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For multicomponent electron scattering states, we derive a general relation between the Wigner group delay

and the Bohmian dwell time. It is found that the definition of group delay should account for the phase of the

spinor wave functions of propagating modes. The difference between the group delay and dwell time comes

from both the interference delay and the decaying modes. For barrier tunneling of helical electrons on a surface

of topological insulators, our calculations including the trigonal-warping term show that the decaying modes

can contribute greatly to the group delay. The derived relation between the group delay and the dwell time is

helpful to unify the two definitions of tunneling time in a quite general situation.

I. INTRODUCTION

For various quantum tunneling devices, the time scale of

tunneling processes is a key parameter in performance eval-

uation. However, the lack of a time operator in quantum

mechanics renders the definition of a physical tunneling time

controversial1–12. Several time characteristics4,5 have been in-

troduced to describe different or complementary aspects of

electron dynamics and can be extracted from corresponding

optical or transport measurements7. Recently, the state-of-

the-art ultrafast laser technology has been utilized to mea-

sure tunneling time delay during the strong field ionization of

atoms8–12. This progress promises to clarify the applicability

or physical regimes of different definitions of tunneling time.

The Wigner group delay and Bohmian dwell time, as two

definitions of tunneling time, are considered well established4.

The group delay (also called phase time) τg is expressed by the

energy derivative of the scattering phase2,6. The dwell time τd
represents the time spent by a particle following a Bohmian

trajectory in the scattering region3,12. It concerns the entire

wave function in the scattering region and does not distinguish

transmission and reflection. Therefore τd was found to be re-

lated to the lifetime of corresponding resonant state12. For

a one-dimensional (1D) barrier tunneling problem on scalar

Schrödinger particles, Winful6 has found that the group de-

lay equals the dwell time plus a self-interference delay. The

self-interference effect arises from the overlap of incident and

reflected waves at the entrance of the scattering region. Re-

cently, the Winful relation has been generalized to systems

made of graphene monolayer13–18 or bilayer19. It is commonly

believed that for Dirac particles in graphene, the dwell time al-

ways equals the group delay13–17,19. However, in Ref. 18 it is

shown that τd = τg holds only for some special cases includ-

ing Klein tunneling.

In this work, we explore the general relation between the

dwell time and group delay for multicomponent electron scat-

tering states. It is found that in multicomponent electron sys-

tems the group delay should be redefined to account for the

uncertainty of scattering phase. The difference τg − τd is

contributed by both the interference delay and the evanescent

modes. To illustrate the contribution of evanescent modes, we

calculate the two tunneling times τg and τd for barrier tunnel-

ing of helical electrons on a surface of topological insulators

where the trigonal-warping term is included.

II. MODEL AND FORMALISM

We begin with a 1D system schematically depicted in

Fig. 1, which is described by the Hamiltonian (under the unit

with ~ = 1)

Ĥ = A0 +
N
∑

r=1

Ark̂
r
x, (1)

where k̂x = −i∂x is the momentum along the transport direc-

tion,N is the highest order of momentum in the Hamiltonian,

Ar (r = 0,1,...,N ) is a M ×M Hermitian matrix, and AN

is invertible. For simplicity, we assume that only A0 varies

with the position x. Our results hold even for the general

situation that all Ar (0 ≤ r ≤ N ) are position-dependent.

In the Landauer-Buttiker frame, transport problems in many

systems ranging from nanowires with Majorana fermions20,21

to electron waveguides with spin-orbit interaction22 or topo-

logical edge states23, can be reduced to solve the stationary

Schrödinger equation ĤΨ = EΨ. Here Ψ is an eigen wave

function with energy E.

In the left lead (x < 0) where A0(x) = A0(−∞) is con-

stant, the Hamiltonian has plane-wave-like solutions (called

modes) Φ(x) = ψ exp(ikx). The momentum k and related

spinor ψ can be determined from an eigen problem (see Ap-

pendix A). For a propagating mode with real momentum k,

the propagation direction is identified from its mean velocity

vk =
∂E

∂k
=

Φ†v̂Φ

Φ†Φ
, v̂ =

∂Ĥ

∂k̂x
. (2)

Hereafter all propagating modes are normalized to have a unit

velocity, i.e., Φ†v̂Φ = ±1 or ψ†ψ = 1/|vk|. We denote the

set of left-decaying modes (with Imk < 0) by LD and send

the left-propagating modes (with Imk = 0 and vk < 0) to

the set LP . For the incidence from a right-propagating mode

Φin(x) = ψin exp(ikinx), the wave function in the left lead

is written as

Ψ(x) = Φin(x) +
∑

j∈LP∪LD

rjψj exp(ikjx), x < 0. (3)
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FIG. 1: (Color online) Schematic illustration of the considered sys-

tem. The scattering region spans the region 0 < x < L. The incident

wave is depicted by the black thick solid arrow. The D = MN/2 re-

flected (transmitted) waves with amplitude r1,r2,...,rD (t1,t2,...,tD)

are presented as blue (red) arrows. Solid/dotted arrows are for prop-

agating/evanescent modes.

Here rj is the reflection amplitude of the mode j.
In the right lead (x > L) with A0(x) = A0(+∞), one

can also find NM modes where the right-decaying (right-

propagating) modes comprise the set RD (RP ). The scat-

tering state Ψ in the right lead admits the form

Ψ(x) =
∑

j∈RP∪RD

tjψj exp[ikj(x− L)], x > L. (4)

Here tj is the transmission amplitude of the mode j. The con-

servation of probability current requires

T +R = 1, T =
∑

j∈RP

|tj |2, R =
∑

j∈LP

|rj |2, (5)

where T andR are the transmission and reflection probability

due to the incident wave Φin.

Under the normalization Φ†
inv̂Φin = 1, the Bohmian dwell

time in the scattering region (0 < x < L) is defined as3,12

τd =

∫ L

0

Ψ†(x)Ψ(x)dx. (6)

The Wigner group delay is given by the weighted sum of

transmission and reflection group delays4,6

τ̃g = Im(
∑

j∈LP

r̄j
∂rj
dE

+
∑

j∈RP

t̄j
∂tj
dE

) (7)

=
∑

j∈LP

|rj |2
∂ arg rj
∂E

+
∑

j∈RP

|tj |2
∂ arg tj
∂E

.

It should be noticed that this definition has a phase-related

uncertainty. Firstly, the scattering state is unchanged when

its wave function is multiplied by a global phase factor, i.e.,

Ψ(x) → Ψ(x) exp(iθ). Secondly, we can choose arbitrar-

ily the phase of the spinor wave function of any mode, i.e.,

ψj → ψj exp(−iθj) for j ∈ LP ∪ RP . Here θ and all

θj depend smoothly on the energy E. To keep the scatter-

ing state unchanged after the two replacements, one has to do

the transformation rj → rj exp[(i(θj + θ)] for j ∈ LP and

tj → tj exp[(i(θj + θ)] for j ∈ RP . It is evident that τg de-

fined in Eq. (7) will change under this transformation. This is

a reason for the discrepancy between Refs. 13–17 and Ref. 18.

The definition of the group delay should be free of the artifi-

cial phase choice for either the scattering state or the spinor

wave function of modes. We will show that the proper defini-

tion of group delay appears naturally in the expression of the

dwell time.

A. Bilinear probability current density

To express τd in terms of the scattering amplitudes (rj and

tj) and the lead information (kj and ψj), it is useful to in-

troduce a bilinear function related to the probability current

density. For the Hamiltonian (1) and an eigenstate Ψ, the

probability current density can be written as J(Ψ,Ψ) where

the bilinear function J(Ψ1,Ψ2) reads

J(Ψ1,Ψ2) =

N
∑

r=1

r−1
∑

s=0

(k̂sxΨ1)
†
Ar(k̂

r−1−s
x Ψ2). (8)

Two properties of J (proved in Appendix B) will be utilized

hereafter. One is that for any two states Ψ1 and Ψ2, we have

Ψ†
1(ĤΨ2)− (ĤΨ1)

†Ψ2 ≡ k̂xJ(Ψ1,Ψ2). (9)

In Appendix D, we show that even for a spatially-varying

Ar (0 ≤ r ≤ N) there also exists a complicated bilinear func-

tion J satisfying Eq. (9).

Another useful property of J is that if Φ1(x) =
exp(ik1x)ψ1 and Φ2(x) = exp(ik2x)ψ2 are two modes in

a lead with energy E1 and E2 and satisfying k2 6= k̄1, then

J(Φ1,Φ2) = (E2 − E1)
exp[i(k2 − k̄1)x]

k2 − k̄1
ψ†
1ψ2. (10)

Following Smith3 and Winful6, we differentiate ĤΨ = EΨ
with respect to E and yield

Ψ†Ψ = Ψ†(Ĥ
∂Ψ

∂E
)− (ĤΨ)†

∂Ψ

∂E
= −i∂xJ(Ψ,

∂Ψ

∂E
).

Here we have used Eq. (9) with Ψ1 = Ψ and Ψ2 = ∂Ψ
∂E

. This

equation results in

τd = i[J(Ψ,
∂Ψ

∂E
)|x=0 − J(Ψ,

∂Ψ

∂E
)|x=L], (11)

which relies on the wave function (3) and (4) in the left and

right lead, but in a very complicated and implicit way.

B. Expression of the dwell time

To obtain the expression of τd, an alternative approach is

to consider a scattering state Ψ2 very close to Ψ. This state

satisfies ĤΨ2 = (E + ∆E)Ψ2. Its wave function in the left
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and right lead is similar to Eqs. (3) and (4), but with the re-

placement kj → k
(2)
j , ψj → ψ

(2)
j , rj → r

(2)
j , and tj → t

(2)
j .

Here we assume that near the energy E the momentums kj of

all modes in a lead differ from each other and vary smoothly.

This restriction can be relaxed if the lead has some conserva-

tion laws.

Using Eq. (9) with Ψ1 = Ψ and this Ψ2 and integrating

both sides over x, we arrive at

∫ L

0

Ψ†Ψ2dx =
i

∆E
[J(Ψ,Ψ2)|x=0 − J(Ψ,Ψ2)|x=L]. (12)

In the limit of ∆E → 0, the left-hand side of Eq. (12) tends to

τd. The right-hand side of Eq. (12) can be calculated straight-

forward with the help of Eq. (10). In its expression, the terms

that diverge (converge) in the limit of ∆E → 0 are combined

as iQ (iP ), where P and Q are written as

P =
∑

j1 6=j2∈L

r̄j1r
(2)
j2

ψ†
j1
ψ
(2)
j2

k
(2)
j2

− k̄j1
−

∑

j1 6=j2∈R

t̄j1t
(2)
j2

ψ†
j1
ψ
(2)
j2

k
(2)
j2

− k̄j1

+
∑

j∈LD

r̄jr
(2)
j

ψ†
jψ

(2)
j

k
(2)
j − k̄j

−
∑

j∈RD

t̄jt
(2)
j

ψ†
jψ

(2)
j

k
(2)
j − k̄j

+
∑

j1∈L

[r̄j1
ψ†
j1
ψ
(2)
in

k
(2)
in − k̄j1

+ r
(2)
j1

ψ†
inψ

(2)
j1

k
(2)
j1

− kin
], (13)

Q =
∑

j∈LP

r̄jr
(2)
j

ψ†
jψ

(2)
j

k
(2)
j − kj

+
ψ†
inψ

(2)
in

k
(2)
in − kin

−
∑

j∈RP

t̄jt
(2)
j

ψ†
jψ

(2)
j

k
(2)
j − kj

. (14)

Here the set L = LD ∪LP and R = RD ∪RP . If a general

relation between the dwell time and the group delay exists,

Q should be related to the group delay. The reason is that

the group delay concerns the energy derivative of scattering

phases which can appear only in lim∆E→0Q. The expression

of Q up to O(∆E) is derived in Appendix C, which is purely

imaginary. The limit τg = − lim∆E→0 ImQ is then obtained,

τg = Im[
∑

j∈RP

t̄jψ
†
j (tjψj)

′

ψ†
jψj

+
∑

j∈LP

r̄jψ
†
j(rjψj)

′

ψ†
jψj

]

− Im
ψ†
inψ

′
in

ψ†
inψin

, (15)

where the prime indicates the derivative with respect to the

energy E.

We define τg as the generalized group delay. In the case

that the spinor parts ψj of all propagating modes have no en-

ergy dependence, τg reduces to Eq. (7). The difference be-

tween Eq. (7) and (15) comes from the presence of phase in

the spinor wave function of propagating modes. Obviously, τg
is independent of the phase choice for the spinor wave func-

tion of modes. Using Eq. (5), one can also check that the

global phase change of the scattering state does not influence

τg . This feature requires the occurrence of phase information

of the incident wave [the last term in Eq. (15)].

Taking the limit on both sides of Eq. (12), we get the rela-

tion τd = τg − lim∆E→0 ImP , which together with Eq. (13)

leads to

τg = τd + τe + τi, (16)

τe =
∑

j∈RD

|tj |2ψ†
jψj

2|Imkj |
+

∑

j∈LD

|rj |2ψ†
jψj

2|Imkj |
, (17)

τi = Im[
∑

j∈L

2rjψ
†
inψj

kj − kin
+

∑

j1 6=j2∈L

r̄j1rj2ψ
†
j1
ψj2

kj2 − k̄j1

−
∑

j1 6=j2∈R

t̄j1tj2ψ
†
j1
ψj2

kj2 − k̄j1
]. (18)

Equations (15)-(18) are the central results of this work. Due

to the velocity normalization (and ~ = 1), ψin, rjψj and tjψj

in these equations have the same unit as
√

∂kin/∂E. The dif-

ference between the generalized group delay τg and the dwell

time τd equals the interference delay τi plus τe—the contri-

bution only from evanescent waves. Note that τe is always

nonnegative while τi can be negative. τi arises not only from

the interference between the reflected waves and the incident

wave (self-interference), but also from the interference among

scattered waves. Evanescent waves can also contribute to τi.
The presence of τe indicates that the escape of the entire wave

function through the scattering region is not only via propa-

gating modes but also by means of evanescent modes in leads.

Note that although the scattering amplitude rj and tj depend

on the phase choice of either the scattering state or the spinor

wave function of propagating modes, the values of τe and τi
in Eqs. (17) and (18) have no such a dependence.

C. Self-interference delay in graphene systems

In the systems6,13–18 with NM = 2, the evanescent modes

cannot coexist with propagating modes and thus τe = 0.

In these systems, the self-interference delay vanishes when

perfect transmission occurs (rj = 0). One such system

is described by the 1D Schrödinger equation [−k̂2x/(2m) +
V (x)]Ψ = EΨ with mass m and scalar potential V (x). For

ψj > 0 the self-interference delay calculated directly from

Eq. (18) is the same as in Ref. 6, i.e., τi = −Imr/[2E −
2V (−∞)].

Another such system is graphene-based devices where the

leads are described by the massless Dirac Hamiltonian13–18

Ĥlead = vF (σxk̂x + σy k̂y).

Here vF > 0 is the Fermi velocity, σx, σy together with

σz are three Pauli matrices, and the transverse momentum

k̂y = −i∂y is conserved. We write the incident, reflected,

and transmitted waves as the same in Ref. 13 (but with a unit
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velocity)

Ψin(x) = [1, seiφ]T eikinx/
√
2vin,

Ψre(x) = r[1,−se−iφ]T e−ikinx/
√
2vin, (19)

Ψtr(x) = t[1, seiφ]T eikin(x−L)/
√
2vin,

where s = sign(E), kin + iky = |E| exp(iφ)/vF , and vin =
vF cosφ. The group delay is given by τg = Im(rr′ + tt′) −
|r|2φ′. The dwell time is derived directly from Eq. (11) and

reads τd = τg −Re(re−iφ)φ′/ cosφ. From Eq. (18) we get

τi = − sinφ

|E| cos2 φRe(re−iφ). (20)

This expression is similar to that in Ref. 18 and satisfies τg =
τd + τi.

For a rectangular barrier with height V0 and width L, the

reflection amplitude r for the incident and reflected waves (19)

can be written as24

r = −eiφEV0 sinφ sin(kmL)/(kmzv2F ). (21)

Here km =
√

(E − V0)2 − k2y and z = kin cos(kmL) −
i(k2in − EV0v

−2
F ) sin(kmL)/km. Substituting Eq. (21) into

(20), we yield

τi =
EV0 sin

2 φ

v2F |z|2 cosφ
sin(kmL)

kmvF
cos(kmL). (22)

We see that under the rectangular barrier τi is generally finite.

It vanishes only at reflection zeros (where φ = 0 or kmL/π is

integer) or in the case that kmL/π is half-integer.

III. TUNNELING TIME OF ELECTRONS IN

TOPOLOGICAL SURFACE STATES

We take helical electrons in topological surface states25 as

an example to examine numerically the effect of evanescent

modes on the tunneling time. The considered topological in-

sulator (Bi2Te3 or Bi2Se3) has only one gapless Dirac cone

in its surface bands and can exhibit a hexagonal snowflake

Fermi surface26–29. Near the Dirac point, the effective surface

Hamiltonian including the trigonal warping term26 and a rect-

angular barrier is written as

Ĥ = vF (σy k̂x−σxk̂y)+λ(k̂3x − 3k̂xk̂
2
y)σz +V (r)σ0. (23)

Here the momentum k̂y = −i∂y is along the Γ-M direction,

λ is the warping parameter, and σ0 is a unit matrix. For sim-

plicity, the term (k̂2x + k̂2y)/2m is neglected. In the numerical

calculation, the two material parameters for Bi2Te3 are taken

as26,27 vF = 255 meV nm and λ = 250 meV nm3.

The potential barrier has a width L and height V0. Due

to the anisotropy of the warping term, we consider two ori-

entations of the applied barrier: (1) the x direction where

V = V (x) and the momentum q = ky is conserved; (2) the

y direction where V = V (y) and the momentum q = kx is

λ≠0, V(x)

λ≠0, V(y)

λ=0
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FIG. 2: (Color online) Transmission (a), group delay τg (b) and inter-

ference delay τi (c) plotted as a function of conserved momentum q,

for helical electrons described by Eq. (23) in the single-mode trans-

port regime. The red solid and blue dotted lines are for the barrier

along the x and y direction. The results for the linear-in-momentum

Hamiltonian (λ = 0) is presented as black dashed lines. The param-

eters are E = 180 meV, V0 = 300 meV, and L = 10 nm.

a good quantum number. Here V (x) = V0Θ(x)Θ(L − x)
with Θ(x) the Heaviside step function. For the two barrier

orientations, an effective 1D Hamiltonian Ĥ(q) is obtained

from Eq. (23) by the replacement k̂y → q or k̂x → q. The

scattering matrix method30 is adopted to obtain the scattering

states of Ĥ(q) and then the transmission probability T and

the tunneling time. Note that one of the operator σx and σy
transforms Ĥ(q) into Ĥ(−q). As a result, both the transmis-

sion probability and the tunneling time determined by Ĥ(q)
are even functions of q. We calculate the dwell time directly

from the definition Eq. (6) and indirectly from Eq. (16). Our

numerical results confirm the agreement of the two methods.

For a small energy E such as E = 180 meV, the constant-

energy surface in leads looks like a circle or hexagon31. For

either the barrier V (x) or V (y), only a single ingoing mode

can exist in leads. In Fig. 2, we plot the transmission T , the

group delay τg , and the interference delay τi as a function of

conserved momentum q. The barrier parameters are V0 = 300
meV and L = 10 nm. In comparison with the results for

the linear-in-momentum Hamiltonian (λ = 0), one can see

that the warping term can enhance (suppress) the transmis-

sion and shorten (extend) the group delay as the transport is

along the x (y) direction. For λ = 0, Eq. (23) is equiva-

lent to the graphene Hamiltonian and thus the interference

delay is given in Eq. (22). τi is noticeable only for |q| near

E/vF due to the factor sin2 φ/ cosφ. For the barrier V (x)
the warping term changes slightly the value of τi. In contrast,

along the transport y direction τi can be altered drastically.



5

0.5

q (1/nm)
0.0 1.51.0

−0.05

0.00

0.05

0.10

0.0

0.5

1.0

1.5

2.5

2.0

3.0
T

im
e
 (

p
s
)

T
, 

N
  

, 
k
in

m

N
T

kin

m

τ  d

τ  g

(a)

(b)

 τ  e
τ  i

L=10 nm

V  =300 meV
0

FIG. 3: (Color online) Transmission (a) and tunneling time (b) as a

function of conserved momentum q for helical electrons described by

Eq. (23) incident from the mode with the largest momentum kin. The

transport is along the x direction. The number of right-propagating

modes Nm and kin in the left lead are plotted in (a) for convenience.

The parameters are E = 500 meV, V0 = 300 meV, and L = 10 nm.
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FIG. 4: (Color online) Same as Fig. 3 but for the potential barrier

along the y direction.

When q is near the critical value qc above which propagating

modes disappear, τi can approach −0.35 ps while τg can be

up to 0.36 ps. In the transmission-blocked regime, τd (not

shown here) changes slightly. This observation indicates that

τe = τg − τd − τi is remarkable (up to 0.7 ps) for q near qc.

When the incident energy meets E > 1.45
√

v3F /λ ≈ 373

meV, the number of ingoing modesNm in a lead can approach

three (two) for the transport x (y) direction31. In Fig. 3 (Fig. 4)

we take a high energy E = 500 meV to illustrate the fea-

tures of tunneling time in the case of multichannel transport

along the x (y) direction. The incident wave has the largest

momentum kin among ingoing modes in leads. In the region

with T > 0.5 (and Nm = 1), the τd − q curve almost co-

incides with the τg − q curve. For q near E/vF no trans-

mission channel is open in the barrier region. Accordingly,

the group delay goes up quickly which is mainly contributed

by the interference delay. In the region with Nm > 1, no

evanescent mode appears in leads and thus τe = 0. More

interesting features are seen near the onset of new ongoing

modes. Here a sharp peak of the group delay forms, while

the dwell time changes smoothly. Their difference is mainly

caused by the evanescent waves. This can be understood qual-

itatively as follows. To remove the effect of evanescent waves

in the left lead with decaying length Ld, one can extend the

scattering boundary x = 0 to x = −xL < 0 with xL ∝ Ld

which is equivalent to increase the original reflection phase by

kinxL. Near the onset of a new ongoing mode, xL increases

quickly with the energy while kin varies slowly. Therefore,

these evanescent waves can contribute remarkably to τg . An-

other transition point of Nm is shown in Fig. 3(a), where a

sudden drop occurs in the kin − q curve. This variation arises

from the concave hexagrams in the snowflake equal-energy

surface26,31. Near this transition, τd jumps with a small step

while τg has a sharp peak. Their difference are caused both

by the evanescent waves and interference delay.

IV. CONCLUSIONS AND REMARKS

In summary, for electron scattering states with many com-

ponents we have derived a general relation between the

Wigner group delay τg and Bohmian dwell time τd. Because

the phase of scattering amplitudes is related to the spinor wave

functions of corresponding propagating modes, it is necessary

to redefine the group delay τg . The difference between τg and

τd comes from both the interference delay and the evanescent

modes. For electrons in topological surface states transport-

ing through an electric barrier, we have examined the effect of

trigonal warping on the tunneling time. The system with trigo-

nal warping term can be in the multimode transport regime. It

is found that near the onset of new modes, τg increases quickly

and is contributed mainly by the evanescent modes.

For many quasi-1D systems like quantum waveguides with

spin-orbit interaction22 and quantum spin-Hall bars23, we can

represent their Hamiltonian in terms of a common set of or-

thogonal basis functions30 and yield Eq. (1) after a proper

truncation. The relation between τg and τd in our work can

be used to study the tunneling time in these systems.

This work was supported by the NSF EPSCoR (Grant

No. 1010094) and the National Natural Science Foundation

of China (Grant No. 11174252).
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Appendix A: Plane-wave solutions in a lead

In a lead with constant Ar (0 ≤ r ≤ N), a plane-wave

solution ψ exp(ikx) satisfies

[A0 − EIM ]ψ +

N
∑

r=1

krArψ = 0. (A1)

Here IM is the M × M unit matrix. Equation (A1) can be

transformed into an equivalent eigen problemBX = kX with

B =











0 IM 0 ... 0
0 0 IM ... 0
. . . . .
0 0 0 ... IM

BN1 BN2 BN3 ... BNN











, (A2)

X =







ψ
kψ
...

kN−1ψ






.

Here BN1 = −A
−1
N (A0 − EIM ), BNr = −A

−1
N Ar−1(r =

2, ..., N). The matrix B has NM eigen vectors X1, X2, ...,

XNM with corresponding eigen values k1, k2, ..., kNM . The

first M components of Xj comprise a vector ψj .

Appendix B: Probability current density in the considered

one-dimensional systems

The time-dependent Schrödinger equation for the wave

function Ψ and its Hermitian conjugate Ψ† reads

A0Ψ+

N
∑

r=1

Ark̂
r
xΨ = i∂tΨ, (B1)

Ψ†
A0 +

N
∑

r=1

(k̂rxΨ)†Ar = −i∂tΨ†. (B2)

We multiply Eq. (B1) with Ψ† from the left and multiply

Eq. (B2) with Ψ from the right. After some algebra, one gets

i∂t(Ψ
†Ψ) =

N
∑

r=1

[Ψ†
Ar(k̂

r
xΨ)− (k̂rxΨ)†ArΨ]

= k̂xJ(Ψ,Ψ), (B3)

where J(Ψ,Ψ) is the probability current density, and the func-

tion J(Ψ1,Ψ2) is defined in Eq. (8) in the text.

The first property of J , Eq. (9) in the text, can be checked

by using the identity

k̂x[(k̂
s
xΨ1)

†
Ar(k̂

r−1−s
x Ψ2)] = (k̂sxΨ1)

†
Ar(k̂

r−s
x Ψ2)

− (k̂s+1
x Ψ1)

†
Ar(k̂

r−1−s
x Ψ2).

The second property of J , Eq. (10) in the text, is proved as

J(Φ1,Φ2) =

N
∑

r=1

r−1
∑

s=0

k̄s1k
r−1−s
2 ψ†

1Arψ2 exp[i(k2 − k̄1)x]

= exp[i(k2 − k̄1)x]

N
∑

r=1

kr2 − k̄r1
k2 − k̄1

ψ†
1Arψ2

= F

N
∑

r=0

[ψ†
1(Ark

r
2ψ2)− (ψ†

1Ark̄
r
1)ψ2]

= F [ψ†
1(E2ψ2)− (E1ψ

†
1)ψ2]

= (E2 − E1)Fψ
†
1ψ2.

Here the factor F = exp[i(k2 − k̄1)x]/(k2 − k̄1). In the

third line we have used
∑N

r=0 Ark
r
jψj = Ejψj for the mode

Φj(j = 1, 2).

In the case k2 = k̄1, J(Φ1,Φ2) becomes

N
∑

r=1

rkr−1
2 ψ†

1Arψ2 = Φ†
1(υ̂Φ2),

where the velocity operator

v̂ =
∂Ĥ

∂k̂x
=

N
∑

r=1

rAr k̂
r−1
x .

Thus for a propagating mode Φ(x) = ψ exp(ikx) in a lead,

the mean velocity vk equals J(Φ,Φ)/(Φ†Φ).

For N = 2, one has

J(Ψ,Ψ) = i∂xΨ
†
A2Ψ− iΨ†

A2∂xΨ+Ψ†
A1Ψ.

In this case the probability current density J(Ψ,Ψ) can

be expressed as Re(Ψ†v̂Ψ), Note that32 when the relation

J(Ψ,Ψ) = Re(Ψ†υ̂Ψ) holds for any state Ψ, one must have

N ≤ 2.

Appendix C: Expression of the generalized group delay τg

To calculate the limit of Q in Eq. (14), we expand all quan-

tities of the state Ψ2 up to the second order of ∆E,

f(E+∆E) = f(E)+f ′(E)∆E+f
′′

(E)
(∆E)2

2
+...., (C1)
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where the prime denotes the derivative with respect to the en-

ergy E. We get

Q =
∑

j∈LP

r̄j(rj + r′j∆E + ...)
ψ†
j (ψj + ψ′

j∆E + ...)

∆E(k′j + ...)

+
ψ†
in(ψin + ψ′

in∆E + ...)

∆E(k′in + ...)

−
∑

j∈RP

t̄j(tj + t′j∆E + ...)
ψ†
j (ψj + ψ′

j∆E + ...)

∆E(k′j + ...)

=
∑

j∈LP

|rj |2ψ†
jψj

∆E(k′j + ...)
−

∑

j∈RP

|tj |2ψ†
jψj

∆E(k′j + ...)

+
ψ†
inψin

∆E(k′in + ...)
+

∑

j∈LP

r̄jψ
†
j (rjψj)

′

k′j

−
∑

j∈RP

t̄jψ
†
j (tjψj)

′

k′j
+
ψ†
inψ

′
in

k′in
+O(∆E). (C2)

The sum of the first three terms in the last equation is further

calculated as

∑

j∈LP

|rj |2ψ+
j ψj(1 −

k′′

j

2k′

j

∆E)

∆Ek′j
+
ψ+
inψin(1 − k′′

in

2k′

in

∆E)

∆Ek′in

−
∑

j∈RP

|tj |2ψ+
j ψj(1− k′′

j

2k′

j

∆E)

∆Ek′j
+O(∆E)

=
∑

j∈LP

|rj |2k′′j
2k′j

+
∑

j∈RP

|tj |2k′′j
2k′j

− k′′in
2k′in

+O(∆E).

Here we have used
∑

j∈LP |rj |2 +
∑

j∈RP |tj |2 = 1 and

the velocity normalization for propagating modes, ψ†
jψj =

±k′j(E). Replacing k′j and k′′j with ±ψ†
jψj and ±[(ψ+

j )
′

ψj +

ψ+
j ψ

′
j ], we find the full expression of Q,

Q =
∑

j∈LP

[|rj |2
(ψ+

j )
′

ψj − ψ+
j ψ

′
j

2ψ†
jψj

− r̄jr
′
j ]

+
∑

j∈RP

[|tj |2
(ψ+

j )
′

ψj − ψ+
j ψ

′
j

2ψ†
jψj

− t̄jt
′
j ]

+
ψ+
inψ

′
in − (ψ+

in)
′

ψin

2ψ†
inψin

+O(∆E). (C3)

From Eqs. (C3) and (13) one can check that both lim∆E→0Q
and lim∆E→0 P are purely imaginary. After some algebra,

we yield Eq. (15) in the text from Eq. (C3).

Appendix D: Probability current density of general

one-dimensional systems

When the matrix Ar (r ≥ 1) is position-dependent, the

term Ark̂
r
x in Eq. (1) should be symmetrized to ensure the

Hermiticity of the Hamiltonian Ĥ . The symmetrized form of

Ark̂
r
x is chosen as

Ĥr ≡ k̂txArk̂
t
x (D1)

if r is an even number r = 2t and

Ĥr ≡ (k̂txArk̂
t−1
x + k̂t−1

x Ark̂
t
x)/2 (D2)

when r is an odd number r = 2t − 1, which has the mini-

mum requirement of the smoothness of Ar(x) [ k̂t−1
x Ar(x) is

piecewise continuous].

There exists a bilinear function J(Ψ1,Ψ2) satisfying

Ψ†
1(ĤΨ2)− (ĤΨ1)

†Ψ2 ≡ k̂xJ(Ψ1,Ψ2). (D3)

We write J = J1+J2+ ...+JN where the probability current

density Jr is due to the Hamiltonian Ĥr for r = 1, 2, ..., N .

Equation (D3) holds when every Ĵr meets

k̂xJr(Ψ1,Ψ2) = Ψ†
1(ĤrΨ2)− (ĤrΨ1)

†Ψ2. (D4)

For an even number r = 2t, we find

Jr = i

t−1
∑

s=0

(−1)s+t[∂sxΨ
†
1∂

t−1−s
x (Ar∂

t
xΨ2)

−∂t−1−s
x (∂txΨ

†
1Ar)∂

s
xΨ2]

= i
∑

s,p≥0

(−1)s+tCp
t−1−s(∂

s
xΨ

†
1∂

p
xAr∂

r−1−s−p
x Ψ2

−∂r−1−s−p
x Ψ†

1∂
p
xAr∂

s
xΨ2). (D5)

We check Eq. (D4) by calculating DJ ≡ (−1)tk̂xJr as

DJ =
∑

s,p≥0

(−1)sCp
t−1−s[∂

s+1
x Ψ†

1∂
p
xAr∂

r−1−s−p
x Ψ2

− ∂r−1−s−p
x Ψ†

1∂
p
xAr∂

s+1
x Ψ2]

+
∑

s,p≥0

(−1)sCp
t−1−s[∂

s
xΨ

†
1∂

p+1
x Ar∂

r−s−p−1
x Ψ2

− ∂r−1−s−p
x Ψ†

1∂
p+1
x Ar∂

s
xΨ2]

+
∑

s,p≥0

(−1)sCp
t−1−s[∂

s
xΨ

†
1∂

p
xAr∂

r−s−p
x Ψ2

− ∂r−s−p
x Ψ†

1∂
p
xAr∂

s
xΨ2]. (D6)

The first line of Eq. (D6) after substituting s+1 → s becomes

∑

p≥0,s≥1

(−1)s−1Cp
t−s[∂

s
xΨ

†
1∂

p
xAr∂

r−s−p
x Ψ2

−∂r−s−p
x Ψ†

1∂
p
xAr∂

s
xΨ2]. (D7)

The second line of Eq. (D6) after substituting p+1 → p turns

to
∑

s,p≥0

(−1)sCp−1
t−1−s[∂

s
xΨ

†
1∂

p
xAr∂

r−s−p
x Ψ2

−∂r−s−p
x Ψ†

1∂
p
xAr∂

s
xΨ2]. (D8)
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After these procedures, we get

DJ =
∑

s,p≥0

(−1)s[Cp
t−1−s − Cp

t−s + Cp−1
t−1−s]

∂sxΨ
†
1∂

p
xAr∂

r−s−p
x Ψ2

+
∑

s,p≥0

(−1)s[−Cp
t−1−s + Cp

t−s − Cp−1
t−1−s]

∂r−s−p
x Ψ†

1∂
p
xAr∂

s
xΨ2

+
∑

p≥0

Cp
t [Ψ

†
1∂

p
xAr∂

r−p
x Ψ2 − ∂r−p

x Ψ†
1∂

p
xArΨ2]

The first and second lines of this equation vanish due to

Cp
t−s = Cp

t−1−s + Cp−1
t−1−s. (D9)

Comparing the last expression of DJ with

Ψ†
1(k̂

t
xArk̂

t
xΨ2)− (k̂txArk̂

t
xΨ1)

†Ψ2

= (−1)t
∑

p≥0

Cp
t [Ψ

†
1∂

p
xAr∂

r−p
x Ψ2 − ∂r−p

x Ψ†
1∂

p
xArΨ2],

we get k̂xJ2t = Ψ†
1(k̂

t
xArk̂

t
xΨ2)− (k̂txArk̂

t
xΨ1)

†Ψ2.

For an odd number r = 2t − 1, We can take I ≡
2Jr(−1)t−1 as

I =

2
∑

p=1

t−p
∑

s=0

(−1)s[∂sxΨ
†
1∂

t−p−s
x (Ar∂

t+p−2
x Ψ2)

+∂t−p−s
x (∂t+p−2

x Ψ†
1Ar)(∂

s
xΨ2)]

=
∑

s,p,q

(−1)sCq
t−p−s[∂

s
xΨ

†
1∂

q
xAr∂

2t−2−s−q
x Ψ2

+∂2t−2−s−q
x Ψ†

1∂
q
xAr∂

s
xΨ2]. (D10)

Then we get DI ≡ ∂xI = T1 + T2 + T3 with

T1 =
∑

s,p,q

(−1)sCq
t−p−s[∂

s+1
x Ψ†

1∂
q
xAr∂

2t−2−s−q
x Ψ2

+∂2t−2−s−q
x Ψ†

1∂
q
xAr∂

s+1
x Ψ2]

=
∑

p,q,s≥1

(−1)s−1Cq
t−p−s+1[∂

s
xΨ

†
1∂

q
xAr∂

r−s−q
x Ψ2

+∂r−s−q
x Ψ†

1∂
q
xAr∂

s
xΨ2],

T2 =
∑

s,p,q

(−1)sCq
t−p−s[∂

s
xΨ

†
1∂

q
xAr∂

r−s−q
x Ψ2

+∂r−s−q
x Ψ†

1∂
q
xAr∂

s
xΨ2],

T3 =
∑

s,p,q

(−1)sCq
t−p−s[∂

s
xΨ

†
1∂

q+1
x Ar∂

2t−2−s−q
x Ψ2

+∂2t−2−s−q
x Ψ†

1∂
q+1
x Ar∂

s
xΨ2]

=
∑

s,p,q

(−1)sCq−1
t−p−s[∂

s
xΨ

†
1∂

q
xAr∂

r−s−q
x Ψ2

+∂r−s−q
x Ψ†

1∂
q
xAr∂

s
xΨ2].

Repeating the same procedure as before, we yield

DI =
∑

s,p,q

(−1)s[Cq
t−p−s − Cq

t−p−s+1 + Cq−1
t−p−s]

× (∂sxΨ
†
1∂

q
xAr∂

r−s−q
x Ψ2 + ∂r−s−q

x Ψ†
1∂

q
xAr∂

s
xΨ2)

+
∑

p,q

Cq
t−p+1[Ψ

†
1∂

q
xAr∂

r−q
x Ψ2 + ∂r−q

x Ψ†
1∂

q
xArΨ2],

where the first term vanishes due to Eq. (D9). The right-hand

side of Eq. (D4) for r = 2t− 1 is expanded as

Ψ†
1(ĤrΨ2) − (ĤrΨ1)

†Ψ2 =
(−i)r
2

∑

p,q

Cq
t−p+1

× (Ψ†
1∂

q
xAr∂

r−q
x Ψ2 + ∂r−q

x Ψ†
1∂

q
xArΨ2),

which together with the last expression of DI gives Eq. (D4).

From Eq. (D3) we know that the probability current density

for a given state Ψ is J(Ψ,Ψ) =
∑N

r=1 J
(r) with J (r) =

Jr(Ψ,Ψ). From Eqs. (D5) and Eq. (D10) one gets

J (2t) = 2Re

t−1
∑

s=0

(k̂sxΨ)†k̂t−1−s
x (A2tk̂

t
xΨ),

J (2t−1) = Re[

t−1
∑

s=0

(k̂sxΨ)†k̂t−1−s
x (A2t−1k̂

t−1
x Ψ)

+

t−2
∑

s=0

(k̂sxΨ)†k̂t−2−s
x (A2t−1k̂

t
xΨ)].
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