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Motivated by the resurgence of electronic and optical property design in ordered fluoride and
oxyfluoride compounds, we present a density functional theory (DFT) study on 19 materials with
structures, ranging from simple to complex, and variable oxygen-to-fluorine ratios. We focus on
understanding the accuracy of the exchange-correlation potentials (Vxc) to DFT for the prediction
of structural, electronic, and lattice dynamical properties at four different levels of theory, i.e., the
local density approximation (LDA), generalized gradient approximation (GGA), metaGGA, and
hybrid functional level which includes fractions of exact exchange. We investigate in detail the
metaGGA functionals MS2 [Sun et al., Phys. Rev. Lett., 111, 106401 (2013)] and SCAN [Sun et al.,
Phys. Rev. Lett., 115, 036402 (2015)], and show that although the metaGGAs show improvements
over the LDA and GGA functionals in describing the electronic structure and phonon frequencies,
the static structural properties of fluorides and oxyfluorides are often more accurately predicted
by the GGA-level functional PBEsol. Results from LDA calculations are unsatisfactory for any
compound regardless of oxygen concentration. PBEsol or HSE06 gives good performance in all
oxide or all fluoride compounds. For the oxyfluorides, PBEsol is consistently more accurate for
structural properties across all oxygen concentrations, however, we stress the need for detailed
property assessment with various functionals for oxyfluorides with variable composition. The “best”
functional is anticipated to be more strongly dependent on the property of interest. Our study
provides useful insights in selecting an Vxc that achieves the best performance comprise, enabling
more accurate predictive design of functional fluoride-based materials with density functional theory.

PACS numbers: 71.15.Mb, 71.20.Ps, 77.80.–e

I. INTRODUCTION

Materials researchers are increasingly utilizing first-
principles simulations to elucidate underlying physical
principles, guide compound design, and accelerate dis-
covery. In particular, density functional theory (DFT)
calculations have proved the method of choice for many
researches owing to its speed and scalability compared
to traditional many-body approaches.1,2 DFT benefits
from treating a fictitious, Kohn-Sham, system of non-
interacting electrons to obtain the interacting electron
density. Although the formalism is exact, there remains no
complete and tractable description of the exact exchange-
correlation (XC) potential (Vxc) and thus it must be
approximated in any practical calculation.3 As a conse-
quence, the accuracy of these first-principles simulations
depends intimately on the suitability of the XC approx-
imation for handling the chemical system and physical
property of interest. Owing to the diversity of bonding
interactions present in structurally complex and chemi-
cally diverse compounds, various Vxc approximations are
routinely benchmarked against experimental values of
representative compounds in different chemical families
to assess and calibrate accuracy.4

In this light, the burgeoning field of anion engineer-
ing in crystalline materials,5 which aims to tune physical
properties through the incorporation of multiple-anion
species of different size, electronegativity, and charge into
the same anionic groups comprising the solid, may present
considerable challenges to the predictive capabilities of

DFT. Multianion engineering expands the current set of
design strategies for the discovery of functional materials.
Oxynitride compounds display interesting dielectric, mag-
netoelectic and photocatalytic properties.6–8 In addition,
superconductivity, and ferromagnetic behavior have been
reported in novel multianion chalcogenides compounds.9

Another interesting class of multianion compounds is
the transition metal oxyfluorides.10 Oxygen and fluorine
substitution presents the opportunity to create materials
that possess the advantageous properties of both oxide
and fluoride compounds. Transition metal oxyfluorides
have already show improved performance over their ox-
ide counterparts in electrochemical and solid state light-
ing applications.11–14 Moreover, other novel oxyfluoride
compounds display a myriad of technologically useful
properties ranging from nonlinear optical behavior15,16 to
superconductivity.17,18

From a chemical perspective, the oxide and fluoride ions
appear to be quite similar. For instance, the closeness of
their atomic number and ionic radii, i.e., 1.35 Å and 1.29 Å
for O2− and F−, respectively,19 allow them to occupy the
same sites in a crystal, making anion substitution easy.
However, their differences in charge and electronegativity
can lead to distinct physical properties in crystalline solids.
The union of these contrasting traits in oxyfluoride anionic
groups, i.e., [MOxF6−x]n−, where M is a (transition)
metal center, results in complex bonding interactions
compared to compounds where only oxygen or fluorine
are present. Specifically, the 2p orbitals of the more
electronegative fluoride anions are located deeper in the
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valence band compared to the same 2p states of the oxide
ions. When both anions belong to the same coordination
sphere, the M–O bonds tend to display stronger covalent
interactions with shorter bond lengths compared to the
longer M–F bonds.20 The result is oxyfluoride anionic
groups with varying degrees of covalency within the same
coordination sphere. The efficacy of different DFT Vxc
approximations in describing oxyfluorides remains to be
systematically assessed.

In this work, we evaluate the performance of exchange-
correlation functionals at four rungs of Jacob’s ladder,
i.e., the local density approximation (LDA), generalized
gradient approximation (GGA,) as implemented by the
PBEsol functional, metaGGA (MS2 and SCAN), and hy-
brid functional (HSE06) level which includes fractions of
exact exchange. We focus on the accuracy of each Vxc po-
tential in predicting the structural, electronic and lattice
dynamical properties in oxyfluorides. Specifically, we in-
vestigate how the approximations perform as the relative
covalency increases by increasing oxygen content across 19
known fluoride, oxyfluoride, and oxide materials. Here we
categorize each compound by the composition, x, of the
local ligand chemistry about the octahedrally coordinated
metals forming the anionic groups [MOxF6−x]n− in the
solid. Owing to the so-called chemical intuition derived
from the α parameter found in modern metaGGAs such
as MS2 and SCAN, we expect them to be optimally suited
to capture the subtleties of the oxyfluoride chemistry in
the solid state. Our main finding is that PBEsol is the
most suitable functional for calculating the structural
properties regardless of oxygen composition. In addition,
we find that the inclusion of the kinetic energy in the
metaGGAs MS2 and SCAN introduces functional depen-
dencies, which deviate from trends previously reported
for LDA, GGA and hybrid functionals.

II. METHODS AND MATERIALS SUITE

A. Computational Details

We performed density functional theory calculations as
implemented in the Vienna Ab initio Simulation Package
(vasp)21,22 with the projector augmented wave (PAW)
method23 to treat the interactions between the core
and valence electrons. The atomic reference configu-
rations are 2s22p4 for the O, and 2s22p5 for F in all
compounds studied. The PAW atomic configurations of
the cations, appearing in each compound, are tabulated
in Ref. 24. We also performed a series of convergence
test using different Monkhorst-Pack k-point meshes25

and planewave cutoffs to find the appropriate values for
each chemistry.24 Full structural optimizations are per-
formed until the Hellmann-Feynman forces are less than
5 meV Å−1. The phonon modes are analyzed using the
PHONOPY package.26

Here we note that Fuchs et al. showed that the distinct
behavior of the core-valence exchange-correlation contri-

butions in the LDA and GGA formalisms requires pseu-
dopotentials to be tailored to calculations at each level
of theory.27 In particular, differences in core-valence over-
lap substantially affect the binding properties of solids.27

With this understanding, we perform the LDA and PBEsol
calculations with the respective vasp LDA and PBE op-
timized PAWs. Because the hybrid-Vxc HSE06 is a PBE-
based functional, we also use PBE optimized PAWs in
these calculations. At present, vasp does not support
PAWs specifically optimized for metaGGA functionals;
however the newest PAWs distributed with the vasp.5.X
package include information on the kinetic energy density
of the core-electrons that can be utilized in metaGGA cal-
culations. Therefore, we also use PBE-optimized PAWs
for all calculations using metaGGA exchange-correlation
potentials.

B. Vxc Performance Trends in Solids

DFT benchmarks of various solid-state materials have
been successful in identifying the general habits of
exchange-correlation functionals at different rungs of Ja-
cob’s ladder.28 The local density approximation (LDA)
and generalized gradient approximation (GGA) are at the
first and second rung of the ladder, respectively. The XC
energy density in the LDA is designed to mimic the density
of the uniform electron gas.29 LDA works well for simple
metallic solids, however, it also has a tendency to over-
estimate cohesive energies of ionic solids and transition
metal complexes.30 The failure of LDA to treat complex
bonding interactions results in equilibrium volumes that
are too small for most solids.

GGA improves on LDA by incorporating gradient cor-
rections of the density.31–33 One of the most widely used
GGA among materials researcher is based on the param-
eterization by Perdew, Burke, and Ernzerhof (PBE).34,35

Although it corrects the overbinding errors of the LDA,
PBE tend to give bond lengths and cell volumes that are
too large. For solids the overestimation of cell volumes
is significantly improved by functional such as, PBEsol,
WC and SG4.36–38

The semilocal metaGGAs form the third rung of Ja-
cob’s density functional ladder and include the kinetic
energy density of the Kohn-Sham orbitals as an additional
ingredient. MetaGGAs strive to be more accurate than
the GGA for a wider range of applications and chemical
systems. Indeed, metaGGAs such as TPSS, have proved
to be more accurate than PBE in predicting the proper-
ties of bulk solids and surfaces.39,40 However, TPSS often
fails to capture the van der Waals’ bonding in layered
compounds like graphite.41 The inconsistencies of early
metaGGAs were due in part to the inability of the dimen-
sionless variables built from the kinetic energy to distin-
guish between different types of chemical bonding.3,42–44

One way modern metaGGAs attempt to circumvent this
problem is by tuning the kinetic energy density through
a dimensionless parameter α = [1/ELF −1]1/2 (ELF is
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FIG. 1. Crystal structures of the 19 compounds appearing in this study. The structures are grouped based on the oxygen/fluorine
ratio in the [MOxF6−x]n− anionic group. Each anionic group can be differentiated by the colors bordering the structures, as
indicated in the KEY (black outlined panel), and this color scheme is used in all subsequent figures to differentiate anionic
groups.
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defined as the electron localization function, cf. Refs. 45
and 46). The α parameter characterizes the extent of or-
bital overlap throughout the crystal and thus is expected
to enable modern metaGGAs to intuitively distinguish
between a variety of bonding situations.42 In addition,
α is essential for describing the asymptotic properties of
the exchange energy density and exchange potential.47,48

However, including the α parameter is not essential to
functional development and to the overall accuracy of
modern metaGGAs because accurate metaGGAs can be
constructed without the so-called α parameter, for exam-
ple, M06-L49 and the recent TM metaGGA.50 Although
the modern metaGGAs like MS243 and SCAN40 show
great promise, they have not been as extensively investi-
gated as LDA, GGAs, or the hybrid functionals, which
appear at the next rung.39,51

Hybrid functionals mix semilocal XC (often from the
GGA) with some contribution of exact exchange.52 The
goal of hybrid Vxc functionals is to produce more accurate
thermochemical, magnetic and electronic properties by
mimicking the effects of static correlation.4,52–54 The most
popular hybrids, B3LYP52 and HSE0655 include approxi-
mately 20% to 25% exact exchange; however, studies have
shown that this value is not unique and can be tuned
to improve the accuracy of the desired property, such
as equilibrium geometry or electronic band gap.54,56–58

Notably, hybrid functionals overcome a major shortcom-
ing of the non-empirical semilocal functionals, in that
they cannot provide accurate band gaps beyond the ex-
act Kohn-Sham gap. For semilocal functionals this often
results in a significant underestimation of the electronic
band gap in solids. In fact, correlated transition metal
compounds are often gapless at these levels of theory.
DFT calculations using hybrid functionals often predict
band gaps values that are much closer to experiment,
marking a significant improvement over semilocal func-
tionals. However, the inclusion of exact exchange comes
at significantly greater computational cost compared to
the approximations at lower rungs, particularly in DFT
codes based on planewave basis sets.

C. Compounds and Crystal Data

Fig.1 shows the crystal structures for the 19 compounds
investigated, which belong to either the fluoride, oxyflu-
oride or oxide families. The materials can be further
delineated by considering the ratio of oxygen x to fluorine
6 − x within the octahedral anionic groups comprising
the structure, i.e., [MOxF6−x]n−, where x is an integer
ranging from 0 to 6. We note that all phases examined
have been experimentally synthesized and both the cation
and anion sublattices are fully ordered with no cation-
site or anion-site intermixing. All crystallographic data
for the DFT optimized structures are provided in the
Supplemental Material.24

For the fluorides with MF6 (x = 0) octahedra, we
study six compounds belonging to four crystal families.

KF is a simple binary fluoride with the AB rock-salt
structure.59 VF2

60 and MnF2
61 exhibit the AB2 rutile

structure. KMnF3
62 exhibits the ABX3 perovskite struc-

ture whereas Na3ScF6
63 and Na3MnF6

64 are ordered dou-
ble perovskites with the cryolite structure—Na occupies
both the A and B positions in the A2B2X6 structure.65

By inspection of Fig. 1, we find that ordered66–75

oxyfluorides (x = 1 . . . 5) crystallize in a wide variety
of structure types with corner, edge and face connectiv-
ity among polyhedral units. As an illustration of our
schema to differentiate the oxyfluorides using the local
[MOxF6−x]n− anionic groups rather than usual chemical
formula, consider Ba2WO3F4 and NaNbO2F2. Although
these compounds have different chemical formulas, they
both exhibit MO4F2 octahedral units, i.e., [WO4F2]4−

and [NbO4F2]5−, and thus are grouped together in Fig. 1.
Last, we study two ternary oxides with MO6 (x =

6) octahedra: The perovskites SrTiO3
76 and BaTiO3

77

with distorted tetragonal configurations, i.e., nonpolar
I4/mcm (with out-of-phase TiO6 octahedral rotations
and polar P4mm (with an electric polarization), respec-
tively.

All 19 compounds are electronic insulators, with 15 of
the 19 compounds investigated nonmagnetic d0 insula-
tors. The antiferromagnetic compounds VF2 (d3), MnF2

(d5), and KMnF3 (d5) are Slater insulators.78,79 Here we
simulate VF2, MnF2, and KMnF3 with C-type magnetic
order.80 Na3MnF6 (d4) is known experimentally to be in-
sulating, however, the magnetic properties have not been
throughly explored.64 In our previous work, we estab-
lished that Na3MnF6 exhibits a weak energetic preference
for ferromagnetic spin order over an antiferromagnetic
spin configuration.81 Because these four magnetic com-
pounds are Slater insulators, we are able to assess the
performance of each XC functional without requiring a
Hubbard-U correction to ensure insulating behavior.82,83

III. RESULTS

A. Structure Analysis

1. Cell Volume

Fig. 2 shows the percentage error (% error) in the cell
volume Ω obtained from DFT with the different XC func-
tionals relative to the experimentally (exp) measured
structures at room temperature, which is obtained as
% error = (ΩXC − Ωexp)/Ωexp × 100. First, we observe
the well-known overbinding of LDA for all compounds.
The underestimation in the cell volume is larger than 3%
across all chemistries, with the exception of SrTiO3 where
the discrepancy is 2.3%.

In contrast, cell optimizations with XC functionals at
rungs higher than LDA show increased accuracy (errors
. 3%). The GGA PBEsol performs well, consistently
predicting cell volumes to within 2% error, with a slight
tendency towards overbinding (Fig. 2). Our results also
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FIG. 2. Percent error in DFT computed cell volumes relative to experiment obtained using different exchange-correlation
potentials as indicated by the different shaded bars. The MOxF6−x octahedra present in each compound are shown on the
upper abscissa, differentiated by shaded regions.

show that the hybrid functional HSE06, appearing at the
highest rung of Jacob’s ladder, more frequently overes-
timates the cell parameters than the other functionals.
This result is consistent with what has been previously
reported for perovskite oxides studied using either HSE06
or the unscreened hybrid PBE0 .30,57 We find that HSE06
gives the best overall performance for the ionic all-fluoride
MF6 (∼ 1%) and more covaleny all-oxide MO6 (∼ 0.5%)
compounds. Surprisingly, our results suggest that the
degree of unit-cell overestimation is often greater for the
oxyfluorides with MOxF6−x, x = 1 . . . 5, where errors
>1.5% are found.

At the metaGGA level, we investigate the MS2 and
SCAN functionals (Fig. 2). First, our structural optimiza-
tions with MS2 reveals comparable and sometimes better
accuracy than PBEsol (∼ 2%) particularly for the all-
fluoride MF6 compounds. Although MS2 shows a strong
tendency to underestimate the volumes of the fluorides, a
consistent trend is less clear across the oxyfluorides and
oxide compounds. Next, our results indicate that SCAN
produces smaller cell volumes across all chemistries and
is often less accurate than MS2 particularly in predicting
Ω of the more ionic compounds (MOxF6−x, x = 0, 1, 2)
with an error ∼ 3%. These results are inconsistent with a
recent study reported by Sun et al.84 and we conjecture
two factors may be responsible for the poorer performance
herein:

• Finite temperature effects, i.e., the experimental

structures for which we assess the XC functional
accuracy are measured at room temperature and
thus must be zero-point corrected. This is germane
to all volume calculated with any XC functional.

• Maladapted PBE PAWs resulting in inaccurate core-
valence exchange and correlation for the metaGGA
functionals.

First, we investigate the contribution of thermal expan-
sion for KF, Na3ScF6 and BaTiO3 to address inaccuracies
derived from missing finite-temperature contributions in
Fig. 2. From the measured coefficient of thermal expan-
sion (CTE) for BaTiO3, we approximate that the material
will contract by 0.19% at 0 K.85 For KF and Na3ScF6, we
compute the CTE with a self-consistent quasiharmonic
approach at the PBEsol level.86 We observe that the ef-
fect of zero point volume correction is much larger for
the fluorides with volume changes of approximately 1.3%
and 1.7% for KF and Na3ScF6 respectively. This result
suggests the effects of thermal expansion may be more
significant for compounds comprised of MF6 rather than
MO6 octahedra. Although the zero-point correction im-
proves the calculated metaGGA volumes compared to
experiment, it alone does not fully account for the ob-
served discrepancies, particularly in the case of Na3ScF6.

Next, we investigate the equilibrium volume depen-
dence on the electronic configuration of the PAW pseu-
dopotential (all based on PBE exchange and correlation)
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TABLE I. The cell-volume error (%) for KF, Na3ScF6 and
BaTiO3 optimized with DFT using different PBE cation
PAW valence configurations from three different exchange-
correlation functionals: PBEsol, MS2, and SCAN. The com-
puted volumes are compared to the experimentally measured
volumes at room temperature.

Solid PAW PBEsol MS2 SCAN

KF K, 3p64s1 1.26 1.00 -0.50

K, 3s23p64s1 1.13 -0.19 -3.10

Na3ScF6 Na, 3s1

Sc, 3d24s1 -4.98 -6.38 -8.73

Na, 2p63s1

Sc, 3d24s1 -1.69 -3.38 -5.46

Na, 3s1

Sc, 3s23p63d24s1 -4.25 -5.12 -7.85

Na, 2p63s1

Sc, 3s23p63d24s1 -0.60 -1.57 -4.57

BaTiO3 Ba, 5s25p66s2

Ti, 3p63d34s1 -0.68 -0.70 -0.75

Ba, 5s25p66s2

Ti, 3s23p63d34s1 -0.87 -0.60 -0.62

for three XC functionals. Here we vary the cations’ va-
lence electronic configuration in the KF, Na3ScF6 and
BaTiO3 compounds as a means to perturb the core-
valence exchange-correlation interaction owing to the un-
availability of PAWs constructed specifically for metaGGA
functionals.

Table I presents the volume errors for PBEsol, MS2, and
SCAN as a function of cation PAW choice. We observe
the computed BaTiO3 volumes show little sensitivity to
the form of the Ti PAW. All three XC functionals result
in volume errors < 1% compared to experiment. In con-
trast, a change in the PAW electronic configuration has a
pronounced effect on the equilibrium volume in both the
MF6 containing compounds KF and Na3ScF6. Moreover,
the computed volumes obtained from SCAN and MS2
show a much larger variance than PBEsol when more or
fewer electrons are included as valence. These results sug-
gest that the optimized PBE PAWs may not be “totally”
transferable to modern metaGGAs like MS2 and SCAN.
We believe that a more in-depth study following that of
Fuchs et al.27 which compares the role of pseudopoten-
tial choice on the accuracy metaGGAs may be necessary
before ultimately drawing schematic conclusions on its
performance across many material classes.

To understand the performance of the XC functionals
as the relative covalent bonding active in the compounds
evolves from the ionic fluorides to the more covalent oxides,
we plot the root-mean-squared (RMS) error in the cell
volume for each material in our test suite with respect to
anionic composition MOxF6−x, (x = 0 . . . 6) ratio (Fig.3).
Our statistical analysis confirms the previously stated
results, i.e., the LDA is the least accurate and HSE06
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FIG. 3. RMS error in volume with different Vxc potentials as
a function of increasing oxygen content, x = 0 (left) to x = 6
(right) within the MOxF6−x anionic units.

performs the best for fluorides and oxides. However, it
also reveals other less obvious trends described next.

Notably, we observe that the unit cell volumes predicted
by all functionals become more accurate as the relative
covalency of the material increases, i.e., with increasing
oxygen content x in the anionic group. LDA shows the
most noticeable improvement across the series, with the
RMS error changing from 7 % and 9 % for MOxF6−x

with x = 0 and 1, respectively, to 3.1 % for the oxides
(x = 6). Interestingly, we observe that across all O-to-F
ratios, the PBEsol functional provides the most consistent
performance and is overall the most accurate for the
intermediate anion ratios exhibited by the MOxF6−x, x
= 2, 3 and 4 oxyfluorides. Last, we find that between
the metaGGAs, MS2 exhibits better overall performance
than SCAN (Fig. 3). We observe that the RMS-error
of SCAN is significantly better for the oxides compared
to the fluorides, which suggests that it may be better
suited to describe the more pronounced covalent bonding
interactions oxides and chalcogenides.

2. Internal Coordinates

Next, we assess the effectiveness of each XC functional
at accurately predicting the internal ionic positions com-
pared to those reported in the experimental structures.
In Fig. 4 we report the structural arithmetic mean intro-
duced in Ref. 87 to assess the likeness of two structures,
and defined as dav = (

∑
imiui)/n, where i is the index

of the occupied Wyckoff site, mi is the multiplicity of the
Wyckoff orbit in the unit cell, ui represents the atomic
displacement amplitude required to map one structure
onto another, and n is the total number of atoms in
the unit cell. Note, that an arithmetic mean of dav =
0 Å corresponds to perfect agreement between two struc-
tures. In this definition, the cell strain contribution is
omitted.

Fluorides. The structure of KF has Fm3̄m symmetry
and no free internal parameters for the occupied Wyckoff
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positions. As a result, the arithmetic mean for KF is zero.
VF2 and MnF2 exhibit the rutile structure (P42/mnm)
and thus have two positional degrees of freedom for the
fluoride ion located on the 4f Wyckoff site. We find
that the predicted equilibrium atomic positions obtained
from all Vxc functionals generally matches closely with the
experimental rutile structures. For example in VF2 we
find that the error is quite similarly at all levels of theory
(Fig. 4); however, for MnF2 we observe that the predicted
internal coordinates are systematically improved as we
climb Jacob’s ladder.

The perovskite structured KMnF3, Na3ScF6, and
Na3MnF6 compounds exhibit corner-connected MF6 oc-
tahedral units that rotate about several crystal directions.
The main distortion in KMnF3 is an out-of-phase rota-
tion of the fluorine octahedra about the [001] direction
(of 2.6◦), which corresponds to two free internal positions
for the fluoride anion (8h Wyckoff site). Fig. 4 shows that
the LDA gives the poorest performance (angle of 8.2◦) in
predicting the internal positions followed by SCAN (8.0◦),
HSE06 (7.4◦), PBEsol (6.5◦), and MS2 (5.1◦).

The primary distortions in the double perovskites
Na3ScF6 and Na3MnF6 are out-of-phase fluorine octa-
hedral rotations about the [110] direction (φ) and an
in-phase rotations about [001] (θ). From Fig.4 we observe
that in general all functionals perform slightly better for
the double perovskites than KMnF3. The amplitude of the
octahedral rotations in the double perovskites (Na3ScF6:
φ = 21.1◦, θ = 13.3◦ and Na3MnF6: φ = 19.4◦, θ = 12.5◦)

are much larger compared to the amplitude of the rotation
in KMnF3. We find that the amplitude of the in-phase
and out-of-phase rotation angles are within 1 − 2◦ (cf.
Ref. 24) of the experimental values for all functionals
studied.

The increased accuracy of the predicted rotations is
likely responsible for the improved performance of the XC
functionals for the double perovskite over KMnF3. For
these ternary fluorides, the LDA functional remains the
least accurate at predicting the internal coordinates. For
Na3ScF6 we note that the arithmetic mean obtained for
the non-hybrids PBEsol and MS2 perform slightly better
than HSE06; however, the metaGGA SCAN is the worse
performer among the functionals for Na3ScF6. On the
other hand, PBEsol and HSE06 are found to be the most
accurate for Na3MnF6. Mode-crystallographic analysis
between the ground state monoclinic double perovskite
structures and the ideal high-symmetry parent Fm3̄m
lattice reveals that Na3ScF6 and Na3MnF6 have complex
atomic distortions (see Ref. 81 for full description). From
the comparison the symmetry-adapted mode amplitudes
for Na3ScF6 and Na3MnF6 (see Ref. 24) we observe that
discrepancy in the internal coordinates is predominately
due to the inaccuracy in predicting secondary distortions
as opposed to octahedral rotations.

Oxyfluorides. The oxyfluoride compounds studied here
belong to a diverse set of structure types, with different
polyhedral connectivity. Our results do not reveal a clear
trend in the accuracy of the calculated internal coor-
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dinates from difference Vxc potentials as a function of
increasing oxygen content in the anionic unit. However,
from Fig. 4 we can conclude that the LDA is most often
the least accurate functional in predicting the internal
coordinates regardless of oxygen content and thus should
be avoided.

One anomalous result we find is the significant arith-
metic means, corresponding to possible large errors in the
optimized in atomic positions, for the compounds CsVOF4

(with [VOF5]n−) and Bi2NbO5F (with [NbO5F]6−). To
understand the origin of this behavior, we compare the
global instability index (GII) of the experimental struc-
tures and the DFT optimized geometries for each material.
The GII judges the “plausibility” of a crystal structure
based on the deviation of the bond valence sums of the
constituent ions from their formal valence averaged over
all atoms in the unit cell.88,89 Using this metric, crystal
structures that are characterized by GII > 0.2 valence
units (v.u.) either show evidence of strained bonds or an
incorrectly reported structure.

For CsVOF4 we calculate a GII value of 0.203 v.u. for
the experimentally reported structure, which is close to
the boundary of a material exhibiting large bond strains.
Further analysis of the experimental structure reveals that
the large GII is due to compressed V–O and V–F bonds
in the [VOF5]n− units compared to the bond valence
parameters. Supplementary Figure 1 shows that the DFT
optimized structures with the exception of that obtained
from the LDA, reduce the GII to < 0.14 v.u. (see Ref. 24).
Therefore we contend that the large discrepancies for
CsVOF4 observed in Fig. 4 result from the comparison
with an experimental structure with strained bonds. We
observe that the cell optimizations with PBEsol, HSE06
and the metaGGAs increase the [VOF5]n− polyhedral
volumes and reduce the strain on the bonds observed
in the experimental structure. Our results suggest that
the internal coordinates of the CsVOF4 experimental
structure may require reassessment.

We calculate GII=0.260 for the experimental Bi2NbO5F
structure. All functionals besides the LDA are found to
reduce the strain in the stretched Bi–O bonds of the
experimental structure24 However, unlike CsVOF4, 0.2
< GII < 0.26 v.u. for all structures obtained with the
different XC functionals except from the LDA. This result
also suggests the internal coordinates of Bi2NbO5F may
need to be revisited.

Oxides. The tetragonal perovskite oxides SrTiO3 and
BaTiO3 are found in space groups I4/mcm and P4mm
respectively. For SrTiO3 the experimental out-of-phase
TiO6 rotation angle is ≈2.1◦ about the [001] direction.
LDA and PBEsol both predict the out-of-phase angle to
be ∼ 5◦, whereas the metaGGAs preform slightly bet-
ter, i.e., MS2 gives 3.7◦ and SCAN gives 4.1◦. HSE06
performs most accurately for SrTiO3, providing an equilib-
rium rotation angle of 2.9◦. This result is consistent with
the findings of Aramburu and co-workers, who proposed
that the subtle energy variations associated with octahe-
dral rotations are a more stringent test of the predictive
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FIG. 5. The Ti ion displacement dz(Ti) along the [001]
direction (filled symbols) and corresponding axial ratios
(empty symbols) in tetragonal P4/mmm BaTiO3 as a func-
tion of optimized unit cell volumes obtained with difference
exchange-correlation potentials. Experimentally dz(Ti) ∼
0.015 (Ref. 91).

capabilities of exchange-correlation functionals compared
to strain tensors in structural complex materials.57 They
argue that the accuracy of the hybrid functionals de-
rives from the pseudo-Jahn-Teller vibronic contribution
to octahedral tilting in semicovalent solids.90 Specifically,
the larger band gaps predicted by hybrid functionals like
HSE06 reduce the covalent interactions between occupied
and unoccupied orbitals, which manifest through electron-
lattice interactions, thus resulting in smaller predicted
rotation angles.57

Fig. 4 shows that dav of the polar oxide BaTiO3 in-
creases as we climb Jacob’s ladder. To understand this
trend, we examine the ferroelectric displacements in
BaTiO3 and focus on the Ti off centering. Prior studies
have established that the amplitude of the ferroelectric
distortion in BaTiO3 is strongly linked to the equilib-
rium cell volume as determined by the selected exchange-
correlation functional, e.g., LDA, GGA, or hybrid.30,92,93

Variable cell and atomic relaxations with Vxc functionals
that favor larger unit cell volumes predict larger ferroelec-
tric displacements, thus suggesting no direct functional
dependence of the ferroelectric distortion in BaTiO3, but
rather that the dependency originates from indirect errors
in the cell volume.

In Fig. 5, we plot the displacement of the Ti ion from
the (1/2, 1/2, 1/2) position with Ba at the origin and the c/a
lattice parameter axial ratio as a function of optimized
equilibrium volume for each XC functional. We observe
that the Vxc-volume dependence reported in previous stud-
ies is maintained by the LDA, PBEsol, SCAN and HSE06
functionals and that the c/a ratio obeys a similar trend
to the Ti ion displacement as a function of optimized cell
volume for LDA, PBEsol and HSE06, i.e. c/a increase
with larger cell volume. However, the metaGGA func-
tionals, MS2 and SCAN, deviate from these trends. First,
MS2 predicts an optimized cell volume for BaTiO3 that is
nearly identical to PBEsol yet exhibits a Ti displacement
that is nearly three times smaller. We can understand
this by examining the c/a ratio obtained from MS2. The
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lattice tetragonality for BaTiO3 is nearly quenched with
MS2 (Fig. 5). In the case of SCAN we observe that al-
though the functional predicts the largest optimized cell
volume, the c/a ratio obtained is only slightly larger than
the PBEsol value. These results strongly suggests that
the inclusion of the kinetic energy density in metaGGAs
introduces a direct functional dependence for the ferro-
electric distortion in BaTiO3. Based on these finding,
we recommend that when these modern metaGGAs are
used to study and predict new ferroelectric compounds a
detailed structural analysis is essential.

B. Electronic Properties

We now compute the electronic density-of-states (DOS)
for each compound optimized with each XC functional.
The calculated electronic gaps are reported in Fig. 6.
Owing to a shortage of experimental data on the band
gaps of most of the compounds in this study, we are
unable to provide a direct assessment of the accuracy of
the each functional against experiment. Qualitatively, we
anticipate the relative size of the band gap to decrease
as fluorine is replaced with the less electronegative oxide
anions. Indeed, Fig. 6 demonstrates that this trend is
observed for the d0 compounds regardless of the choice
of Vxc.

First we find that the DFT band gap increases as one
climbs Jacob’s ladder of exchange-correlation functionals
(Fig.6). As expected, the LDA and PBEsol give the small-
est band gaps and HSE06 the largest for all compounds
regardless of oxygen content x in the MOxF6−x octahe-
dra. In addition, both metaGGAs MS2 and SCAN show
larger band gaps than the LDA and GGA as observed in
other binary semiconductors including GaAs and CaO,97

with SCAN always producing larger band gaps than MS2.

C. Lattice Dynamical Properties

Now we investigate the Vxc-dependent lattice vibra-
tional frequencies. We compute the phonons at the opti-
mized theoretical volumes with each level of theory and
report the transverse optical frequencies. Given the high
computational cost of accurate phonon calculations and
the scarcity of experimental vibrational data for most
compounds in this study, we focus on four representative
materials that sample the range of O/F concentrations ob-
served in the material suite: KMnF3 (x = 0), KNaNbOF5

(x = 1), Na2W2F4 (x = 2), and Na3MoO3F3 (x = 3).
With regards to the oxide only containing compounds (x
= 6), BaTiO3 and SrTiO3, we note that a prior study by
Kresse et al. has already established the phonon functional
dependence and therefore we do not repeat it here.30

The fluoroperovskite KMnF3 is cubic (Pm3̄m) at room
temperature.98 Here we investigate the Γ point phonon
frequencies of the cubic phase, which like other perovskites
consists of four triply degenerate transverse optical (TO)

modes. Three of the TO modes are infrared (IR) active
(Fig.7).99 In Fig.8 we plot the computed IR mode frequen-
cies vs. volume at four rungs of DFT alongside available
experimental data.100 We find that all XC functionals
perform well, providing calculated TO mode frequencies
close to experiment at the respective equilibrium volume
[Fig. 7(a)-(c)]. Specifically, the TO1 mode is underes-
timated by every functional [Fig. 8(a)]. While the TO2
mode is underestimated by every functional besides SCAN
[Fig. 8(b)]. The frequency of the highest experimental IR
mode frequency nearly coincides with that obtained from
PBEsol [Fig. 8(c)].

In Fig. 8(d) we plot the evolution of the lowest fre-
quency IR active mode as a function of the cubic cell
volume. Our results demonstrate that the TO1 mode
decreases almost linearly with increasing cell volume for
all functionals investigated. We find that given the same
cell volume, LDA always predicts a softer TO1 mode
frequency followed by PBEsol. The largest frequencies
are predicted by the metaGGAs and HSE06. In fact,
Fig. 8(d) shows that for the same cell volume, the TO1
mode obtained from the metaGGA and hybrid functionals
are nearly identical. The trend of higher phonon frequen-
cies obtained from hybrid-Vxc functional calculations has
been reported previously and is attributed to stiffer bonds
owing to the inclusion of exact exchange.30 Interestingly,
despite having no exact exchange added, and predicting
smaller optimized cell volumes, the metaGGAs behave
nearly identically to HSE06 with respect to the mode
frequencies.

We were unable to find experimental vibrational data
for the ordered oxyfluoride compounds to use for a di-
rect comparison with our calculations. However, we note
that vibrational spectroscopy measurements are routinely
used to help characterize local anion order in MOxF6−x

complexes, especially in cases where the compounds ap-
pears disordered to X-ray diffraction.101,102 In this re-
gard, the M–O stretching mode is particularly important
in identifying the nature of anion order in the octahe-
dral environment, for example, when deciphering cis vs.
trans configurations for MO2F4 units or fac vs. mer
configurations for MO3F3 units. Our literature survey of
[NbOF5]2−, [WO2F4]2− and [MoO3F3]3− anions revealed
that the IR active frequency of the M–O stretching mode
appears in the 800 – 1000 cm−1 range and was relatively
insensitive to the choice of counter cations. For that
reason, we investigate the functional dependence of the
M–O mode frequency for the compounds KNaNbOF5,
Na2WO2F4 and Na3MoO3F3. The DFT frequencies are
compared to the statistical mean, σ, of the experimentally
measured M–O frequencies for similar chemistries consist-
ing of [NbOF5]2−, cis-[WO2F4]2− and fac-[MoO3F3]3−

octahedra.
Fig. 9 shows that for these three oxyfluorides, the LDA,

PBEsol, and MS2 functionals predict the M–O stretching
mode with comparable accuracy compared to the exper-
imental (literature) mean. Specifically, we observe that
the mode frequencies computed by semilocal functionals
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FIG. 7. Eigendisplacements (red arrows) for the IR-active
transverse optical (TO) modes (a) TO1, (b) TO2 and (c) TO3
in cubic Pm3̄m KMnF3.

are very similar, with LDA consistently predicting the
largest frequency for all three compounds. The calcu-
lated PBEsol frequencies are slightly smaller than those
obtained from MS2 for the compounds KNaNbOF5 (x
= 1) and Na2WO2F4 (x = 2), whereas the values are
nearly identical for Na3MoO3F3 (x = 3). SCAN, on the
other hand, predicts stiffer mode frequencies compared to
the other semilocal functionals. In addition, we observe
that M–O mode frequencies calculated with the hybrid
HSE06 are often harder than the semilocal functional
predictions. We also note that the overestimation the
M–O mode frequency by HSE06 decreases as the percent
overestimation of the cell volume is reduced (cf. Fig. 2).
The latter suggests that the increase frequency observed
in our HSE06 calculations is strongly tied to the degree
of overestimation of the cell volume.

TABLE II. The mean absolute error (Mean AE) and maxi-
mum absolute error (Max AE) from experiment of vibrational
frequencies for the 6 modes (3 IR modes of KMnF3 and M–O
stretching mode of KNaNbOF5, Na2WO2F4, Na3MoO3F3)
measured in this study. All values are in cm−1. Error =
theory − experiment. Mean AE = 1/n

∑n
i=1 |Error|.

Method Mean AE Max AE

LDA 28.7 68

PBEsol 21.7 53

MS2 24.1 55

SCAN 27.6 73

HSE06 39.4 121

In Table II we summarize the deviation of the six com-
puted phonon frequencies from experiment. We observe
that PBEsol has the lowest mean absolute error of all
functionals while HSE06 has the highest. Between the
metaGGA functionals, MS2 has a lower mean absolute
error than SCAN. As we have already seen for KMnF3, if
given identical cell volumes then the metaGGAs predict
very similar mode frequencies to HSE06; therefore, this
analysis further suggests that the major source of these
discrepancies is due to the error in the optimized cell
volume.

Our results are consistent with previous reports on
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the sensitivity of the phonon mode frequencies with XC
functionals in crystalline solids.3,30,92 For the MOxF6−x

(x = 0, 1, 2, 3) fluorides and oxyfluorides studied here, we
observe (i) that although there is some dependence of the
phonon frequency on the choice of exchange-correlation
functional the accuracy of the computed phonon modes
is most significantly affected by cell volume and (ii) the
lower rung functionals can be as accurate as the metaGGA
and hybrid functionals.

IV. DISCUSSION

For the first time, our benchmark study systematically
investigates the performance of different Vxc approxima-
tions within DFT at four different levels against oxygen
content in a variety of oxyfluoride compounds. With
the evolution of the oxygen-to-fluorine (O/F) ratio in
these compounds, the implicit assumption is that the
balance of covalency (or ionicity) of the solids would also
evolve proportionally. Although the terms ionic ‘bond’
and covalent bond can be defined, decades of debate
has proved that there exists no unambiguous scale with
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which ionicity can be quantified, particularly as a bulk
property.107–109 Nevertheless, various ionicity scales have
proved to provide useful approximations in a variety of
applications.108,110–113

Perhaps one of the most useful and transferable ion-
icity formalisms was introduced by Pauling.114 His ap-
proach of using electronegativity differences as a mea-
sure of bond polarizabilities19 between ions has proved
accurate in describing the bonding in simple metal flu-
orides and oxide crystals.107 Here we qualitatively as-
sess the effect of increasing oxygen content in this ma-
terials suite by defining % ionicity of a solid as the
weighted average ionicity obtained from all atomic pair
electronegativity differences in the crystal as follows:
% ionicity = (

∑
wABfAB)/W,where fAB is the ionicity of

the bond between ions A and B according to Pauling’s
electronegativity scale.114 The weight of the interaction
wAB is computed by adding the site multiplicity of ions A
and B, and W =

∑
i wi is the sum of all the interaction

weights. Using this approximation, we observe that de-
creasing ionicity does not directly correlate with a change
in oxygen/fluorine ratio [Fig. 10(a)]. However, the gen-
eral behavior of this metric shows that the fluorides and
oxides cluster at the high- and low-ionicity ends of the
scale, respectively, with the oxyfluorides located between
the extremes.

Fig. 10(b) also shows that the volume error does not
evolve monotonically as a function of % ionicity with
any of the functionals studied. Although this behavior
might arguably reflect the diverse collection of structure
types studied, it is significant to note that no clear trends
emerge within the hierarchy imposed by Jacob’s ladder
of exchange-correlation functionals. Generally, PBEsol
shows a remarkable degree of accuracy as a function of %
ionicity. However, no overall improvement in the accuracy
of the cell volume is obtained by using more sophisti-
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cated functionals (MS2, SCAN, or HSE06). Furthermore,
Fig. 10(b) demonstrates that the evolution of volume as a
function of % ionicity varies significantly for functionals
at the same level of theory, e.g., the metaGGAs MS2 and
SCAN.

A semilocal functional can be defined in terms of its en-
hancement factors Fxc,

51 which is typically expressed as a
function of the Wigner-Seitz radius, rs = [3/(4πn)]1/3, the

reduced density gradient,44 s = |∇n|/2(3π2)1/3n4/3 and
dimensionless parameter α. The Wigner-Seitz radius is re-
lated to the electron density, n, the parameter s measures
how fast the charge density varies on the scale of the local
Fermi wavelength 2π/kF where kF = (3π2n)1/3,115,116

and α is an ingredient of the metaGGAs MS2 and SCAN
that characterizes the extent of orbital overlap.43,115

The spacial distributions of rs, s, α along the [001]
direction in the oxyfluoride KNaNbOF5 (x = 1) allows
us to identify important regions in the solid [Fig. 11(a)].
[The positions of the ions along the [001] direction are
indicated on the upper abscissa of Fig. 11(a).] Specifically,
the regions of core-valence separation is characterized by
larger values of s,117 while the regions of single-bonding
and the overlap of closed shells can be identified where
α < 1 and α� 1, respectively.43

Prior studies have established that a strong correlation
exists between predicted cell volumes and the param-
eters rs, s and α for semilocal functionals.27,51,117,118

Thus, to better understand the distinct tendencies of the
semilocal functionals observed in this work, we plot the
exchange (Ex) energy density for LDA, PBEsol, MS2 and
SCAN [Fig. 11(b)].119 Interestingly from the evolution
of the Ex energy density [Fig. 11(b)], we observe that
the metaGGA SCAN behaves very similar to LDA while
the other metaGGA, MS2 bears closer resemblance to
PBEsol. This result is consistent with the trends observed
for the functional dependence of the cell volume in the
compounds studied, i.e. LDA and SCAN show a strong
tendency to underpredict cell volumes particularly for
more ionic compounds while the absolute errors of the
volumes predicted by PBEsol and MS2 are very similar.

Moreover, we observe that the major difference in the
Ex energy density between the LDA and SCAN results
and the PBEsol and MS2 results occurs in the region near
the core of the ions. It has been shown that for solids the
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overlap between the core and the valence electrons of the
constituent atoms is a particularly important region for
the prediction of the cell volume.27,117 Indeed, the differ-
ence between each semilocal functional is dominated by
the analytical form chosen to represent the enhancement
factor, but we conjecture that subtle differences in the
core-valence regions likely produces the distinct behavior
in the structural properties predicted by the functionals
with similar Fx and motivates further detailed analyses.

V. SUMMARY

We assessed the accuracy of exchange-correlation po-
tentials for DFT found at the first four rungs of Jacob’s
ladder with an emphasis on predicting the structural,
electronic, and lattice dynamical properties in oxyfluo-
rides compounds. The performance of the functionals
was found to vary with oxygen content in the octahe-
dral MOxF6−x anionic groups. A summary of our main
conclusions is as follows:

• Structural properties: Overall, LDA and
PBEsol are consistently the least and most accu-
rate functional for computation of the cell volume
and internal coordinates across all materials in our
suite, respectively. The modern metaGGAs, MS2
and SCAN, also show satisfactory performance but
do not exhibit the same consistent improvement as
the PBEsol functional as the O/F ratio changes.
For example, MS2 almost completely removes the
tetragonality of BaTiO3. It is significant to note
that we observe a large variance in the predicted
cell volume for the metaGGAs based on the valence
configuration of the cation pseudopotentials. We
suspect that the discrepancies observed in the struc-
tural properties for the metaGGAs may be in part
due to the poor transferability of the GGA PAWs
used in our study. We suggest a more in-depth pseu-
dopotential study to clarify these observations. The
hybrid Vxc HSE06 is indeed most accurate for the
fluoride (x = 0) and oxide (x = 6) compounds, how-
ever, it shows a strong tendency to overestimate cell
volumes for the oxyfluorides (intermediate integer

values of x).

• Electronic properties: All of the compounds in
this study are known experimentally to be insulating.
Generally, the smallest band gaps are predicted by
LDA and PBEsol. The metaGGAs MS2 and SCAN
both improve the DFT gap slightly over the func-
tionals at the first two rungs. HSE06 consistently
predicts the largest band gaps.

• Lattice dynamical properties: We computed
the phonons for four compounds: KMnF3 (x =
0), KNaNbOF5 (x = 1), Na2WO2F4 (x = 2), and
Na3MoO3F3 (x = 3). Generally, our results indicate
that the phonon frequencies show a strong volume
dependence for all XC functionals.

Based on the observations in this study, our general rec-
ommendations for DFT calculations of related compounds
are as follows: (i) LDA consistently underperforms and
as a result we do not recommend it for this family of
materials. (ii) For all fluorides (x = 0) and oxides (x =
6) compounds PBEsol or HSE06 are most accurate; and
(iii) for intermediate oxygen compositions (x = 1 . . . 5),
PBEsol is consistently accurate for structural properties.
In light of this, we also anticipate that functionals which
contain ingredients based on similar construction princi-
ples as PBEsol such as the revised TPSS functional120

(revTPSS) to yield satisfactory results; however, we advise
careful testing of each functional relative to the property
being predicted.
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23 P. E. Blöchl, “Projector augmented-wave method,” Phys.
Rev. B 50, 17953–17979 (1994).

24 See Supplemental Material at [URL will be inserted by
publisher] for additional computational details, crystal
structure information, and GII calculations.

25 Hendrik J. Monkhorst and James D. Pack, “Special points
for Brillouin-zone integrations,” Physical Review B 13,
5188–5192 (1976).

26 A Togo, F Oba, and I Tanaka, “First-principles calcula-
tions of the ferroelastic transition between rutile-type and
CaCl2-type SiO2 at high pressures,” Physical Review B
78, 134106 (2008).

27 M. Fuchs, M. Bockstedte, E. Pehlke, and M. Schef-
fler, “Pseudopotential study of binding properties of solids
within generalized gradient approximations: The role of
core-valence exchange correlation,” Phys. Rev. B 57, 2134–
2145 (1998).

28 John P. Perdew and Karla Schmidt, “Jacob’s ladder of den-
sity functional approximations for the exchange-correlation
energy,” AIP Conference Proceedings 577, 1–20 (2001).

29 W. Kohn and L. J. Sham, “Self-consistent equations in-
cluding exchange and correlation effects,” Physical Review
140, A1133–A1138 (1965).

30 Roman Wahl, Doris Vogtenhuber, and Georg Kresse,
“SrTiO3 and BaTiO3 revisited using the projector aug-
mented wave method: Performance of hybrid and semilocal
functionals,” Phys. Rev. B 78, 104116 (2008).

31 John P. Perdew and Wang Yue, “Accurate and simple
density functional for the electronic exchange energy: Gen-
eralized gradient approximation,” Physical Review B 33,
8800–8802 (1986).

32 Axel D. Becke, “Density functional thermochemistry. I.
The effect of the exchange only gradient correction,” The
Journal of Chemical Physics 96, 2155–2160 (1992).

33 John P. Perdew, J. A. Chevary, S. H. Vosko, Koblar A.
Jackson, Mark R. Pederson, D. J. Singh, and Carlos Fiol-
hais, “Atoms, molecules, solids, and surfaces: Applications
of the generalized gradient approximation for exchange
and correlation,” Phys. Rev. B 46, 6671–6687 (1992).

34 John P. Perdew, Kieron Burke, and Matthias Ernzer-
hof, “Generalized gradient approximation made simple,”
Physical Review Letters 77, 3865–3868 (1996).

35 K. Burke, “Perspective on density functional theory,” J.
Chem. Phys. 136, 150901 (2012).

36 John P. Perdew, Adrienn Ruzsinszky, Gábor I. Csonka,
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