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Abstract 

We explore the role of flexoelectric effect in functional properties of nanoscale ferroelectric films with mixed 

electronic-ionic conductivity. Using coupled Ginzburg-Landau model, we calculate spontaneous polarization, 

effective piezo-response, elastic strain and compliance, carrier concentration and piezo-conductance as a function 

of thickness and applied pressure. In the absence of flexoelectric coupling, the studied physical quantities 

manifest well-explored size-induced phase transitions, including transition to paraelectric phase below critical 

thickness. Similarly, in the absence of external pressure flexoelectric coupling affects properties of these films 

only weakly. However, the combined effect of flexoelectric coupling and external pressure induces polarizations 

at the film surfaces, which cause the electric built-in field that destroys the thickness-induced phase transition to 
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paraelectric phase and induces the electret-like state with irreversible spontaneous polarization below critical 

thickness. Interestingly, the built-in field leads to noticeable increase of the average strain and elastic compliance 

in this thickness range. We further illustrate that the changes of the electron concentration by several orders of 

magnitude under positive or negative pressures can lead to the occurrence of high- or low-conductivity states, i.e. 

the nonvolatile piezo-resistive switching, in which the swing can be controlled by the film thickness and 

flexoelectric coupling. Obtained theoretical results can be of fundamental interest for ferroic systems, and can 

provide theoretical model for explanation of a set of recent experimental results on resistive switching and 

transient polar states in these systems, 
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I. Introduction 

Ferroelectric materials have long remained the focus of theoretical and experimental research due to 

their unique functional properties. These include strong electromechanical coupling that enables 

applications in sensors and actuators [1], and presence of equivalent polar states that enables multiple 

types of ferroelectric memories [2, 3]. In the 15 years, much attention have been focussed ofn the 

multiferroic materials combining ferroelectric and magnetic functionalities [4, 5]. Finally, in the last 

several years, the attention of condensed matter physics and materials community has been riveted to 

applications combining ferroelectric, ionic, and electronic functionalities of these materials [6, 7, 8, 9, 

10]. Consequently, investigation of electromechanical, electrochemical and electrophysical properties of 

nanosized ferroelectrics-semiconductors with mixed type ionic-electronic conductivity (FeMIECs) is of 

significant interest for both fundamental science and numerous applications. Although FeMIECs in the 

form of thin films and nanocomposites are among the most promising MIECs materials for the next 

generation of nonvolatile, resistive and memristive memories, logic devices, ultrasensitive sensors, 

miniature actuators and positioners [11, 12 , 13], the physical principles of the complex interplay 

between the ferroelectric polarization, elastic strains, ionic and electronic state at the nanoscale are not 

clear so far. This lack of physical understanding precludes the successful implementation of FeMIECs in 

the aforementioned applications. 

Futhermore, emergence of scanning probe microscopy tools have made the studies of coupled 

electormehcnical and conductive phenomena nearly routine. Multiple studies of electromechanical 

responses (piezo-response) by Electrochemical Strain Microscopy (ESM) [ 14 , 15 , 16 ] and 

Piezoresponse Force Microscopy (PFM) [ 17 ] and local conductivity by Current Atomic Force 

Microscopy (C-AFM) [ 18 ] and related techniques [ 19 , 20 , 21 , 22 ] revealed that their electro-

conductance is strongly coupled with polar and elastic states. Moreover, both SPM and interferometric 

measurements with high sub-nm resolution indicate the important role of the local gradients of 

polarization, strain and space charge density in the formation of aforementioned local response [14-18]. 

The local gradient of polarization induces elastic strain, and vice versa, the gradient of elastic stress 

induces electric field due to the flexoelectric coupling (flexocoupling) [23, 24]. The gradients inevitably 

cause the space charge redistribution in MIECs and FeMIECs via several mechanisms [ 25 , 26 ], 

including electromigration and diffusion [27, 28], chemical strains and stresses [29, 30, 13], and 

deformation potential [31, 32]. Generally, these effects are strongly coupled in a ferroelectric and cannot 

be separated a priori. However, the following important aspects should be mentioned.  

One important aspect of material behaviour on the nanoscale is the emergence of flexoelectric 

coupling [33, 34]. The strong strain gradients are inevitably present near the surfaces, in thin films [35, 

36, 37], nanoparticles [38] and fine-grained ceramics [39, 40]. Therefore the role of flexocoupling in the 

formation of piezo-response and piezo-conductance can essentially increase due to the intrinsic size 
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effects, which become pronounced when the thickness of investigated FeMIEC film becomes less than 

50 nm. While the role of flexoeffect in SPM measurements have been discussed as early as 2006 [41, 

42], recently it has become a mainstream explanation for a broad set of functional observations. While 

very significant doubts have been raised [43], it remains an important aspect of these systems. 

Second important aspect of ferroelectricity in the nanoscale systems is the ferroelectric size effect. 

The intrinsic size effect in thin ferroelectric films manifests as the disappearance of ferroelectric phase 

when the film thickness becomes smaller than the critical thickness [44]. The critical thickness depends 

on the polarization direction, correlation length, surface energy contribution, electrical and mechanical 

conditions at the film surfaces [45, 46, 47, 48]. Here, the surface energy determines the value of the so-

called extrapolation lengths [45]. Depolarization field is originated from nonzero divergence of 

polarization vector, as well as from the incomplete screening of the polarization bound charges by the 

electrodes [45, 48]. Elastic strains are caused by e.g. film and substrate lattice mismatch [46, 47]. All 

these factors, which are closely related to the surface influence, often lead to the appearance of a 

developed polarization gradient from the film surface towards its center. Note that in the comprehensive 

description the polarization gradient induces elastic strain due to the flexoelectric coupling, suggesting 

the potential interplay between the two. 

Finally, the third aspect of thin film behaviour is surface piezoelectric effect caused by inversion 

symmetry breaking in the direction normal to the surface. Surface piezoeffect coupled with misfit strain 

leads to the appearance of built-in electric field that in turn destroys the size-induced phase transition 

into a paraelectric phase at the critical thickness and induces the electret-like state with irreversible 

polarization at film thickness less than the critical one [46, 47]. 

These considerations necessitate the theoretical modeling of the flexocoupling impact on the size 

effects of the spontaneous polarization, effective piezo-response, elastic strain and compliance, carrier 

concentration and piezo-conductance in thin films of FeMIECs under applied pressure. Here we analyze 

these phenomena in the framework of Landau-Ginzburg-Devonshire (LGD) theory [25-27, 38 49, 50]. 

 

II. Problem statement and basic equations 

Generalized expression for the Landau-Ginzburg-Devonshire (LGD)-type Gibbs potential of the 

spatially confined ferroelectric mixed-type semiconductors, that is the sum of the bulk ( VG ) and surface 

( SG ) parts, has the following form [26, 51]: 
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Here, the summation is performed over all repeating indexes; iP  is a ferroelectric polarization, 

ii xE ∂ϕ∂−=  is a quasi-static electric field, ϕ is the electric potential. The coefficients of LGD 

potential expansion on the polarization powers are )( c
T
ikik TTa −α=  and ijklb , T is the absolute 

temperature, Tc is the Curie temperature. This choice of LGD expansion corresponds to materials with 

inversion center in the parent phase (e.g. with cubic parent phase). Elastic stress tensor is ijσ , ijklQ  is 

electrostriction tensor, ijklF  is the flexoelectric effect tensor [52], ijklg  is gradient coefficient tensor, ijkls  

is elastic stiffness.  

 Variations of the electron density, and ionized donor concentration are ( ) ( ) 0nnn −=δ rr  and 

( ) ( ) +++ −=δ 0ddd NNN rr . Constant values of 0n  and +
0dN  correspond to stress-free reference state at zero 

electric field. e is the electron charge, dZ  is the donor ionization degree. Deformation potential tensor is 

denoted by e
ijΣ  and Vegard expansion (or elastic dipole) tensor is d

ijW  [29, 30]. The Vegard tensor d
ijW  

for donors will be regarded diagonal. Only ionized donors (e.g. impurity ions or oxygen vacancies) are 

regarded mobile [53]. Mobile acceptors can be considered in a similar way. dE  is the donor level, CE  is 

the bottom of the conduction band. 

The entropy of ionized donors is estimated under the approximation of an infinitely thin single 

donor level, as  
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where 0
dN  is the concentration of donor atoms. The entropy density of electron Fermi gas, considered in 

the parabolic or effective mass approximation, is  
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 6

where ( )ξ−1
21F  is the inverse function to the Fermi ½-integral ( ) ( )∫

∞

ξ−ζ+
ζζ

π
=ξ

0
21 exp1

2 d
F  (see 

Appendix A of Suppl. Mat. [54]). ( )( ) 2/322 hπ= TkmN BnC  is the effective density of states in the 

conduction band, electron effective mass is nm  [55]. The partial derivative ( )CBel NnFknS 1
21

−−=∂∂ . 

For analytical estimates, we use approximations for direct and inverse Fermi integrals, 

( ) ( ) ( )( )( ) 14/32
21 443exp

−−ε+π+ε−≈εF  and ( ) ( ) ( )( )nnnnF ~1~ln4~3~ 3/21
21 ++π≈−  correspondingly. 

These are valid in a wide range of ε and n~  values [56]. The last term, in Eq.(1a), is the electron kinetic 

energy [51], ( ) ( )∫
∞

ξ−ζ+
ζζζ

π
=ξ

0
23 exp1

2 d
F  is the Fermi 3/2-integral.  

The surface properties are described by the constants Sm
ijA  , the surface dielectric stiffness at the 

surface Sm, S
ijkd  is the surface piezoelectric tensor, S

iju  is the surface strain field, originated from e.g. film 

and substrate lattice mismatch [46]. The surface piezoeffect could be essential at distances of order 1-5 

lattice constants from the film surface [57], although for strong enough film-substrate lattice mismatch it 

can be the source of thin film self-polarization (see [46, 47] and refs therein). We will not consider the 

latter case here and refer it to future studies. 

For ferroelectrics with cubic parent phase the term lkijkl PPQ  automatically includes 

piezoelectric contribution, because the polarization change under electric field mE  can be approximated 

as [58] 

( ) ( ) ( ) mkm
f
km

S
kmkm

b
kmmk

t
k EPEEPP δ−εε+≈δ−εε+= 00 .                                  (3a) 

Here S
kP  is a spontaneous polarization component, ε0 is the dielectric permittivity of vacuum, kmδ  is a 

Kroneker symbol and f
ijε  is the relative dielectric permittivity of ferroelectric that includes a soft-mode 

related electric field-dependent contribution sm
ijε  and an electric field-independent lattice background 

contribution b
ijε  [35]. Consequently, an apparent piezoelectric coefficient becomes [59]  

( ) S
lijmlkm

f
kmijk PQd δ−εε= 02 .                                       (3b) 

 As a relevant experimental geometry, we consider the case of flattened tip or a thin disk 

electrode placed in an electric contact with a ferroelectric mixed-type semiconductor film clamped to a 

rigid bottom electrode. One-component polarization 3P  is normal to the film surface, corresponding to a 

tetragonal ferroelectric phase in a c-domain film. Problem geometry is shown in Figure 1. One-

dimensional approximation of capacitor geometry is applicable for the problem solution, if the radius of 

the top disk electrode is much larger than the film thickness.  
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Figure 1. Geometry of the considered problem. We consider the situation when either the radius of the SPM tip is 

much larger than the film thickness, or the ambient screening charges play the role of a top electrode. 

 

For the semiconductor film with mixed ionic-electronic conductivity the electric potential ϕ can 

be found self-consistently from the Poisson equation  
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with boundary conditions corresponding to the fixed potentials at the electrodes, ( ) ( ) 0,0 =ϕ=ϕ hV , 

including the short-circuited case, ( ) ( ) 00 =ϕ=ϕ h . Here V  is the applied voltage. In Equation (4) we 

used the relation (3a) between the total and ferroelectric polarization contributions. 

 When the system is in thermodynamic equilibrium, currents are absent and electrochemical 
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which follow from the minimization of the Gibbs potential (1). The conditions are of the third kind due 

to the flexoelectric effect contribution. The explicit form of Euler-Lagrange equations and boundary 

conditions are listed in the Appendix B of Suppl. Mat [54]. Note that the product Si
klkl AF 3333σ  act as a 

surface polarization. The coefficients 1
33
SA  and 2

33
SA  conditioned by the interface chemistry can be very 

different for the probed surface 03 =x , where an active chemical environment can exist, and for the 

electroded surface hx =3 , where the perfect electric contact is present, as will be considered elsewhere 

[60]. 

Equation of state for elastic fields, ijij uG −=δσδ , obtained from the variation of the functional 

(1), shows that there are four basic contributions to the elastic strain of the spatially-confined 

ferroelectric materials with mobile charge species, namely purely elastic, flexoelectric, Vegard and 

electrostriction contributions. Hence the local strain is  

( ) ( ) lkijkl
e
ijdd

d
ij

l

k
ijklklijklij PPQnnNNW

x
P

Fsu +−Σ+−+
∂
∂

+σ= ++
00 ,             (6) 

The piezoelectric contribution is automatically included in the relation (6) as linearized electrostriction 

in the ferroelectric phase accordingly to Eq.(3a), and the apparent piezoelectric coefficient eff
ijkd  can be 

introduced according to Eq.(3b).  

Generalized Hooke's relations (6) should be supplemented by the mechanical equilibrium 

equations 0=∂σ∂ jij x  in the bulk and equilibrium conditions ext
iSjij pn

f
−=σ  at the free surfaces Sf of 

the system, nj is the component of the outer normal n=(0,0,−1) to the surface Sf  [61]. Here we suppose 

that external pressure pi
ext can be applied to the system. Elastic displacement is zero at the clamped 

surfaces Sc, ( ) 0=ci Su . The evident expressions for elastic strains and stresses are listed in the 

Appendix B of Suppl. Mat. [54] 

The film surface displacement is ∫=
h

dxuu
0

3333  for the considered geometry. The strain 33u  is 

listed in Appendix B of Suppl. Mat [54]. The average strain 
h
uu 3

33 =  has the following form: 

( ) ( )( ) 2
33333

33
33333333 0 PQPhP

h
F

nNWpsu eff
eff

eff
d

eff
ext

eff +−+δΣ+δ+−= + .                       (7) 

Here we introduced the effective coefficients ( )1211
2
133333 2 ssssseff +−= , ( )121111133333 2 ssWsWW ddeff +−= , 

( )121111133333 2 sss eeeff +Σ−Σ=Σ , ( )121113133333 2 ssFsFF eff +−=  and ( )121113133333 2 ssQsQQeff +−= . Voigt 

notations are introduced for the electrostriction ijQ , gradient coefficient ijg , flexoelectric ijF  and elastic 

compliance ijs  tensors, while full matrix notations are retained for all other tensors. The tensor 
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components with subscripts 12, 13 and 23 are equal for materials with cubic parent phase. 

Corresponding effective elastic compliance can be calculated from the formulae: 

ext

eff

dp
du

h
S 3

33
1−= .                                                   (8) 

By definition, effective piezo-response is given by expression 
V
u
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∂
∂

= 3
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δ−= , in accordance with Maxwell relations we obtained that 
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∂
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=
2

33
3 .                                 (9) 

Derivation of relation (9) along with approximate analytical expressions of effective piezo-response is 

disclosed in the Appendixes E and C of Suppl. Mat. [54] 

In order to study the dependence of the film electro-conductance Ω on applied pressure pext, i.e. 

the effective piezo-conductance extp dpdΩ≡Ω , one should solve the dynamic problem and calculate a 

derivative of the electric current  with respect to the applied voltage and study this value in dependence 

on pext, 
extext

p p
J

E ∂
∂≡Ω 1 , here hVEext =  (assuming linear approximation on V). The donor current is 

( )3xNeZJ ddddd ∂ζ∂η−= + , where dη  is the donor mobility coefficient, dζ  is electrochemical potential 

for donor, ( ) ( )( )+++ −−ϕ−σ+≡δδ−=ζ dddBdij
d

ijddd NNNTkeZWENG 0ln . The electronic current is 

( )3xneJ eee ∂ζ∂η= , where eη  is the electron mobility coefficient, eζ  is electrochemical potential for 

electron, ( ) ( ) ϕ−+σΣ−≡δδ+=ζ − eNnFTkEnG CBij
e
ijCe

1
2/1 . 

Kinetic equations for electrons and donors, 01
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∂
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x
J
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n e
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3

=
∂
∂+

∂
∂ +

x
J

eZt
N d

d

d , are 

supplemented by ion-blocking boundary conditions 0
,03

=
= hxdJ ; and fixed electron densities at the 

electrodes 0)0( nn =  and 1)( nhn = . For the case of ion-blocking electrodes only electronic current 

contributes into the conductance Ω. Hence the piezo-conductance can be estimated as (see Appendix D 

of Suppl. Mat. [54]): 

ext

h

ext

e

extext
p dp

nd
ndx

dp
d

h
e

dp
dJ

E
~1

0
3

2 ∫
η

≈≡Ω ,                                   (10) 

 Below we compare approximate analytical expressions derived in the Suppl. Mat [54] with self-

consistent numerical modelling with and without flexoelectric coupling and pressure application.  
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III. Results of self-consistent calculations and discussion 

Size effects of the spontaneous polarization, effective piezo-response, average elastic strain and 

compliance, electron concentration and piezo-conductance have been calculated in a self-consistent way 

for PbZr0.5Ti0.5O3 (PZT) at room temperature (RT). Parameters used are listed in the Table I. 

 

Table I. Material parameters collected and estimated from the Refs [30, 62, 63] 

coefficient PbZr0.5Ti0.5O3  
ε33

b 10 
αT  (×105C-2·Jm/K) 2.66 
TC    (K) 666 
bij   (×108C-4·m5J) b33= 3.98 
Qij  (C-2·m4) Q33=Q11=0.0812, Q13= −0.0295 
sij   (×10-12 Pa-1) s33=s11=8.2, s13= -2.6' 
gij   (×10-10C-2m3J) g33=5.0 
ASi  (×10-4C-2·J) AS1 = 1, AS2 = 20000 
Fij (×10-11C-1m3) F33= 3, F13= 0 − 3 
W (10-30m3) 3 
Ed (eV) −0.1 
Nd

0 (m-3) 1025

Σ (eV) 0.1 
Universal constants e=1.6×10−19 C, ε0=8.85×10−12 F/m 

 

Corresponding dependences of the spontaneous polarization, effective piezo-response, average 

strain and elastic compliance, electron concentration and piezo-conductance on the film thickness h are 

shown in Figures 2 - 4 Calculated curves appeared very slightly sensitive to the Vegard contribution, 

which coefficient W was varied in the reasonable range (0 − 10) Ǻ3 [64] (compare left (a,c) and right 

(b,d) columns in Figures 2-4). Weak sensitivity to the Vegard strains originated from the donor-

blocking boundary conditions used in the 1D numerical modelling, which mean that the full quantity of 

donors is conserved between the blocking interfaces. The condition minimizes the pure Vegard 

contribution and does not affect the flexocoupling. Note however, that the Vegard contribution to 

FeMIEC response can be very important in 2D-geometry [26]. 

Dotted and solid curves, calculated at zero and nonzero flexoelectric coupling constants Fij 

correspondingly, are very similar at zero external pressure, but become strongly different under external 

pressure application of ±109 Pa. At that the difference becomes noticeably stronger for compression 

(pext>0) than for extension (pext<0).  

Without flexoelectric coupling, the main origin of the curve asymmetry occurring after the 

application of positive or negative pressure is that the linear renormalization of the coefficient 33a  . 
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Namely, ext
eff

c
Teff pQTTa 333333 2)( +−α= , where the last term increases or decreases effa33  depending on the 

pext sign. The coefficient 33
effa  defines the critical thickness crh  as,  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+λ

+
+λ

−=
CC

eff

eff

cr LLa
gh

2133

33 11 ,                           (11) 

where the renormalized gradient coefficient ( )1311
2

133333 2 ssFgg eff ++= , correlation and different 

extrapolation lengths [65, 66], beff
C gL 33033 εε=  and Smeff

m Ag 3333=λ  (Appendix B of Suppl. Mat. [54]). 

The approximate expression (11) is valid with high accuracy at small concentration of free carriers  

Thus, the flexoelectric coupling renormalizes the gradient coefficient and consequently the 

extrapolation and correlation lengths [38]. Due to the linear dependence of effa33  on pext the critical 

thickness becomes dependent on pext as 
ext

eff
c

Tcr pQTT
h

3333 2)(
1~
+−α

− . The dependences ( )extcr ph  and 

( )ext
eff pa33 , which are strongly "asymmetric" function of pext lead to the asymmetry of the spontaneous 

polarization thickness dependences occurring after the application of positive or negative pressure (see 

different curves in Figures 2a and 2b).  

However, the asymmetry form of the effective piezo-response and average strain is rather 

complex and not defined only by the asymmetry of ( )ext
eff pa33  and ( )extcr ph . In accordance with Eqs.(6), 

(7), (B.1c) and their solution (B.2), the strain is proportional to 2
33333 PQps eff

ext
eff +  at zero 033 =effF , where 

the pressure dependence is present via the linear contribution ext
eff ps33 , and the nonlinear one 2

333 PQeff , 

because the polarization is pressure-dependent. Hence the influence of pressure sign on the strain 

becomes very complex and it causes the complex asymmetric dependence of the effective piezo-

response on applied pressure.  

Without flexoelectric coupling all physical quantities depicted in the Figures 2 - 4 manifest 

noticeable peculiarities at the critical thickness crhh = . Since 033 >effQ  for PZT, negative pext<0 

decreases the critical thickness crh , while positive pext>0 leads to an opposite trend. Therefore 

( ) ( ) ( )000 ><=<< extcrextcrextcr phphph  (compare red, black and blue dashed curves in Figures 2-4 

corresponding to pext = −1 GPa, 0, +1 GPa and Fij = 0).  

The spontaneous polarization, calculated at Fij = 0, emerges at the critical thickness hcr, then 

increases and saturates under the film thickness increasing in a semi-quantitative agreement with the 

analytical formula hhPP cr
bulk

S
S −= 13  [45] (see dashed curves in Figures 2 a,b). Effective piezo-

response effR3  calculated at 0=ijF  has a divergence at crhh =  and disappears in a paraelectric phase 

(see dashed curves in Figures 2 c-d). The behavior of effR3  is in agreement with the analytical 
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expression derived in the Appendix C of Suppl. Mat [54], 
( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ε
ε

+
−

θ
−= sm

b

cr

crcrPRpiezo

hh
hh

h
h

dR
33

33
333 1

1 , 

where the piezoresponse amplitude eff
S

smPR QPd 3333033 2 εε≈ and the function ( ) 2=θ hhcr  at crhh <  and 

( ) 1=θ hhcr  at crhh ≥ .  

When the flexoelectric coupling is present, the boundary conditions for polarization (see Suppl. 

Mat [54], Eqs. (B.4)) contain the terms proportional to the "surface" polarizations Sm
ext

effBI
m ApFP 3333= , 

which for chosen geometry is equivalent to a built-in electric field ( ) hpFhPPE ext
effBIBIBI

3321 ~~ − . The 

field is inversely proportional to the thickness h, so its influence is significant for thin films. Since the 

field increases for thinner films, it smears the phase transition with decreasing h. The change of the 

applied pressure sign leads to the reversal of the surface field. In thin films, the pressure-sensitive 

surface field causes the situation when only one sign of polarization (+PS or −PS) is stable for a given 

pressure sign. Note a quantitative similarity between this effect and polarization reversal and phase 

transition smearing due to the adsorption of surface ions under the condition of partial oxygen pressure 

excess [67, 68]. Negative polarization produces negative strain and negative piezo-response at positive 

applied pressure [see blue curves in Figures 2a and 2b].  

The built-in field BIE  destroys the thickness-induced phase transition to a paraelectric phase at 

crhh =  and instead induces an electret-like state with irreversible spontaneous polarization at crhh <  

(see solid curves in Figures 2 a-b). Piezo-response effR3  calculated from Eq.(9) appeared nonzero in the 

electret-like state at crhh <  and monotonically decreases with decreasing h (see solid curves in Figures 

2 c-d). Finally, we observe that piezo-response calculated for positive pressure changes its sign at 

nonzero flexoelectric coupling [see blue curves in Figures 2c and 2d]. According to Eq.(7), there are 

two contributions in piezo-response, ( ) ( )( ) 333333
333 20~ χ+χ−χ

∂
∂Δ PQh

h
F

V
u eff

effpiezo

, where the linear 

susceptibility 333 EP ∂∂=χ  is introduced. The first term, that is the direct contribution of flexo-effect, 

does not change its sign if the sign of extS pP ~  changes, while the second term being the linearized 

electrostriction contribution (i.e. piezoelectric term appeared in a ferroelectric phase), changes the sign 

in such a situation. Flexoelectric contribution can dominate for very thin films of thickness less than the 

critical one, while the piezoelectric contribution becomes the main one with the film thickness increase. 

Consequently, when the external pressure changes its sign to positive it induces reversal of polarization 

in thin films, the two contributions of piezo-response add up, while in the case of zero or negative 

pressure they are deducted. 
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The spontaneous average strain 33u  calculated for 0=ijF  and 0=extp  emerges at the critical 

thickness hcr, then it increases and saturates under the film thickness increasing as hhcr−1 . Nonzero 

pressure shifts the strain by a constant value ext
eff ps33−  in accordance with Eq.(6) (compare different 

dashed curves in Figure 3 a,b). Being the derivative of the strain with respect to the applied pressure, 

effective compliance effS33 , calculated at 0=ijF  from Eq.(8), has a sharp maximum at crhh =  and drops 

to a constant value effs33  in the paraelectric phase (see dashed curves in Figure 3 c-d).  

The built-in field, produced by the joint action of flexocoupling and external pressure, destroys 

the thickness-induced phase transition at crhh =  and, rather unexpectedly, induces a noticeable increase 

of the absolute value of strain 33u  for films of subcritical thickness (see solid curves in Figure 3 a-b). 

It appears that the increase is caused by the flexoelectric term ( ) ( )( ) hFPhP eff
3333 0−  in Eq.(5) that scales 

as 1/h at small thicknesses. The term is conditioned by different build-in surface polarizations and can 

be estimated as ( ) hFPP effBIBI
3312 − . Flexoeffect leads to the very pronounced increase of the compliance 

effS33  with thickness decrease at crhh <  (see solid curves in Figures 3 c-d). In both cases ( 0<extp  and 

0>extp ) the sharp fall in compliance with a decrease in film thickness is due to the decrease of 

polarization. Since the compliance is an even function of polarization, this effect does not depend on the 

sign of the polarization and therefore on the external pressure sign. 

Without flexoelectric coupling the average electron concentration n  starts to differ from the 

equilibrium bulk value ( )( )TkEEFNn BCFC −= 210  for film thickness crhh > , because the spontaneous 

polarization appears above the critical thickness and start to affect on n  via the deformation potential 

and depolarization field that is produced by the ( )SPdiv
r

. For =extp 1 GPa concentration n  grows by 

order of magnitude compared to base level 0n  at crhh >  and then saturates under the film thickness 

increasing. For 0=extp  the concentration n  becomes about one order of magnitude smaller than 0n  at 

crhh > , while it gets two orders of magnitude smaller than 0n  at crhh >  for =extp −1GPa, then it 

reaches a very flat minimum and subsequently slightly increases under the film thickness increasing (see 

dashed curves in Figures 4 a,b). Effective piezo-conductance pΩ  calculated from Eq.(8) at 0=ijF  has 

a divergence at crhh =  and abruptly disappears in a paraelectric phase at crhh <  (see dashed curves in 

Figures 4 c-d). The pressure induced changes of electron concentration are related with the linear 

renormalization of the coefficient effa33  by the pressure, ext
eff

c
Teff pQTTa 333333 2)( +−α= , since the amplitude 
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of the spontaneous polarization SP
r

 depends on effa33  in accordance with LGD-type Euler-Lagrange 

equation (B.3) listed in the Appendix B of Suppl. Mat [54].  

When the flexoelectric coupling is present it causes the built-in field hpFE ext
effBI

33~ , that in 

turn induces noticeable deviation of n  from the value n0 for all film thicknesses h, including the range 

of small thickness crhh ≤ . Furthermore, two peculiarities are present on the thickness dependence of 

n , namely flat extrema at crhh ≈ followed by inflexion point  and then  by a sharp drop to 0n  value 

under the film thickness decrease (see solid curves in Figures 4 a-b). Therefore effective piezo-

conductance pΩ , being the pressure derivative of n  in accordance with Eq.(8), is nonzero for all film 

thicknesses h and reveals non-trivial thickness dependence at 0≠extp  (see solid curves in Figures 4 c-

d). For =extp 1GPa the piezo-conductance thickness dependence, ( )hpΩ , has two maxima. The first is 

smeared and located at crhh ≈ , whereas the other one is flat and located at crhh < . They are separated 

by a sharp drop (by an order of magnitude), which position corresponds to the inflection point of n . 

For 0=extp  the dependence ( )hpΩ  has one sharp maximum at crhh =  followed by an inflexion point; 

after that the rapid decrease of the dependence ( )hpΩ  occurs with h decrease. For =extp  −1GPa ( )hpΩ  

reaches a plateau at crhh <  that continues up to the ultra-small thickness. The physical origin of the 

non-trivial peculiarities of the effective piezo-conductance thickness dependence is the interplay of the 

h-dependent built-in field and polarization contributions to the electronic state.  

Note that the biggest differences ( ) ( )00 <−> extext pnpn and ( ) ( )00 <Ω−>Ω extpextp pp  

(more than 3 orders of magnitude for the pressure difference 2 GPa) correspond to the film thickness 

crhh ~  (see vertical green double arrows in Figures 4a-b). The changes of n  by orders of magnitude 

under application of positive and negative pressures can indicate the appearance of high-conductivity 

(HC) and low-conductivity (LC) states in a thin film with thickness a bit higher than hcr, in which swing 

can be ruled by flexoelectric coupling. Using the analogy with mechanical control of electro-resistive 

switching in MIECs (piezo-chemical effect) [18], the predicted effect makes it possible to control the 

non-volatile electro-resistive switching in FeMICs by changing the film thickness, external pressure and 

flexoelectric coupling.  

The impact of the Vegard mechanism on the size effects is weak in comparison with the 

flexoelectric coupling, but the thickness dependence of the piezo-conductance allows one to see the 

difference between W = 0 and W = 3 Å3 by comparison of Figure 4 c and 4d.  
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Figure 2. Thickness dependence of the average spontaneous polarization SP3  (a, b) and effective piezo-response 

effR3  (c, d) of ferroelectric PbZr0.5Ti0.5O3 calculated at RT for different values of external pressure pext = −109 Pa, 

0, +109 Pa (shown near the curves) and flexoelectric coefficients F13=F33=0 (dashed curves); F13=1×10-11 m3/C, 

F33=3×10-11 m3/C (solid curves). Vegard coefficient is W=0 Å3 (a, c) and W=3 Å3 (b, d). Other parameters are 

listed in Table I.  
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Figure 3. Thickness dependence of average strain 33u  (a, b) and effective elastic compliance effS33  (c, d) of 

ferroelectric PbZr0.5Ti0.5O3 calculated at RT for different values of external pressure pext = −109 Pa, 0, +109 Pa 

(shown near the curves) and flexoelectric coefficients F13=F33=0 (dashed curves); F13=1×10-11 m3/C, F33=3×10-11 

m3/C (solid curves). Vegard coefficient is W=0 Å3 (a, c) and W=3 Å3 (b, d). Other parameters are listed in Table 

I.  
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Figure 4. Thickness dependence of the average electron concentration n  (a, b) and effective piezo-conductance 

pΩ  (c, d) of ferroelectric PbZr0.5Ti0.5O3 calculated at RT for different values of external pressure pext = −109 Pa, 0, 

+109 Pa (shown near the curves) and flexoelectric coefficients F13=F33=0 (dashed curves); F13=1×10-11 m3/C, 

F33=3×10-11 m3/C (solid curves). Green arrows indicate the difference between high-conductivity (HC) and low-

conductivity (LC) states. Vegard coefficient is W=0 Å3 (a, c) and W=3 Å3 (b, d). Other parameters are listed in 

Table I.  

 
Our theoretical results and predictions can be verified by direct comparison to experimental data 

obtained in thin ferroelectric-semiconductor films by advanced PFM and C-AFM methods. In particular 

the dependences of the effective piezo-response and piezo-conductance measured simultaneously (i.e. in 

situ) for different film thicknesses at different applied pressures are required. In principle, the current 

state-of-the-art allows such studies, and we hope that the developed theoretical framework will stimulate 
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further studies. Furthermore, derived expressions for the strain field, effective elastic compliance, piezo-

response and piezo-conductance (see e.g. Eqs.(7)-(10)), which include the dependence on the film 

thickness, built-in field, external pressure and flexoelectric coefficients, can be used for optimization of 

the thin ferroelectric film parameters to reach better performances and so they can quantitatively 

rationalize future experimental observations. 

 

IV. Conclusion 

Flexocoupling impact on the size effects of the spontaneous polarization, effective piezo-response, 

elastic strain and compliance, carrier concentration and piezo-conductance have been calculated in thin 

films of ferroelectric mixed-type semiconductors within LGD-approach combined with classical 

electrodynamics and semiconductor properties description. Analysis of the self-consistent calculation 

results revealed that the thickness dependences of aforementioned physical quantities, calculated at zero 

and nonzero flexoelectric coupling, are very similar without applied pressure, but become strongly 

different under the application of external pressure pext.  

Without flexoelectric coupling the studied physical quantities manifest pronounced peculiarities 

(disappearance, divergences or sharp maxima, breaks) if the film thickness h approaches the critical 

thickness hcr of the ferroelectricity existence. We derived analytically how the value of hcr depends on 

the flexocoupling constants, applied pressure pext, surface energy coefficients and material parameters. 

Negative pressure pext<0 decreases the critical thickness hcr while a positive one pext>0 leads to an 

opposite trend.  

The combined effect of flexoelectric coupling and external pressure induces the polarizations at 

the film surfaces. The surface polarizations cause the built-in field that destroys the thickness-induced 

phase transition to the paraelectric phase at crhh =  and induces the electret-like state with irreversible 

spontaneous polarization at crhh < . The built-in field leads to the noticeable increase of the average 

strain and elastic compliance under the film thickness decrease below crh  that scales as 1/h at small 

thicknesses h. The increase is conditioned by different build-in surface polarizations at small enough 

extrapolation lengths, since corresponding built-in field hpFE ext
effBI

33~  scales as 1/h at small 

thicknesses h ( effF33  is the effective flexocoupling constant).  

The built-in field induces non-monotonic thickness dependence of free electron density n  for 

all film thicknesses h including the range of small thickness crhh ≤ . Corresponding effective piezo-

conductance pΩ  is nonzero for all film thicknesses h and its thickness dependence is non-monotonic 

and non-trivial. The physical origin of the peculiarities of the electron concentration and effective piezo-

conductance thickness dependences is the interplay of the h-dependent built-in field and polarization 
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impact on the electronic state. The impact of the Vegard mechanism on the size effects is weak as 

anticipated for the donor-blocking boundary conditions, but its influence on the thickness dependence of 

the piezo-conductance is notable. 

The changes of n  and pΩ  by 3 orders of magnitude under application of positive and negative 

external pressure of 1 GPa can indicate the appearance of high- and low- conductivity states in a thin 

film with thickness a bit higher than hcr, which swing can be ruled by pressure magnitude and 

flexoelectric coupling. The predicted effect can pave the way for the size effect control of piezo-resistive 

switching in FeMIECs facilitated by flexoelectric coupling.  

Obtained theoretical results can be of fundamental and applied interest for the thin ferroic films 

physics, semiconductor physics, modern interferometry and Scanning Probe Microscopy development. 

Predicted non-trivial behavior of the elastic properties and piezo-conductance are waiting for 

experimental verification by modern SPM and precise interferometry methods.  
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