eighth nearest neigh-
bor are represented in Fig. 3, and their binding energies
are reported in Tab II. One can see that the AFM or-
dered FCC lattice has the same symmetry as a tetrag-
onal FCC cell. Unlike previous studies18, we take into
account the symmetry breaking due to the magnetic or-
dering, which produces additional non-equivalent config-
urations and transitions among them.

Due to the supercell size and boundary conditions, the
5NN and the 7NN positions are in a plane median be-
tween two solute atoms. The 8NN is the same as the
2NN. Therefore, the binding energy results for 5NN and
7NN are to be taken with caution because the imposed
symmetry does not allow for proper relaxation of the con-
figuration. For this reason, the normal and tangential po-
sitions have not been investigated for neighbors beyond
the 4NN configuration.

Binding energies are very low beyond the 2NN position
(less than 0.11 eV in absolute value), with the excep-
tion of the 5NN and 7NN interactions that we discussed.
There is also a clear impact of the spin, that hints towards
an anisotropy of the diffusion process. The interaction,
be it attraction or repulsion, is stronger when the two
atoms replaced by a vacancy and a solute are not in the
same spin plane.

For both Xe and Kr, the very strong attraction with
the vacancy when located in a 1NN configuration can be
explained by the fact that the gas atom relaxes strongly
towards the vacancy. Because of this movement of the
solute towards the vacancy, between 20 and 30% (de-
pending on the spin and the species) of the way to the
saddle point is covered, the stresses created by the incor-
poration of the gas atom in the bulk system are greatly
relaxed. For the 2NN configuration, the gas atom relaxes
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Figure 3. Nearest neighbor (NN) positions with respect to
the solute (blue atom in the bottom left corner) in AFM-UN.
"o" stands for opposite spins, "s" stands for same spin. When
these subscripts are not sufficient to distinguish symmetrically
inequivalent configurations, we use superscripts N (stands for
normal) and T (stands for tangential), see text.

Table II. Binding energy [eV] of V with either Xe or Kr in
UN. A positive value indicates an attraction, and a negative
one a repulsion. The configurations are pictured in Fig. 3

Configuration Name Eb(VXe) Eb(VKr)
1 NN same 1S 0.74 0.90
1 NN opposed 1O 0.95 1.04
2 NN same tangential 2TS -0.39 -0.19
2 NN same normal 2NS -0.46 -0.20
3 NN same 3S -0.03 0.04
3 NN opposed 3O 0.03 0.11
4 NN same tangential 4TS -0.04 0.01
4 NN same normal 4NS 0.02 0.06
5 NN same 5S 0.33 0.43
5 NN opposed tangential 5TO 0.23 0.23
5 NN opposed normal 5NO -0.03 0.00
6 NN same 6S -0.06 0.03
7 NN same 7S -0.11 0.09
7 NN opposed 7O 0.59 0.08

away from the vacancy, whereas the uranium atoms that
are 2NN of the vacancy relax towards it. In particular,
the uranium atoms in 1NN position with respect to the
vacancy relax towards it by 3-5% of the distance to the
saddle point, which breaks the symmetry around the gas
atom, without giving it much more space. The effect on
nitrogen atoms is also peculiar, since the one between the

ω2
ss

ω11
so

ω12T
ss

ω14T
ss

ω13
soi

ω13
oo

ω14N
os

ω13
os

ω11
oo

ω12T
os

ω12N
os

ω14N
os

ω2
so

Figure 4. Considered transitions. The lowerscript represents
the distances of the initial and final positions of the vacancy
when compared to the solute. The upperscript represents the
spin orientation of the initial and final sites occupied by a
vacancy, with respect to the solute.

vacancy and the solute strongly relaxes towards the va-
cancy (about 8%), whereas the other five N atoms around
the vacancy move away, as in the bulk system with only
one vacancy on a uranium site. The presence of the ni-
trogen atom in between the vacancy and a 2NN solute
atom probably explains the negative binding energies (re-
pulsion) of the 2NN configurations.

3. Migration energies

In this study, we consider only vacancy-assisted migra-
tion. As discussed earlier, our goal is to check the impact
of both the distance threshold chosen for the interaction
between the vacancy and the gas atom, and the effect of
magnetic ordering which might lead to anisotropic diffu-
sion. To do that, the migration energies of all the possible
jumps involving the solute and the 1NN and 2NN ura-
nium atoms are computed. The resulting jump network
is represented in Fig 4.

Migration energy values shown in Table III are for the
migration from the first to the second position, tracking
the displacement of the vacancy. The values in parenthe-
sis have to be added to get the migration energy from the
second position to the first one. Also reported in Table III
are the saddle point energies. The highest saddle-point
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Table III. Migration energy of Xe and Kr in UN, in eV. “Ini”
corresponds to the initial position of the vacancy and “Fin” to
the final one. The transitions are represented in Fig 4. The
transitions ω2 involve a displacement of the solute, and for
this reason, the initial and final positions of the vacancy for
the transition ωSO2 are the same, although there is a change
of spin plane. Saddle-point energies Esp are computed ith Eq.
9

Ini Fin Trans Em (Xe) Em(Kr) Esp(Xe) Esp(Kr)
1S 1S ωSS2 0.95 (+0.00) 0.55 (+0.00) 0.21 -0.35
1O 1O ωSO2 0.83 (+0.00) 0.47 (+0.00) -0.12 -0.57
1O 1O ωOO11 3.28 (+0.00) 3.18 (+0.00) 2.33 2.14
1S 1O ωSO11 2.78 (+0.21) 2.74 (+0.14) 2.04 1.84
1S 2S ωSS12 3.71 (-1.13) 3.67 (-1.09) 2.97 2.77
1O 2TS ωOS12T 3.87 (-1.34) 3.69 (-1.23) 2.92 2.65
1O 2NS ωOS12N 3.80 (-1.41) 3.53 (-1.24) 2.85 2.49
1S 3O ωSO13 3.09 (-0.72) 3.14 (-0.79) 2.35 2.24
1O 3S ωOS13 3.22 (-0.98) 3.16 (-1.01) 2.27 2.12
1O 3O ωOO13 3.52 (-0.92) 3.29 (-0.93) 2.57 2.25
1S 4S ωSS14 3.36 (-0.78) 3.39 (-0.89) 2.62 2.49
1O 4NS ωOS14N 2.91 (-0.93) 2.94 (-0.99) 1.96 1.90
2NS 3S ωSS2N3 2.21 (+0.44) 2.59 (+0.24) 2.67 2.79
2TS 3O ωSO2T 3 2.39 (+0.41) 2.56 (+0.29) 2.78 2.75
2TS 5S ωSS2T 5 3.08 (+0.72) 3.10 (+0.62) 3.47 3.29
2TS 5TO ωSO2T 5T 2.79 (+0.62) 2.82 (+0.42) 3.18 3.01
∞ ∞ ωSS0 3.31 (+0.00) 3.31 (+0.00) 3.31 3.31
∞ ∞ ωSO0 3.63 (+0.00) 3.63 (+0.00) 3.63 3.63

energy in a migration path defines the rate limiting step
of this path. This point is discussed further in the next
section. With our binding energy convention:

Esp = Em − Eb (9)

Vacancy-solute exchange energies are much lower than
the other ones, both for Xe and Kr. As discussed in the
previous section, the equilibrium position of gas solutes
is strongly relaxed towards the vacancy and 20 to 30%
of the path to the saddle-point position is already done,
which is likely to be the reason for such a low migra-
tion energy. As a consequence, we expect this jump to
occur very frequently, but since it alone cannot produce
long-range diffusion, it will most likely be a highly corre-
lated jump, and diffusion will be limited by surrounding
jumps. The migration energies of all these jumps are
much higher, and take values in a wide range of energies
(more than 1.5 eV difference). In particular, looking at
the possibilities for the vacancy to jump from a 1NN posi-
tion to another position, which is required for long-range
diffusion, the migration energies can be as low as 2.78 eV
and as high as 3.87 eV. With regards to the previous dis-
cussion on the relaxation of the xenon and krypton atom
towards the vacancy when they are in a 1NN configura-
tion, it is worth noting that at the saddle point of the ω11

transitions, the solute atom is back to the perfect lattice
site. Indeed, at this point, the distance between the so-
lute and the migrating uranium atom is the shortest, and

if the gas atom had stayed where it was, the migration
energy would be much higher. The high value of the ω11

migration energies (compared to the ω2 migration ener-
gies) is a consequence of the necessary destabilization of
the solute atom. These observations motivate the need
for a complete kinetic model able to perform the statis-
tical average of all possible jumps and identify the main
migration path. This will be the topic of Sec. III B.

B. Transport coefficients

In this section we combine the DFT values of migra-
tion and binding energies (Sec. III A) with the SCMF
method to compute vacancy-solute (V S, S ∈ {Xe,Kr})
pair transport coefficients. These cluster transport coef-
ficient provide insight into the migration mechanism of
V S pairs at the atomic scale. Binding energies are con-
sidered up to the 6NN, and all jump frequencies that
were computed are used in the calculations (Table III).
Of course, this DFT-computed set of migration barriers is
not exhaustive, and all missing migration barriers needed
as input in the SCMF formalism (mainly dissociation fre-
quencies) are obtained via the commonly used kinetically
resolved activation (KRA) barrier approximation46,47

Em (1→ 2) =
Eb (1)− Eb (2)

2
+Q, (10)

where Em (1→ 2) is the migration energy between
states 1 and 2, Eb (k) is the binding energy of state k
and Q is a constant value chosen as the bulk vacancy
migration energy. Note that in our systems, there are
two possible Q values depending on whether the jump is
along the T or N direction. All jump attempt frequen-
cies are set to the Debye frequency ν0 = 23.8 THz48.
Because all attempt frequencies are identical in our cal-
culation, cluster transport coefficients are proportional to
ν0. The effect of considering various attempt frequencies
for various jump rates will be addressed in Sec. IV.

Figure 5 shows V S pair mobilities (S ∈ {Xe,Kr}) as
a function of the inverse temperature. These mobilities
were computed in both T and N directions. For both
V S pairs, the difference between T and N diffusion is
small (M (V S)N ' 2M(V S)T ) and does not vary much
with temperature. The fact that mobilitiesM(V S) show
an Arrhenius behavior over the whole temperature range
demonstrates that there exists one energetically favored
migration path. Moreover, the small diffusion anisotropy
indicates that the energy landscape of the main migration
path is similar in all directions. Figure 5 also shows the
uncorrelated mobilities M0 (V S). When kinetic correla-
tions are ignored (all effective interactions set to zero in
Eq. 4), the computation of transport coefficients reduces
to a thermodynamic average of all possible jump rates in
the system. For Kr and Xe diffusion in UN, the exchange
between vacancy and solutes has a much lower migration
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energy than any other barrier in the system (cf. Ta-
ble III). Thus, the corresponding rate will dominate the
thermodynamic average of jump rates, and the resulting
estimation of transport coefficients will be high (dashed
lines in Fig. 5). But these exchange jumps alone do not
provide long-range diffusion. For that to happen, the
vacancy also needs to be able to migrate around the so-
lute in between two exchange jumps. The exchange jump
rate being orders of magnitude higher than these vacancy
jumps around the solutes, there will be many exchange
jumps before a single jump of the vacancy around the
solute. These successive exchange jump do not produce
any net diffusion of the V S pair, hence the important
difference between correlated and uncorrelated transport
coefficients in Fig. 5 (about 12 orders of magnitude at
T = 1000 K). Generally speaking, these plots demon-
strate the importance of computing correlation effects to
evaluate solute diffusivities.
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Figure 5. Uncorrelated mobilities M0 (dashed lines) and cor-
related mobilities M (solid lines) for VXe pairs (left plot)
and VKr pairs (right plot). On both of these plots, blue lines
correspond to diffusion in the N direction while black lines
correspond to diffusion in any T direction.

Usually, high binding energy between vacancies and
solute is associated with vacancy trapping and immo-
bile vacancy-solute pairs49–52. If one assumes the saddle-
point energy as nearly independent of local atomic config-
urations, then high V S binding will produce a deep well
from which it is difficult to escape. The reality is that
saddle-point energies do depend on local atomic config-
urations. It is thus highly speculative to predict before-
hand what will be the effect of a solute on the average
vacancy diffusivity. In our system, the 1NN V − S bind-
ing is very high (between 0.74 eV and 1.04 eV, cf. Table
II), so one could expect solutes to trap vacancies. But
it turns out that solutes also locally lower the vacancy
saddle-point energies: careful inspection of Table III re-
veals that for any computed vacancy jump in the neigh-
borhood of the solute, saddle-point energies are lower
than bulk saddle-point energies. To summarize, solutes
will indeed trap vacancies in the sense that vacancies will
hardly dissociate from solutes, but the resulting V S pairs
are far from immobile, and Fig. 6 shows that V S are in-
deed more mobile than isolated vacancies. Thus, for a
given vacancy concentration, increasing the concentra-
tion of Xe and Kr in UN leads to an increased vacancy
diffusivity. From a qualitative point of view, it is in-

teresting to note that V S pairs diffuse faster in the N
direction than in the T direction, whereas it is the oppo-
site for isolated vacancies. Also, the diffusion anisotropy
is more important for isolated vacancies than it is for
V S pairs, especially at low temperature. All curves in
Fig. 6 have been fitted with an Arrhenius expression
M (α) = D0 exp (−Em/kBT ), where D0 is a diffusion
pre-factor, and Em the effective migration energy associ-
ated with the migration of cluster α. Fitted parameters
are given in Table IV.
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Figure 6. Cluster mobilities M as a function of the inverse
temperature for three clusters: isolated vacancy (black lines),
VXe pairs (red lines) and VKr pairs (blue lines). For each
of these clusters, two mobilities are shown, one associated
with diffusion in the N direction (dashed lines) and the other
associated with diffusion in the T direction (solid lines).

Table IV. Arrhenius fit of cluster mobilities plotted in Fig. 6.
M(α)T M(α)N

D0

[
m2/s

]
Em [eV] D0

[
m2/s

]
Em [eV]

α = VXe 3.83e-7 2.99 6.08e-7 2.98
α = VKr 3.50e-7 2.88 5.80e-7 2.87
α = V 3.18e-6 3.31 5.83e-6 3.63

The fact that the Arrhenius fit is valid across the whole
temperature range indicates that for each cluster there is
a single migration mechanism responsible for the long-
range diffusion of this cluster, which is explained in Fig.
7. The effective migration barrier corresponding to a
given jump sequence can be estimated from the ’highest
barrier approximation’53. In this framework, the effec-
tive migration barrier of the diffusion path is the energy
difference between the highest saddle-point configuration
of the path, and the most stable configuration. In both
cases under study, the most stable configuration of the
V S pair is the 1NN opposite configuration (cf. Table
II), with a binding energy of 0.95 eV and 1.04 eV for Xe
and Kr, respectively. Then, we are looking for a jump se-
quence that translates the initial V S configuration, either



9

in the T or N direction. Among these jump sequences,
the most probable one will be the one with the lowest
saddle point energy, where the saddle point energy of a
jump sequence is defined as the highest saddle-point en-
ergy among each of the individual jumps in the jump
sequence. Applying this method, we identify the most
probable long-range diffusion mechanisms for V S pairs
(which are similar for each solute) in both non-equivalent
directions (Fig. 7). The idea is to perform out-of-plane
jumps only, because they have smaller saddle-point en-
ergies than in-plane jumps (it is the opposite for an iso-
lated vacancy). The solute-vacancy exchange have a low
saddle-point energy so they will not be the rate limiting
step of this migration mechanism, which is the ωOS11 jump
for both cases (T and N diffusion), which explains the
low anisotropy of V S pair mobility. It is interesting to
point out that for diffusion in the T direction, it is more
efficient to perform out-of-plane jumps. From a quantita-
tive point of view, the effective migration energy of these
jumps can be estimated with the highest approximation
barrier and we find: Eeff

m (VXe) = 0.95 + 2.04 = 2.99 eV
and Eeff

m (VKr) = 1.04 + 1.84 = 2.88 eV, in good agree-
ment with the fits in Table IV.

In short, the AFM ordering breaks the symmetry of the
FCC sublattice, which creates anisotropic binding and
migration energies. Because of this anisotropy, the V S
pair does not diffuse with the same migration mechanism
in both T and N directions. But both migration paths
go through the exact same metastable and saddle-point
states. Thus there is essentially no macroscopic diffusion
anisotropy for V S pairs.

Figure 7. Long-range diffusion mechanism for V S pairs. Left-
hand (resp. right-hand) side shows diffusion in the N (resp.
T) direction. The initial position of S and V are depicted as
a yellow sphere and white square, respectively. Black spheres
show the AFM-FCC lattice of U atoms. Blue double-headed
arrows denote a S − V exchange, while red single-headed ar-
rows denote a U−V exchange. The number besides each ar-
row corresponds to the order in which these jumps proceed.
The final position of S is obtained by following double-headed
arrows, while the final position of V is at the sixth arrow head.
Final and initial position are thus equivalent.

Finally, it is interesting to look at cluster flux cou-

pling coefficients for two reasons: Firstly, these coeffi-
cients are very sensitive to the details of atomic migra-
tion, much more than the mobilities; Secondly, as long
as these coefficients are close to unity, it means that
AD (V S) � M(V S), and that the diffusion properties
of the system depend mainly on cluster mobilities. If it
is not the case, then we also have to consider the associ-
ation/dissociation terms (2 coefficients) which are more
complicated to discuss (see Ref. 36). The cluster flux
coupling ratios are defined as:

LV S (V S)

LSS (V S)
=
M(V S) +ADV S (V S)

M(V S) +ADSS (V S)
, (11)

LSV (V S)

LV V (V S)
=
M(V S) +ADSV (V S)

M(V S) +ADV V (V S)
. (12)

The first flux coupling coefficient is commonly denoted
as the drag ratio (it does not depend on the respective
value of V and V S concentrations) and allows to predict
radiation-induced segregation behavior (e.g. 33 and 54).
Both coefficients are shown for each solute and each di-
rection in Fig. 8. Indeed, the flux coupling anisotropy
(difference between solid and dashed curve of a given
color) is more pronounced than for the mobility coeffi-
cients. All of these coefficients are exactly equal to unity
below T = 1000 K, so at these temperatures diffusion of
solutes is governed by the long-range migration of prac-
tically indivisible V S pairs. At higher temperature, the
dissociation of these clusters starts to play a role, but still
a minor role because cluster flux coupling coefficient stay
close to unity. Figure 8 also shows that flux coupling is
always higher in the N direction than in the T direction.

If one knows the concentrations of isolated vacancies
and vacancy-solute pairs, the second cluster flux cou-
pling coefficient (Eq. 12) can be turned into macroscopic
flux coupling coefficients (which are commonly used in
the framework of the thermodynamics of irreversible pro-
cesses to study radiation-induced segregation) using Eq.
6

LSV
LV V

=
M(V S) +AD (V S)SV

M(V S) +AD (V S)V V +
[V ]

[V S]
M(V S)

. (13)

Note that the denominator of Eq. 13 is always positive,
such that the pair flux coupling ratio (Eq. 12) dictates
the qualitative nature of the flux coupling phenomenon
(either positive or negative).

C. Comparison with experimental data

It is difficult to make a relevant comparison of the so-
lute diffusion coefficient with experimental data, because
solute diffusivity is proportional to the vacancy con-
centration in the system. Experimental measurements
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Figure 8. V S pairs flux coupling coefficients as a func-
tion of temperature. A color is related to one type
of cluster flux coupling coefficient (LV S(V S)/LSS(V S) or
LSV (V S)/LV V (V S)) in one particular direction (N or T),
hence the 4 different colors. Solid lines correspond to S =Kr
and dashed lines correspond to S =Xe.

(gathered by Deforest2) are indirect measurements per-
formed under irradiation where the vacancy concentra-
tion is unknown. Nevertheless, we are able to compute
the equilibrium solute diffusivity using the thermal va-
cancy concentration. The solute diffusion coefficient D∗S
is expressed as

D∗S = [V ]ZM(V S) (14)

where [V ] is the vacancy concentration, Z is the pair par-
tition function (binding energy term) and M(V S) is the
mobility of the vacancy-solute pair. Under equilibrium
conditions, the vacancy concentration reads

[V ]eq = exp

(
−Ef (V )

kBT

)
(15)

where Ef (V ) is the vacancy formation energy (cf. Table
I).

Using Eqs. 14 and 15, we can plot four diffusion coeffi-
cients as each solute (Xe, Kr) have anisotropic diffusivity
(T or N directions). As diffusion anisotropy is almost
negligible in this system (see Fig. 6), we will only plot
the diffusivity in the T direction for the sake of clarity
in Fig. 9. The experimental data gathered in Ref. 2 are
plotted as blue dashed lines. Most experimental measure-
ments are orders of magnitude higher than our theoreti-
cal predictions at equilibrium (black lines). This is most
likely a consequence of the fact that these measurements
were performed on irradiated samples, for which the va-
cancy concentration is unknown, but probably orders of
magnitude higher than the equilibrium vacancy concen-
tration. It is interesting to note that there is one experi-
mental result that gives very low values of diffusivity, in

qualitative agreement with our theoretical prediction55.
This measurement might be closer to equilibrium than
the other ones, but it is most likely to be related to a
modeling issue: the bubble contribution was not taken
into account and a complete interconnection of the grain
boundaries was assumed in Ref. 55, but in a subsequent
study considering the action of the bubble, a diffusion
coefficient closer to the other experiments was found56.
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Figure 9. Comparison between experimental measurements
(as gathered in Ref. 2 for Xe and Kr) and our estimate of
solute diffusivities for various vacancy concentrations. The
diffusion anisotropy being small for both VXe and VKr pairs,
we only show the diffusivity in the T direction. Melehan57,
Biddle 1 and 258, Oi59, Ritzmann60, Blank61 and Weinstein
1 and 255,56

Using Eq. 14, we computed solute diffusivity for
two high vacancy concentrations (independent of tem-
perature): 10−3 and 10−8. It seems that the calcula-
tions [V ] = 10−3 gives the upper limit for experimen-
tal measurements, while the theoretical prediction for
[V ] = 10−8 seems to be in between various measure-
ments. To go further, a more detailed description of
these experiments would be needed, as well as a model
of point-defect evolution under irradiation to estimate
the vacancy concentration in the systems. The difference
between experimental measurements and theoretical pre-
dictions of solute diffusivity can also stem from several
other reasons:

• only vacancy-mediated diffusion has been consid-
ered here. It is possible that the diffusion of gas
atoms in UN happens following other more efficient
diffusion mechanisms;

• the experimental measurements are indirect (fission
gas release rate) which requires a number of model-
ing assumption, which are not always the same62,63,
and the stoichiometry of the sample is not guaran-
teed;



11

• most of these measurements are performed at high
temperature (where there is no AFM ordering of
the UN structure) and then extrapolated to lower
temperatures. Migration properties might thus be
different at these temperatures, which questions the
validity of the extrapolation.

IV. DISCUSSION: COMPARISON BETWEEN
VARIOUS KINETIC MODELS

In this section we will discuss various approximations
of the kinetic model to test the robustness of the conclu-
sions drawn from the previous section.

First we look at the impact of the range of effective
interactions Rkin on the drag ratio, chosen here because
it is the most sensitive quantity to compute. Figure 10
shows the drag ratio obtained for the VXe pair (similar
results are obtained for VKr pairs) for 2a ≤ Rkin ≤ 4a,
where a is the lattice parameter of the FCC cell. The
range of thermodynamic interactions is

√
3a (6NN) so

it would not be consistent to set Rkin below this value.
Figure 10 clearly shows that the drag ratio converges with
increasing values of Rkin. Taking the drag ratio obtained
for Rkin = 4a as the reference value, the drag ratio is
already converged up to a 0.3% error at T = 2000 K
when Rkin = 2.5a. Thus we chose this Rkin value as a
good compromise between accuracy and computational
time. All results in this paper, unless otherwise specified,
are obtained with Rkin = 2.5a.
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Figure 10. Drag ratio for VXe pairs computed using the
SCMF method with varying range of effective interactions
(Rkin). The dashed line (Rkin = 2.5a) corresponds to the
value chosen for the calculations in this study.

Next we investigate the impact of 5NN and 6NN bind-
ings on the transport coefficients. The reason is that, as
explained in Sec. III A, the 5NN configuration is geomet-
rically constrained by the size of the supercell used for
DFT calculations. Hence, it is possible that the relax-

ation of these configurations is not complete, and the as-
sociated vacancy-solute binding energy inaccurate. Thus,
we performed the SCMF calculations assuming that 5NN
and 6NN configurations have a binding energy of zero,
which we call the “4NN” thermodynamic model, whereas
the full calculation is denoted as the “6NN” thermody-
namic model. Migration barrier for jumps to and from
these configurations are estimated using the KRA ap-
proximation (Eq. 10). These changes have a negligible
impact on V S pairs mobilities, which is expected as we
have shown that the mobility of these clusters is fully con-
trolled by 1NN configurations (Fig. 7). Thus, Fig. 11
compares 4NN and 6NN thermodynamic model on the
pair flux coupling ratios, which is much more sensitive
quantity than the mobilities. Thick lines correspond to
the 6NN model (exact same results as in Fig. 8), while
thin lines correspond to the 4NN model. Pair flux cou-
pling coefficients are always higher in the latter thermo-
dynamic model, but the difference is overall quite small,
so it can be safely stated that 5NN and 6NN configu-
rations do not affect the results of the previous section,
and that the kinetic properties of VKr and VXe pairs are
mostly insensitive to potential inaccuracies in the com-
puted 5NN and 6NN binding energies.
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Figure 11. The thick lines of this plot are exactly the same
as those in Fig. 8. Thin lines are obtained using the 4NN
thermodynamic model (meaning that 5NN and 6NN binding
are set to zero, and migration barriers from or to this config-
urations are obtained using the KRA approximation, cf. Eq.
10).

In Fig. 7 we have shown that long-range migration
of VXe and VKr pairs occurs via successive jumps in
the 1NN shell. Now we want to investigate the effect of
the second to 6NN configurations (all taken into account
in our calculations) on the overall mobility of the pair.
For this purpose we compute the mobility of V S pairs
for a simplified model where the range of both thermo-
dynamic and effective interactions are set to the 1NN
distance,

√
2a. The escape jump rates from 1NN con-
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figurations are estimated with the KRA approximation
(Eq. 10). The analytical expressions for such a model
(also valid for a tetragonal FCC cell) are provided in the
Appendix section. Table V shows the comparison be-
tween Arrhenius fits of V S mobilities in both N and T
directions. The first line (Rkin = 2.5a) corresponds to
the full model (with thermodynamic interaction up to
the 6NN) while the second line (Rkin =

√
2a) is the 1NN

only model we just described. These two models are in
very good agreement, both for migration energies and dif-
fusion prefactors, which again stresses the fact that only
1NN jumps are responsible for the long-range migration
of the vacancy-solute pair, and that other configurations
do not play a significant role. This is because the bind-
ing energy is much smaller (less attractive) than 1NN
configurations, and most of the saddle-point energies of
transitions between the second to 6NN states are high,
which makes these jumps unlikely to occur.

We also compared these results to another model (third
line of Table V) which is basically a Le Claire five fre-
quency model for FCC alloys64,65, which does not take
into account the diffusion anisotropy. In this model ther-
modynamic and effective interaction are also limited to
1NN shells. For mobilities in the T direction, we used
in-plane binding and migration energies as inputs to this
model, while for mobilities in the N direction we used
out-of-plane binding and migration energies. In both
cases, the agreement is not as good as the 1NN SCMF
(Rkin =

√
2a) model. Diffusion prefactors and migration

energies are higher with a Le Claire model compared to
the SCMF reference, except for M(VXe)N where the ef-
fective migration energy is a little bit smaller. Because
of the jump rate anisotropy, out-of-plane are much more
probable than in-plane jumps, which changes the topol-
ogy of the diffusion network compared to an isotropic
FCC cell. Because this feature is not taken into ac-
count in the Le Claire approach, kinetic correlations are
not evaluated properly, hence the deviation observed in
Table V. Compared to Le Claire’s model, Andersson’s
model66 does not account for kinetic correlations. The
agreement with the full SCMF calculation is quite good
for N-direction, which is not surprising as we have ex-
plained that vacancy-mediated diffusion of Xe and Kr in
UN basically reduces to one rate limiting step, the jump
of V around the solute, which is the core assumption of
Andersson’s model. Nevertheless, nothing guarantees the
general validity of this assumption. In the T-direction,
migration energies are not well estimated with Anders-
son’s model, because the mechanism that is considered is
not the most probable one.

Finally, we investigate the effect of jump prefactors
on the mobility of V S pairs. Let us remind that up to
now, all jump rates have the same attempt frequency,
denoted as ν0. According to transition state theory,
the attempt frequency is a function of the mass of the
jumping atom67. Hence, the expected first order effect
would be that the attempt frequency for vacancy-solute
exchange should be different from the attempt frequency

Table V. Results of Arrhenius fits (diffusion prefactors D0 in[
107m2/s

]
and migration energies Em in [eV]) to V S mo-

bilities for various kinetic models. Data for the first two
lines is obtained using the SCMF method with different ther-
modynamic and kinetic approximations (see text). Previous
approximations of the diffusivity are used for comparison:
Le Claire’s model does not take into account the migration
anisotropy in AFM FCC UN and Andersson’s model does not
compute kinetic correlations.

M(VXe)T M(VXe)N M(VKr)T M(VKr)N
D0 Em D0 Em D0 Em D0 Em

Rkin = 2.5a 3.83 2.99 6.08 2.98 3.50 2.88 5.80 2.87
Rkin =

√
2a 3.62 2.99 6.31 2.97 3.32 2.88 5.85 2.87

Le Claire65 7.17 3.09 19.9 2.92 4.80 3.05 19.1 2.91
Andersson66 5.71 3.28 5.71 2.99 5.71 3.18 5.71 2.88

for vacancy-uranium atom exchange. Looking at Fig.
7, there are two jumps controlling the migration mech-
anism: V − S exchange ωOO2 and V -U exchange ωOS11

(related to ωSO11 by detailed balance). The relative prob-
ability between these jumps is given by the saddle-point
energy difference ∆ESP , which is 2.16 eV for VXe pairs
and 2.41 eV for VKr pairs (cf. Table III), and the V -U ex-
change is obviously the limiting step. Even at T = 2000
K, exp (∆ESP /kBT ) ' 106. The V -S exchange jump
is so much faster than the V−U exchange jump that
changing the attempt frequency of solute-vacancy ex-
change by less than six orders of magnitude (which is
not reasonable) will not have much effect on the mobil-
ities. Knowing that, we investigated the effect of the
attempt frequency of the rate limiting step, ωOS11 . This
attempt frequency is denoted ν∗ in the discussion. Fig-
ure 12 shows the mobility coefficient of a VKr pair in
the N direction. When ν∗ is set 3 orders of magnitude
higher than all other attempt frequencies (ν0), the mo-
bility simply increases by the same quantity which is not
surprising: the rate-limiting step becomes faster, so the
whole mobility increases, but it is still not high enough to
observe a change in the rate-limiting step. On the other
hand, when ν∗ decreases with respect to ν0 other diffu-
sion pathways can occur (e.g. in plane trajectories). This
is clearly seen in Fig. 12 where the mobility for the case
ν∗ = 0.001ν0 (black squares) cannot be fitted by a single
Arrhenius expression. The change of slope between high
and low temperatures mobilities denotes a change of the
rate-limiting step.

More insight is achieved by looking at the actual effec-
tive migration energies obtained at high and low temper-
ature for VKr and VXe pairs, in both T and N direction,
and for different values of ν∗. These results are shown
in Table VI. As ν∗ decreases, the crossover temperature
decreases as well, meaning that the high temperature
migration mechanisms becomes more and more proba-
ble with respect to the low temperature one. Looking
at saddle-point energies in Table III and at the diffusion
network, various jumps with similar saddle-point energies
could provide the high temperature diffusion mechanism,
and it is likely that they all contribute: for instance ωOO11 ,
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Figure 12. Mobility of the VKr pair in the N direction plot-
ted for various values of the attempt frequency of the ωSO11

jump (ν∗). All other jump rates have an attempt frequency
set to ν0. When ν∗ = 0.001ν0 (black squares), M (VKr)N
is not a straight line anymore, but it can be fitted by two
Arrhenius expressions, one at low temperature (blue dashed
line) and the other at high temperature (red dashed line).
The crossover temperature between these indicates a change
in the migration mechanism of the VKr pair.

Table VI. Effective migration energies obtained from changing
the attempt frequency of ωSO11 to ν∗ while all other jumps
have an attempt frequency equal to ν0. When two migration
energies Em (in eV) are indicated, the first one is obtained
from an Arrhenius fit of the mobility at low temperatures,
while the second one is obtained from an Arrhenius fit of the
mobility at high temperature. In these cases, we indicate
the crossover temperature T (in K) where both Arrhenius fits
intersect, indicating a change in the most probable migration
mechanism.

ν∗ M(VXe)T M(VXe)N M(VKr)T M(VKr)N
ν0 Em 2.99 2.98 2.88 2.87
ν0
10

Em 2.99/3.14 2.99 2.88/3.03 2.88
T 807 - 853 -

ν0
100

Em 3.01/3.22 2.99/3.24 2.89/3.14 2.88/3.13
T 599 1054 648 973

ν0
1000

Em 3.05/3.23 2.99/3.42 2.94/3.15 2.88/3.25
T 438 841 502 734

ωSO13 , ωOS13 and ωOO13 jumps for VKr pairs (these jumps
could result in effective migration energies between 3.16
eV and 3.29 eV); ωOO11 , ωSO13 and ωOS13 jumps for VXe pairs
(these jumps could result in effective migration energies
between 3.22 eV and 3.28 eV). These rough estimates
are consistent with results from Table VI, even though
not exact, because if multiple diffusion mechanism have
similar probabilities, than the kinetic correlation might
significantly affect the overall diffusivity in a way that
is hardly predictable beforehand. In the end, this para-
graph provides orders of magnitude of attempt frequen-
cies and temperatures where previous results might be

affected.

V. CONCLUSIONS

In this study, we reported the incorporation energies
of Xe and Kr in AFM UN. These solutes are found to
be most stable in a Schottky defect, but due to the high
formation energy of such defect, solutes are most likely
to be in a uranium vacancy at equilibrium. The attrac-
tion -or repulsion- between a vacancy and these solutes
was estimated by calculating the binding energy, show-
ing a strong attraction in 1NN position, a repulsion in
2NN position, and no strong interaction for farther away
configurations. Migration energies were then computed
between these various configurations. The range of mi-
gration energies spreads over more than 1.5 eV for U atom
jumps around a solute, but the exchange rates between
a solute and a vacancy have a much higher probability
than the other jump rates. For both binding and migra-
tion energy, the anisotropy created by the AFM ordering
is taken into account.

These binding and migration energies were then used
within the SCMF framework to obtain transport coef-
ficients which characterize the kinetic properties of the
system at the macroscopic scale. The low migration en-
ergy for Xe and Kr exchange with a vacancy does not re-
sult in a high diffusion coefficient because of very strong
kinetic correlation effects. The energy needed for the
vacancy to jump around the solute and produce long-
range diffusion is the rate limiting step. VKr and VXe
pairs are strongly bound together and migrate mostly
as a whole with a low probability of dissociation, which
is given by flux coupling coefficients that are close to
unity. Moreover, the pair migration process is efficient,
more so than the migration of isolated vacancies. These
highly stable and rapid vacancy-solute pairs are probably
at the origin of bubble nucleation. It is also interesting
to note that at the atomic scale, migration is anisotropic,
whereas at a larger scale, diffusion coefficients show very
little anisotropy. This is because the same atomic migra-
tion mechanism accounts for diffusion in all directions of
the AFM UN.

Experimental data of solute diffusivity are not con-
sistent, and this is most probably due to the fact that
these experiments were performed on irradiated samples,
where the vacancy concentration, hence solute diffusivi-
ties, is extremely sensitive to irradiation conditions. Still,
our theoretical predictions seem to give lower bounds
(equilibrium system) and upper bound (with vacancy
concentration around 0.1%at) of solute diffusivity in UN.
Further work on this topic is required for quantitative and
meaningful comparison.
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Appendix A: Appendix

In this appendix, we provide the analytical expres-
sions of transport coefficients in a dilute tetragonally dis-
torted FCC alloy (symmetrically equivalent to an anti-
ferromagnetic FCC structure). It is assumed that there
are no thermodynamic interactions between a vacancy
and a solute beyond the 1NN configuration. For the cal-
culation of kinetic correlations, effective interactions have
also been limited to the 1NN range (Rkin =

√
2a, where a

is the FCC lattice parameter). This approximate model
has been shown to be accurate when long-range migra-
tion is controlled by 1NN jumps only, as it is the case for
Kr and Xe vacancy-mediated diffusion in UN (cf. Table
V).

In the following expressions, ζαβγ is a short-hand no-
tation for the product of three (or two or one depend-
ing on the number of subscripts) jump rates: ζαβγ =
Wα ×Wβ ×Wγ . Wα is the product between the prob-
ability of a configuration and the jump rate out of this
configuration. Let α represent a transition state between
two configurations i and j, then

Wα = Wij = piωij = pjωji = να exp

(
−E

α
SP

kBT

)
, (A1)

where ωij is an atomic jump rate between configura-
tions i and j (as in Eq. 4), pi = exp

(
Eib/kBT

)
is the

thermodynamic probability of configuration i, controlled
by the binding energy of the configuration, να is the at-
tempt frequency for transition α (in s−1), and EαSP is
the energy at the transition state, or saddle-point en-
ergy. In the tetragonal FCC system with only 1NN in-
teractions, there are three possible configurations with
respective probabilities pT (V and S are 1NN located in
the same spin plane), pN (V and S are 1NN perpendic-
ular to the spin plane) and 1 (V and S do not interact).
Thus the partition function Z of the V S cluster is given
by:

Z = 4pT + 8pN + 7. (A2)

The transitions are denoted by a number. Contrary to
Le Claire’s five frequency model for FCC systems65 there
are 8 transitions to consider here. These are sorted in
two categories: in-plane jumps (jumps inside a spin plane
or perpendicular to the elongation direction) and out-of-
plane jumps (jumps between two spin planes or parallel
to the elongation direction). The latter jumps are de-
noted by a hat symbolˆabove the number. Transitions 1
and 1̂ are vacancy jumps around the solute, between two
1NN configurations; transitions 2 and 2̂ correspond to
vacancy-solute exchange; transitions 3 and 3̂ correspond
to association (dissociation) jumps to (from) an in-plane
1NN configuration of the V S pair; transitions 4 and 4̂
correspond to association (dissociation) jumps to (from)
an out-of-plane 1NN configuration of the V S pair.

Below we provide the analytical expressions for cluster
transport coefficients and mobilities, both in the elonga-
tion direction (or perpendicular to spin planes, N) and in
the direction perpendicular to the elongation (or inside
spin planes, T). Quantities dT and dN are introduced to
reduce the size of the expressions. Note that in order
to have mobilities and transport coefficients in m2/s the
expressions below must be multiplied by the the square
of the lattice parameter along the diffusion direction.

Transport coefficients and mobilities of a V S pair in
the N direction:

dN × Z × LV V (V S)N = 2ζ42̂

+64ζ4̂1̂ + 8ζ2̂3̂ + 20ζ4̂3̂ + 8ζ1̂3̂ + 32ζ4̂4̂

+37ζ2̂4̂ + 2ζ2̂1̂ + 8ζ43̂ + 20ζ44̂ + 8ζ41̂.

dN × Z × LSS (V S)N = 2ζ2̂4 + 5ζ2̂4̂ + 2ζ2̂1̂.

dN × Z × LSV (V S)N = −2ζ2̂4 − 11ζ2̂4̂ + 2ζ2̂1̂.

Z ×M(V S)N =
ζ2̂1̂

ζ2̂ + ζ1̂
.

dN = 2ζ4 + 2ζ2̂ + 5ζ4̂ + 2ζ1̂.

Transport coefficients and mobility of a V S pair in the
T direction:

dT × Z × LV V (V S)T = 2ζ21̂1̂ +
95

2
ζ234̂ +

87

2
ζ32̂4̂

+16ζ334 + 48ζ24̂4̂ + 16ζ1̂44 + 16ζ332̂ + 40ζ1̂1̂4 + 8ζ3̂3̂1

+40ζ334̂ + 2ζ1̂1̂2̂ + 8ζ3̂3̂4 + 96ζ1̂4̂4̂ + 48ζ1̂1̂4̂ + 8ζ3̂3̂2̂

+19ζ231̂ + 19ζ231 + 20ζ21̂3̂ + 19ζ234 + 4ζ21̂1 + 28ζ31̂3̂

+28ζ21̂4 + 20ζ23̂1 + 64ζ31̂1 + +2ζ21̂2̂ + 20ζ23̂4 + 60ζ31̂4

+20ζ23̂2̂ + 40ζ214 + 51ζ31̂2̂ + 28ζ33̂4 + 80ζ1̂3̂1 + 50ζ23̂4̂

+28ζ33̂2̂ + 60ζ314 + 64ζ1̂3̂4 + 48ζ214̂ + 26ζ242̂ + 70ζ33̂4̂

+80ζ1̂14 + 52ζ244̂ + 72ζ314̂ + 39ζ342̂ + 152ζ1̂3̂4̂ + 4ζ1̂12̂

+29ζ22̂4̂ + 78ζ344̂ + 96ζ1̂14̂ + 52ζ1̂42̂ + 4ζ3̂12̂ + 104ζ1̂44̂

+58ζ1̂2̂4̂ + 104ζ3̂44̂ + 58ζ3̂2̂4̂ + 2ζ212̂ + 3ζ312̂ + 96ζ3̂14̂

+72ζ34̂4̂ + 96ζ3̂4̂4̂ + 19ζ232̂ + 28ζ33̂1 + 16ζ331 + 80ζ3̂14

+20ζ3̂3̂4̂ + 60ζ1̂3̂2̂ + 136ζ31̂4̂ + 40ζ1̂1̂3̂ + 52ζ3̂42̂ + 34ζ21̂4̂

+8ζ244 + 8ζ1̂3̂3̂ + 12ζ344 + 16ζ3̂44 + 32ζ31̂1̂ + 16ζ331̂.

dT × Z × LSS (V S)T =
15

2
ζ234̂ +

15

2
ζ32̂4̂+

+2ζ21̂1̂ + 2ζ1̂1̂2̂ + 3ζ231̂ + 3ζ231 + 4ζ21̂3̂ + 3ζ234

+10ζ23̂4̂ + 2ζ212̂ + 2ζ242̂ + 3ζ312̂ + 4ζ1̂3̂2̂ + 3ζ342̂

+4ζ21̂4 + 4ζ23̂1 + 2ζ21̂2̂ + 4ζ23̂4 + 10ζ21̂4̂ + 4ζ23̂2̂

+3ζ31̂2̂ + 4ζ1̂42̂ + 4ζ3̂12̂ + 4ζ3̂42̂ + 10ζ1̂2̂4̂ + 10ζ3̂2̂4̂

+4ζ21̂1 + 3ζ232̂ + 4ζ1̂12̂ + 5ζ22̂4̂.
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dT × Z × LSV (V S)T = −25

2
ζ234̂ −

21

2
ζ32̂4̂

+2ζ21̂1̂ + 2ζ1̂1̂2̂ − 5ζ231̂ − 5ζ231 − 8ζ21̂3̂ − 5ζ234

−4ζ21̂4 − 8ζ23̂1 + 2ζ21̂2̂ − 8ζ23̂4 − 2ζ21̂4̂ − 8ζ23̂2̂

−20ζ23̂4̂ + 2ζ212̂ − 6ζ242̂ + 3ζ312̂ − 8ζ1̂3̂2̂ − 9ζ342̂

−12ζ1̂42̂ + 4ζ3̂12̂ − 12ζ3̂42̂ − 14ζ1̂2̂4̂ − 14ζ3̂2̂4̂

−5ζ31̂2̂ + 4ζ21̂1 − 5ζ232̂ + 4ζ1̂12̂ − 7ζ22̂4̂.

Z ×M(V S)T

=
ζ21̂1̂ + ζ1̂1̂2̂ + 2ζ21̂1 + ζ21̂2̂ + ζ212̂ + 2ζ1̂12̂

2ζ21̂ + 2ζ21 + 2ζ22̂ + 4ζ1̂1 + 4ζ1̂2̂ + 2ζ1̂1̂

.

dT = 4ζ21̂ + 6ζ31̂ + 4ζ21

+10ζ24̂ + 6ζ32̂ + 8ζ1̂4 + 8ζ3̂1 + 15ζ34̂ + 8ζ1̂2̂

+20ζ1̂4̂ + 8ζ3̂2̂ + 20ζ3̂4̂ + 4ζ1̂1̂ + 8ζ1̂1 + 8ζ3̂4

+8ζ1̂3̂ + 4ζ22̂ + 6ζ34 + 4ζ24 + 6ζ31.
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