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In this work we develop a compact multi-orbital tight-binding model for phosphorene that ac-
curately describes states near the main band gap. The model parameters are adjusted using as
reference the band structure obtained by a density-functional theory calculation with the hybrid
HSE06 functional. We use the optimized tight-binding model to study the effects of disorder on the
anisotropic transport properties of phosphorene. In particular, we evaluate how the longitudinal
resistivity depends on the lattice orientation for two typical disorder models: dilute scatterers with
high potential fluctuation amplitudes, mimicking screened charges in the substrate, and dense scat-
terers with lower amplitudes, simulating weakly bounded adsorbates. We show that the intrinsic
anisotropy associated to the band structure of this material, although sensitive to the type and
intensity of the disorder, is robust.

PACS numbers: 71.20.nr,73.63.-b,71.10.Fd

I. INTRODUCTION

Two-dimensional (2D) materials formed by a few
atomic layers are likely to be featured in high-performing
electronic devices in the near future, thanks to their high
charge mobility, strong gating capabilities, and other un-
usual properties. For nearly a decade, the focus was
primarily on graphene,1 but its use in transistors as a
substitute for silicon has many limitations; in particular,
the absence of a bandgap.2 The focus now has shifted
to others 2D material. Among these, monolayer black
phosphorus, known as phosphorene, is particularly at-
tractive. Phosphorene has high charge mobility (typi-
cally 100 − 1000 cm2V−1s−1),3,4 its band gap spans a
wide range in the visible spectrum, and presents a strong
in-plane anisotropy.5–7

Current methods for calculating the band structure
and optical and electronic properties of phosphorene
include density functional theory (DFT). Attempts at
studying the electronic properties of phosphorene have
also been made using a self-consistent pseudopotential
approach.8–11 Those approaches are highly successful in
predicting the overall trend of the band structure, but
they can be computationally expensive for calculating
the transport properties.

Previous works dealing with phosphorene focused
on obtaining the optical and electronic properties us-
ing tight-binding models with only one pz orbital per
atom.12–15 However, these simple models do not capture
the anisotropy in the electronic and optical properties
accurately.

Differently from graphene, the atomic layers in phos-
phorene are not perfectly flat; instead, phosphorene has
a puckered surface due to the sp3 hybridization. Thus,
for an accurate description of the electronic properties in-
cluding the anisotropy, both p and s orbitals have to be
taken into account. Recently, a tight-binding model has
been developed which includes nearest and next-nearest

neighbor interactions.16 While this model offers only a
qualitative view of the behavior of the band structure,
it also provides reasonable predictions in agreement with
experimental results, and can serve as a good starting
point for our model.
In this work, we develop an effective tight-binding

model for phosphorene through a optimization procedure
of the tight-binding parameters. The tight-binding model
is built with an orthogonal basis composed of all 3s and
3p orbitals of phosphorus. It reproduces very accurately
the energy bands and reasonably well the orbital compo-
sitions near the extremes of the conduction and valence
bands, as obtained by DFT calculations based on the
hybrid HSE06 functional,17,18 referred herein as DFT-
HSE06.
Using this optimized tight-binding model, we calculate

the linear conductance of phosphorene for two different
lattice orientation (zigzag and armchair) in the presence
of background potential fluctuations that mimic disor-
der. Our aim is to investigate the in-plane anisotropy in
the transport when in presence of disorder. We consider
two limits of the Gaussian-correlated potential fluctua-
tions: low amplitudes with high density, and high am-
plitude with low density. In both regimes, we find that
the intrinsic anisotropy due to the electronic structure is
manifest in the resistivity of phosphorene.
Phosphorene samples are shown to be very sensitive

to the environment,19–21 therefore, the role of disorder
represents an important issue, with both theoretical and
practical relevances. First-principle studies of the effects
of vacancies,22 substitutional atoms,23 oxidation,24 and
impurities25 have been only carried out so far for small
systems due to the high computational cost. However,
the computation of transport properties in particular re-
quires the carriers to be in the proper dynamical regime
(diffusive in most cases), which in turn can only be sim-
ulated in large enough samples. Therefore, the influence
of disorder on the transport properties of phosphorene is
not yet settled.
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The remaining of the paper is organized as follows. In
Sec. II, the optimization procedure used in our tight-
binding model to calculate the band structure is pre-
sented. In Sec.III, we compare the band structure ob-
tained from the DFT-HSE06 and from our optimized
tight-binding model. In Sec. IV, the band structure
around the high-symmetry Γ-point is analyzed, allowing
us to obtain accurate values for the effective masses in
zigzag and armchair directions. In Sec.V, we study the
effects of disorder on the transport properties of phospho-
rene, specially on the anisotropic resistivity. Finally, in
Sec. VI, we draw our conclusions. The main text is sup-
plemented by Appendix A containing technical aspects
of the simplified LCAO method calculations.

II. MODEL

The crystal structure of monolayer phosphorene is il-
lustrated in Fig. 1a. While graphene is planar atomic
layer of carbon, phosphorene is a non-planar layer of
phosphorus atoms, forming a puckered structure where
atoms are located on two parallel planes. As a result,
phosphorene has an anisotropic crystal structure.
Figure 1b shows the projection of the phosphorene

crystal onto the a plane. The rectangular area indicates a
unit cell, which contains four atoms labeled A, B, A′ and
B′. Their positions in the unit cell are: τA=(uc0,0,vb0),
τB = ((1/2 − u)c0, a0/2, vb0), τA' = −τA and τB' =
−τB, where a0 = 3.314Å, c0 = 4.376Å, and b0 = 10.48Å,

are the corresponding lattice constants in y (zigzag), x
(armchair) and z directions.8,16 Here, u = 0.08056 and
v = 0.10168 are dimensionless crystal structure parame-
ters. From these atom locations, we can define the first
eight lattice displacement vectors in Table I.
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FIG. 1. (Color online)(a) Red (blue) circles represent phos-
phorus atoms in the lower (upper) layer. (b) Projection of the
phosphorene crystal structure onto a two-dimensional plane.
The rectangular area indicates the unit cell, which contains
four phosphorus atoms. Zigzag and armchair edges are indi-
cated.

We include the 3s and 3px,y,z electrons in the par-
tially filled atomic shells and neglect any spin-orbit cou-
pling since phosphorus is a low-Z element.26 The effective
Hamiltonian is represented as the following 16×16 ma-
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We take into account up to eighth nearest neighbor
couplings (see Fig. 1b) through eight 4×4 matrices re-
ferred to as Ti, within the {|m〉} basis of atomic shells.
Here, the index m represents s, px, py, and pz orbitals.

The interatomic matrix elements Tm,m′

i (k) are given by
the expression

Tm,m′

i (k) = timm′

N
∑

j=1

ei(R
′

j+r′

l−rl)·k, (2)

where N is the number of unit cells, Rj denotes the posi-
tion of the jth unit cell of the Bravais lattice, and rl is the
position of the atom l within the unit cell. In this case,
we sum only over the adjacent unit cells j which con-
tain the atoms l, with the displacement vector magnitude
given by |R′

j + r
′

l − rl| = |di|. The lattice displacement
vector are provided in Table I. The hopping amplitudes
t
i
mm′ are initially written in terms of Slater-Koster (SK)

Order Distances (Å)
d1 = τB − τA 2.224

d
+
2 = τB′ + a+ c− τB , d−

2 = τA′ − τA 2.244
d3 = a 3.314

d4 = τA + a+ c− τB 3.334
d5 = τB′ + a+ c− τA 3.475

d
R
6 = τB′ + 2a+ c− τB , dL

6 = d
R
6 − 4uc 4.002

d
+
7 = d

−

2 + c, d−

7 = d
+
2 − c 4.245

d8 = c 4.376

TABLE I. Intersite distances. Following Ref. 8, the lattice
vectors are defined as a=(0, a0, 0) and c=(c0, 0, 0).

parameters.27
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A. Reference Density Function Band Structure

In order to optimize the tight-binding model, we em-
ploy a DFT calculation to generate a reference band
structure for phosphorene. We use the supercell method
with a plane-wave basis set at a cutoff energy of 500
eV and the projector-augmented wave technique,28,29 as
implemented in the Vienna ab-initio Simulation Package
(VASP).30,31 We use the hybrid HSE0617,18 functional
for the exchange-correlation of the electrons. The super-
cell consists of a unit cell of monolayer black phospho-
rus with experimental lattice parameters, bond lengths,
and bond angles32 and a vacuum of 15 Å. The Brillouin
zone is sampled over a (9 × 12 × 1) k-point mesh for a
self-consistent calculation. The electronic band structure
along high-symmetry directions is calculated with a finer
mesh of k-points and then projected onto every orbital of
each atom to resolve the symmetry character of the cor-
responding wavefunctions (i.e., their l and m numbers).
The band structure obtained in our DFT-HSE06 calcula-
tions shows that single layer black phosphorus is a direct
band gap material with a band gap (Eg) of 1.1 eV, which
is quite close to the experimentally measured values so
far (of 1.0 and 1.55 eV).4,33–35

B. Optimization of hopping parameters

Our tight-binding model Hamiltonian has 16×16 hop-
ping amplitudes timm′ . Due to symmetry, we only need
to calculate 58 of these elements. These parameters are
optimized to reproduce the main characteristics of the
energy bands near the main gap, as obtained from DFT-
HSE06 calculations. The route to approximate the band
structure is the following:

• Step 1: Following Slater and Koster,27 we ini-
tially constructed the tight-binding Hamiltonian
for phosphorous 3s, 3px , 3py and 3pz orbitals
(see Eq. (1)). Under this scheme, the hopping
amplitudes timm′ are defined at first as a function
of Slater-Koster parameters (Vssσ , Vspσ , Vppσ and
Vppπ), as described in detail in the Appendix A.
By diagonalizing Hmono(k) for this first choice of
hopping parameters, we obtain the band structure
of monolayer phosphorene, as shown in Fig. 2, to-
gether with the band structure for the DFT-HSE06
calculations. Unfortunately, it is clear from Fig.
2 that this simple model fails to resolve finer de-
tails in the band structure, which are important for
electronic transport calculations. Although the re-
sults obtained from the SK parameters are largely
inaccurate when compared with DFT-HSE06 cal-
culations, they serve as a useful starting point to
optimize the tight-binding parameters, using the
method of least squares as described in the next
two steps.

• Step 2: We then generate several different sets of
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FIG. 2. (Color online) Comparison between the band struc-
tures obtained with the DFT-HSE06 (red squares) and with
Slater-Koster tight-binding model (blue circles)

parameters timm′ from the initial hopping ampli-
tudes obtained in step 1. Each of these sets is
generated by adding to the initial hoppings a ran-
dom amplitude δV , taken from a uniform distribu-
tion over the interval [−1, 1]meV. Following this,
we take here 1000 slightly different parameter sets.

• Step 3: For each of the new parameter sets, we
choose the same number of representative k-points
and calculate, by diagonalization of Hmono(k), the
corresponding band energies En(k), where n is the
band index. We find the best tight-binding set of
parameters among the 1000 generated by choos-
ing the set that gives the lowest possible χ2 func-
tion, where χ2 is just a sum of weighted squared
residuals,36 namely,

χ2 =
∑

i=C,V

N
∑

j=1

[

ETB
i (j)− EDFT

i (j)
]2

σ2
j

, (3)

where j labels the k points and i labels the low-
est conduction (C) and highest valence (V) energy
bands. To improve the approximation we give a
larger weight σj = 1 to points

(

k,En(k)
)

near the
Γ point. In addition, we take a larger concentration
of points around Γ to reproduce the effective band
masses around this high-symmetry point.

• Step 4: Steps 2 and 3 are iteratively repeated
(restarting step 2 each time with the best set se-
lected in step 3) until χ2 becomes smaller than
1 meV2. When this convergence criterion is sat-
isfied, the optimized tight-binding parameters are
obtained.

Table II presents the best fitting parameters we ob-
tained using the the optimization procedure described
above.It is important to emphasize that these parame-
ters correspond to the single layer black phosphorus, and,
although they would be modified for other phosphorene
allotropes,37 the same optimization procedure to find the
best tight-binding parameters can be applied.
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i tiss tisx tisy tisz tixx tixy tixz tiyy tiyz tizz
1 1.402 -0.316 0.247 1.236 2.665 6.083 -1.770
2 -1.418 -1.173 -0.775 -1.541 -0.841 -5.809 2.170
3 0.349 -0.100 0.079 0.568 0.042
4 -0.239 0.300 -0.639 0.599 0.904 1.006 0.753
5 -0.255 -0.303 -0.246 -0.180 0.328 -0.038 0.166 0.654 0.659 0.096
6 -0.123 0.259 -0.072 0.100 0.063 0.305 -0.055 -0.206 -0.683 -0.313
7 -0.221 -0.146 -0.128 0.349 -0.077 -0.018 0.628
8 0.266 -0.260 -0.588 0.147 -0.037

TABLE II. Tight-binding model parameters obtained by optimization. The values are given in units of eV.

III. BAND STRUCTURE AND ORBITAL

CONTRIBUTION

In Fig. 3 we show a comparison between the band
structures for a single-layer phosphorene obtained with
DFT-HSE06 and that obtained from the optimized tight-
binding model described in the previous section. The
optimized tight-binding model is in good agreement with
the DFT-HSE06 results and is quite accurate near the
minimum of the conductance band and the maximum
of the valence band (see Fig. 3a). These are the most
important regions of the spectrum as far as electronic
transport is concerned and therefore accuracy here is fun-
damental for obtaining realistic predictions for transport
properties.

We point out that this level of accuracy is missing in
previous studies, where simpler tight-binding Hamiltoni-
ans were employed; for example, in models based on a sin-
gle p orbital.9,12–15,38 In those simpler models the bands
near the main energy gap have a large discrepancy with
respect to the DFT results (the green continuous line in
Fig. 3b represents the tight-binding results considering
only the pz orbital). For most of these previous stud-
ies, the focus was in describing accurately only the main
energy gap of the band structure at the Γ point. In con-
trast, our optimized tight-binding model, in addition to
capturing the energy gap, is able to describe the bands
structure in the Γ → Y and Γ → X and Γ → M di-
rections with high accuracy, thus allowing us to properly
study the effects of anisotropy on transport properties.

Tight-binding methods employing orbitals sp38,16 and
sp3d539 have been developed including up to second near-
est neighbors. Those studies show a clear deviation with
respect to DFT results. A description of the electronic
structure of phosphorene supported by the Wannier func-
tions formalism has also been performed.40 This study
was successful in achieving a notable accuracy in the
band structure of phosphorene, but the computational
cost would be too heavy for studying electronic trans-
port, where very large real-space lattices are required.

In Fig. 4 we show a comparison between the main or-
bital composition obtained from DFT-HSE06 (Fig. 4a)
and from the optimized tight-binding model (Fig. 4b)
near the valence band maximum and the conduction
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FIG. 3. (Color online) (a) Comparison between the band
structures obtained with DFT-HSE06 (red squares) and with
the optimized tight-binding model (blue circles). (b) Zoom
around the Γ point, showing that the optimized model ac-
curately reproduces the valence and conduction bands from
DFT near the gap region. The green continuous line repre-
sents the tight-binding results considering only the pz orbital.

band minimum. Around the Γ point, it can be seen that
the main orbital contribution to both bands comes from
the pz orbitals (about 90%). The orbital contributions
around the high-symmetry points M , X , Y , and Γ from
the optimized tight-binding model show a qualitatively
correct composition of the orbitals for both conduction
and valence bands when compared with the DFT-HSE06
results. In particular, the composition of the conduction
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band shows non-negligible contributions from s, px, py
and pz orbitals.

IV. ANISOTROPY

Figure 5a shows the dispersion of the valence and con-
duction bands E(k) around the Γ point obtained numer-
ically by diagonalizing the tight-binding Hamiltonian in
Eq. (1). Both bands are clearly anisotropic, as it can be
seen in the top and bottom contours. One can see that
the valence band near the Γ point is flatter along the ky
direction than along the kx direction, implying that the
hole carriers moving along the zigzag direction are heav-
ier than in the armchair direction. A similar behavior
is also observed for the dispersion of conduction band.
Strong anisotropy for both electron and hole carriers was
observed experimentally in multilayer phosphorene.5,41

The different effective masses of the valence and conduc-
tion bands along the armchair and zigzag directions is
consistent with the in-plane anisotropy reported in sev-
eral transport experiments.6,35,42 In this paper we make
this connection quantitative.
The anisotropy can be further identified directly from

the anisotropic effective masses as shown in Fig. 5b.
From our tight-binding band structure we extract the
effective masses for the electrons and holes through the

expression m∗ = ~
2
(

∂2E
∂k2

)−1

. The resulting effective

masses at Γ point along the armchair direction arem∗v
ac =

−0.1678me and m∗c
ac = 0.1990me for holes and elec-

trons respectively. Here, me is the free electron mass.
The effective masses along the zigzag direction are much
heavier than armchair direction: m∗v

zz = −5.3525me and
m∗c

zz = 0.7527me for holes and electrons respectively.
These values are also in close agreement with other DFT
calculations.33 We note that the single-orbital (pz) tight-
binding method (see green line in in Fig. 2c) cannot ac-
curately capture this effective mass anisotropy.

V. ELECTRONIC PROPERTIES APPROACH:

ANISOTROPIC RESISTIVITY

A. Hamiltonian in real space

Numerical studies of electronic transport in 2D ma-
terials have to strike a compromise between the model
complexity and the length scales that can be investi-
gated. Complex models requiring many basis states per
unit cell can only be used to investigate small systems,
where the diffusive regime common to experiments can-
not be probed. Because of their relative simplicity and
small basis state sets, the use of heuristic tight-binding
models has grown in interest in the last decade.13,39 Very
large systems can be studied with these models, some-
times involving over a billion atoms,43 in contrast to ab

initio approaches. When the length scales associated to

charge carrier scattering involve more than a few lat-
tice spacings, tight-binding models are the only practical
choice. We study transport properties of phosphorene
starting from our optimized tight-binding Hamiltonian
in k-space, Eq. (1). The real-space tight-binding Hamil-
tonian used in the numerical calculations, denoted by
H includes nearest-neighbor hopping terms (within the
same unit cell), as well as next-to-nearest-neighbor ones
(between adjacent cells), as discussed in Sec. II. Using
second quantization, the real-space Hamiltonian can be
written as

H =
N
∑

i=1

∑

α



εiα ci†α ciα +
∑

j

∑

β

tjα,βc
i†
α cjβ



+H.c.,

(4)
where i runs over the N lattice sites, j runs over the
eight neighboring sites of i and α and β run over s and
p orbitals. Here, εis = −17.10 eV and εip = −8.33 eV
are the energy levels of 3s and 3p orbitals of phosphorus,
respectively.44 tjα,β is the hopping integral between the

ith and its jth neighbor, and ciα (ci†α ) is the annihilation
(creation) operator of electrons at orbital α on the site i.
The different hopping and on-site terms can be visualized
in Fig. 1b.
Although we use a relatively simple Hamiltonian to de-

scribe phosphorene, it not only captures the physics qual-
itatively well, but is also quantitatively approximately
correct. This is because, in the absence of disorder, both
the energy bands and the wavefunctions near the main
gap closely resemble those calculated from an accurate ab
initio theory. Nevertheless, we emphasize that the choice
of tight-binding parameters is not unique and not yet
fully settled, with several different parameter sets pro-
posed in the literature.13,39

B. Transport calculations

Our calculations of the two-terminal linear conduc-
tance follow the well-established Caroli formula,45

T (E) = Tr [ΓpG
r Γq G

a] , (5)

which relates the transmission probability (transmit-
tance) T (E) at a fixed carrier energy E to the Green’s
functions Gr and Ga = (Gr)† of the sample when cou-
pled to source (p) and drain (q) contacts (represented
by shadow areas in in Fig. 6). The trace indicates a
sum over all transverse channels (or, equivalently, over
all atomic sites at the sample-electrode contact region).
The matrices Γp,q represent the imaginary part of the
self-energy due to the coupling to the electrodes, Γp(q) =

i
[

Σp(q)−Σ†
p(q)

]

. The Green’s functions are obtained by a

recursive technique where the sample is split into atomic
transverse slices.46 We assume that the electrodes are
identical semi-infinite phosphorene strips with no disor-
der; the strip Green’s function, which is a fundamental
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FIG. 4. (Color online) (a) Orbital-projected band structure obtained with DFT-HSE06. (b) Orbital-projected band structure
obtained with the optimized tight-binding model. The contribution of each orbital is shown by color: s(green), px(blue),
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m∗v (in black) are the effective masses for the conduction and
valence bands, respectively, making evident the anisotropy for
both bands.

ingredient in the recursive technique, is obtained numer-
ically using a standard decimation method.47.
A schematic representation of the system contact-

sample-contact is shown in Fig. 6, where L andW are the
length and the width of the phosphorene sample consid-
ered. M and N indicated in the figure are the number of
unit cells in armchair and zigzag directions, respectively.
Therefore, for transport along the armchair direction, as
is the case represented in Fig. 6, L = Mc0 and W = Na0.
If the transport is calculate along the zigzag direction,
then L = Na0 and W = Mc0.
Within the Landauer-Büttiker formalism, the linear

FIG. 6. (Color online) Schematic representation of a phospho-
rene sample of length L and width W , and the corresponding
number (M and N) of unit cells in the armchair and zigzag
directions. The shadow areas represent the left (p) and right
(q) semi-infinite contacts.

conductance G(E) at a given energy E is directly related
to the transmission function T (E) between the contacts
as

G(E) = G0 T (E), (6)

where G0 = 2e2/h. The linear resistance follows straight-
forwardly from R = 1/G = R0/T , where R0 = 1/G0 =
12.5 KΩ. The resistivity is obtained as usual, namely,
ρ = RW/L.
In experiments, it is the carrier density n rather than

the carrier energy E that can be controlled by a back
gate. Thus, in order to explore how the resistivity ρ
behaves as a function of disorder strength, we perform the
calculations at fixed values of n. For a given realization
of disorder, the latter is obtained through the relation

n(E) =
1

A

∫ E

E0

dE′ ν(E′), (7)

where A = W L is the sheet area and E0 is a reference
energy (either the top of the valence band of the bottom
of the conductance band). Note that in the conduction
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band, E > E0 and therefore the integral is over positive
energies (electrons), while in the valence band, E < E0

and the integral is over negative energies (holes). ν is the
global density of states, which can be readily obtained
from the energy dependence of the scattering matrix S,

ν(E) = − i

2π
Tr

(

S† ∂S

∂E

)

. (8)

The scattering matrix S is evaluated in terms of the re-
tarded Green’s functions Gr,46,48

Sab(E) = −δab + i~

√
vavb
a0

∑

i

∑

j

χ∗
a(i)G

r(i, j)χb(j),

(9)
where i and j run over the sites at the contacts p and
q, where the propagating channels a and b are defined,
respectively. Here a0 is the lattice constant and va,b and
χa,b are, respectively, the longitudinal propagation veloc-
ity and the transverse wavefunction in the propagating
channel. We obtain va,b and χa,b from the eigenvalues
and eigenfunctions of the Γp(q) matrices,

Γp(q)(i, j) =
∑

a

χa(i)
~va
a0

χ∗
a(j). (10)

C. Disorder effects over the anisotropy

We studied the disorder effects by using the optimized
tight-binding method previously described, which allows
for very efficient large-scale calculations of linear trans-
port properties. To model disorder, a superposition of
Gaussian potential fluctuations is added to the Hamilto-
nian in Eq. (4) as a diagonal term,49

U(ri) =

Nimp
∑

k=1

Uk e
−|ri−Rk|

2/2ξ2 , (11)

where ri denotes a lattice site. The Nimp Gaussian
scatterers have a width ξ, are located at random sites
{Rk}k=1,Nimp

drawn uniformly and have amplitudes
{Uk}k=1,Nimp

taken from a flat distribution in the inter-
val [−δU/2, δU/2]. Let nimp = Nimp/N denote the den-
sity of scatterers. Motivated by the two prevailing scat-
tering mechanisms in phosphorene transistors, we con-
sider two extreme cases: (i) dense disorder (nimp = 1%)
with low amplitude of the Gaussian potential fluctua-
tions (0.03 6 δU 6 0.14 eV); and (ii) dilute disorder
(nimp = 0.1%), with higher amplitudes of the Gaus-
sian potential (0.2 6 δU 6 2 eV). Case (i) models
contaminants such as water, which attach to phospho-
rene by weak van der Waals interactions (therefore the
low amplitudes). Case (ii) models background potential
inhomogeneities like those caused by screened charges
in the substrate. Notice that although the Gaussian
potential we consider is short-range on the system-size

scale (correlation-length ξ = 1.5a0), it varies smoothly
on the atomic scale, corresponding to an effective disor-
der which mimics the effect of screened charges from the
substrate.46,49

In Fig. 7 we show the average resistance as a function
of length of the system for the disorder case (i). Differ-
ent panels correspond to the resistance along armchair
or zigzag directions, for conduction and valence bands,
as indicated. In each one, we show curves for different
disorder potential amplitude δU . The range of the Gaus-
sian potential considered is ξ = 1.5a0 for all of them. The
average is computed over 500 disorder configurations and
for a carrier density n = 3 × 1012 cm2, which brings the
Fermi energy close to the bottom (top) of the conduction
(valence) band. We present similar data for the disorder
case (ii) in Fig. 8

At zero temperature, the resistance strongly fluctuates
from one realization to another, which is typical for a
coherent quasi-one-dimensional system. However, it is
clear from Figs. 7 and 8 that the linear behavior, which
is characteristic from a diffusive regime, is kept for longer
lengths for the armchair direction than in the zigzag di-
rection, particularly when the amplitude δU of the dis-
order potential is increased. For longer lengths, the aver-
age resistance increases much more rapidly with length,
marking the onset of strong localization. For both the
conduction and valence regions, we have found that a
strong localization regime sets in with increasing L, with
an exponential increase of the resistance.

In the diffusive regime, we can extract the resistivity
ρ for different disorder amplitudes δU from the linear
fittings indicated in Figs. 7 and 8. The inset in each
graph shows the resistivity as function of δU , where we
find a very good match to a quadratic dependence for all
cases. The resulting quadratic fitting for the resistivity as
a function of δU is indicated in the top right of each graph
in Figs. 7 and 8. ρZZ and ρAC indicates the resistivity
along the zigzag and armchair directions, respectively.

Using classical kinetic transport theory, the resistivity
ρ can be related to the effective masses m∗ and the mean
scattering time τ through: ρ = m∗/τnq2, where n and
q are the density and the charge of the carriers, respec-
tively. Even though an expression for τ is not exactly
know, it can be estimated in perturbation theory to be
inversely proportional to δU2. Thus, the quadratic de-
pendence on δU we observe in the data can be attributed
to τ .

It is reasonable to expect the resistivity to be
anisotropic, considering the anisotropy in the effective
masses. If the classical kinetic transport theory is ap-
plicable here, we would expect ρZZ/ρAC = m∗

ZZ/m
∗
AC .

In Table III we summarize our results for the ratios of
resistivities ρZZ/ρAC for the two disorder cases analyzed
and also for two sample widths: a thinner one, with 60
unit cells in width and a larger one, with 150 (where
all other parameters are kept constant). These results
should be compared with the ratios of effective masses ob-
tained from the ordered phosphorene system band struc-
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FIG. 7. (Color online) Average resistance as a function of length L for disorder case (i), corresponding to a dense concentration
of scatterers (nimp = 1%), with low disorder amplitudes δU . Continuous lines are linear fittings used to extract the resistivity in
the diffusive regime of the data for each curve. Insets: Resistivity as a function of disorder amplitudes δU , showing a quadratic
dependence.
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FIG. 8. (Color online) (Color online) Average resistance as a function of length L for disorder case (ii), corresponding to a
dilute concentration of scatterers (nimp = 0.1%), with high disorder amplitudes δU . Continuous lines are linear fittings used to
extract the resistivity in the diffusive regime of the data for each curve. Insets: Resistivity as a function of disorder amplitudes
δU , showing a quadratic dependence.

ture (see Sec.IV): m∗
ZZ/m

∗
AC = 6.6 for the conduction

and m∗
ZZ/m

∗
AC = 39.4 for the valence band. Our inten-

tion is to observe how different densities and amplitudes
of disorder change anisotropy. First of all, we observe
from the results in Table III that increasing the width
of the phosphorene sample considered from 60 to 150
unit cells does not change considerably the resistivity ra-
tios, which means that we do not have system size effects
masking our results here.

Comparing the two disorder cases considered here,
we can conclude from the resistivity ratios in Table III
that the higher amplitudes of the disorder in the second
case (even considering the 10 times lower concentration
of scatterers) cause stronger impact in diminishing the
anisotropy when compared to the first case. Neverthe-
less, in both cases the anisotropy is still evident and in

ratios that would be experimentally detected.

It is helpful to analyze the results in light of the prod-
uct δU2 × nimp, considering that in the Boltzmann trans-
port, mobility depends on this product.46,49 In our calcu-
lations, the impurity density nimp is kept fixed for each
disorder case, while δU is varied. For the case with dense
disorder and low amplitude (shown in Fig. 7), the value
of the product was mostly higher than for the case with
dilute disorder and high amplitude (show in Fig. 8): δU2

× nimp varies in the interval [9× 10−7, 2× 10−4]eV 2 for
the former and in the interval [4 × 10−5, 4 × 10−3]eV 2

for the latter. This is consistent with the results sum-
marized in Table III, where one can observe the stronger
suppression of the anisotropy for the disorder with the
higher value of the product δU2 × nimp. Interestingly,
cases with different disorder type but with the same δU2
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× nimp product values, present the same resistance val-
ues in Figs. 7 and 8, confirming the universality related
to this product.

Ordered Dense disorder Dilute disorder

System Low amplitude High amplitude

m∗

ZZ/m
∗

AC ρZZ/ρAC ρZZ/ρAC

Thinner sample

Conduction 6.6 6.5± 0.1 3.8± 0.1
Valence 39.4 31± 1 16± 1

Larger sample

Conduction 6.6 6.6± 0.1 4.1± 0.1
Valence 39.4 32± 1 18± 1

TABLE III. Ratio between the resistivity along the zigzag
and armchair directions ρzz/ρac for dilute and dense disor-
der cases. Effective mass ratios are m∗

ZZ/m
∗

AC = 6.6 and
m∗

ZZ/m
∗

AC = 39.4 for conduction and valence bands, respec-
tively.

VI. SUMMARY AND CONCLUSION

We have developed a tight-binding model for mono-
layer phosphorene that accurately describes both con-
duction and valence band dispersions near the Gamma
point and approximates well the band compositions. The
additional accuracy came at the expense of introducing
s in addition to p orbitals, as well as hopping amplitudes
involving eight neighbors in total.
We optimized the model parameters by using as bench-

mark the electronic structure obtained by density func-
tional theory calculation based on the HSE06 exchange-
correlation functional. An excellent match between ef-
fective masses near the main band gap and along major
symmetry directions was obtained.
Using the optimized tight-binding model and a recur-

sive Green’s function technique, we computed the resis-
tivity in the presence of disorder for two relevant sit-
uations, which mimic two commons types of disorder
in phosphorene: (i) weakly bonded adsorbates (simu-
lated by a dense concentration of scatterers, with low
amplitudes of the Gaussian potential fluctuations), and
(ii) screened charge traps in the substrate (simulated
by a dilute concentration of Gaussian correlated disor-
der, with higher amplitudes), We found that the band
mass anisotropy is strongly manifest in the resistivity for
the first disorder case, where the ratio of the resistiv-
ity along zigzag and armchair directions matches quite
closely the ratio for the corresponding effective masses.
The anisotropy is weaker, but still robust, in the second
disorder case. Thus, we conclude that the most prevailing
types of disorder likely to be found in monolayer phospho-
rene should not wash away the intrinsic band structure
anisotropy of this material. Transport experiments per-
formed with thick films of black phosphorus (which is a

multilayer phosphorene), have already demonstrated in-
trinsic anisotropy.4,7,50,51 Based on our results, we expect
a similar behavior for monolayer systems.
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Appendix A: Slater-Koster

We develop an effective tight-binding model based on
the LCAO method16 and use DFT calculations as the ba-
sis for adjusting the model parameters. We begin with a
simplified LCAOmodel. The hopping amplitudes depend
of the transfer integral between two adjacent atoms. The
transfer integrals are given by Vll′m(d) = ηll′~

2/med
2,

where d is the inter-atomic distance, me is the electron
rest mass, l and l′ are the orbital azimuthal quantum
numbers (s, p) of two atoms and m is the common or-
bital magnetic quantum number (σ, π). ηll′m is a di-
mensionless quantity that depends on the crystal struc-
ture. For the simplified model, the parameters employed
are: ηssσ = −1.40, ηspσ = 1.84, ηppσ = 3.24, and
ηppπ = −0.81.44

When expressed in momentum space, the tight-binding
Hamiltonian is a 16× 16 matrix, (see Eq. (1)). Here the
elements Ti represent 4 × 4 matrices. The T0 matrix on
the diagonal expresses the energies of the four atomic
sites:

T0 =







εs 0 0 0
0 εp 0 0
0 0 εp 0
0 0 0 εp






(A1)

Here, εs = -17.10 eV and εp = -8.33 eV represent the
energy levels of the 3s and 3p orbitals of phosphorus,
respectively. The nearest and next-nearest neighbor cou-
pling between atoms are represented by T1 to T8 respec-
tively:

T1 =











t
(1)
ss g

+
1 t

(1)
sx g

+
1 t

(1)
sy g

−
1 0

−t
(1)
sx g

+
1 t

(1)
xx g

+
1 t

(1)
xy g

−
1 0

−t
(1)
sy g

−
1 t

(1)
xy g

−
1 t

(1)
yy g

+
1 0

0 0 0 t
(1)
zz g

+
1











, (A2)

with

g±1 (k) = eid1·k(1 ± e−a·k); (A3)
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T
±
2 =











t
(2)
ss g

±
2 ±t

(2)
sx g

±
2 0 t

(2)
sz g

±
2

∓t
(2)
sx g

±
2 t

(2)
xx g

±
2 0 ±t

(2)
xz g

±
2

0 02 t
(2)
yy g

±
2 0

−t
(2)
sz g

±
2 ±t

(2)
xz g

±
2 0 t

(2)
zz g

±
2











, (A4)

with

g±2 (k) = eid
±

2 ·k; (A5)

T3 =











t
(3)
ss g

+
3 0 t

(3)
sy g

−
3 0

0 t
(3)
xx g

+
3 0 0

−t
(3)
sy g

−
3 0 t

(3)
yy g

+
3 0

0 0 0 t
(3)
zz g

+
3











, (A6)

with

g±3 (k) = eid3·k ± e−id3·k; (A7)

T4 =











t
(4)
ss g

+
4 t

(4)
sx g

+
4 t

(4)
sy g

−
4 0

−t
(4)
sx g

+
4 t

(4)
xx g

+
4 t

(4)
xy g

−
4 0

−t
(4)
sy g

−
4 t

(4)
xy g

−
4 t

(4)
yy g

+
4 0

0 0 0 t
(4)
zz g

+
4











, (A8)

with

g±4 (k) = eid4·k(1± e−ia·k); (A9)

T5 =











t
(5)
ss g

+++
5 t

(5)
sx g

+−+
5 t

(5)
sy g

−+−
5 t

(5)
sz g

+++
5

−t
(5)
sx g

+−+
5 t

(5)
xx g

+++
5 t

(5)
xy g

−−−
5 t

(5)
xz g

+−+
5

−t
(5)
sy g

−+−
5 t

(5)
xy g

−−−
5 t

(5)
yy g

+++
5 t

(5)
yz g

−+−
5

−t
(5)
sz g

+++
5 t

(5)
xz g

+−+
5 t

(5)
yz g

−+−
5 t

(5)
zz g

+++
5











,

(A10)
with

g+++
5 (k) = eid5·k[1 + e−ia·k + e−ic·k(1 + e−ia·k)]
g+−+
5 (k) = eid5·k[1 + e−ia·k − e−ic·k(1 + e−ia·k)]
g−+−
5 (k) = eid5·k[1− e−ia·k + e−ic·k(1− e−ia·k)]
g−−−
5 (k) = eid5·k[1− e−ia·k − e−ic·k(1− e−ia·k)]

;

(A11)

T
R
6 =











t
(6)
ss g

+
6R t

(6)
sx g

+
6R t

(6)
sy g

−
6R t

(6)
sz g

+
6R

−t
(6)
sx g

+
6R t

(6)
xx g

+
6R t

(6)
xy g

−
6R t

(6)
xz g

+
6R

−t
(6)
sy g

−
6R t

(6)
xy g

−
6R t

(6)
yy g

+
6R t

(6)
yz g

−
6R

−t
(6)
sz g

+
6R t

(6)
xz g

+
6R t

(6)
yz g

+
6R t

(6)
zz g

+
6R











, (A12)

with

g±6R(k) = eid6R·k(1± e−i2a·k); (A13)

T
L
6 =











t
(6)
ss g

+
6L −t

(6)
sx g

+
6L t

(6)
sy g

−
6L t

(6)
sz g

+
6L

t
(6)
sx g

+
6L t

(6)
xx g

+
6L −t

(6)
xy g

−
6L −t

(6)
xz g

+
6L

−t
(6)
sy g

−
6L −t

(6)
xy g

−
6L t

(6)
yy g

+
6L t

(6)
yz g

−
6L

−t
(6)
sz g

+
6L −t

(6)
xz g

+
6L t

(6)
yz g

+
6L t

(6)
zz g

+
6L











,

(A14)
with

g±6L(k) = eid6L·k(1± e−i2a·k); (A15)

T
±
7 =











t
(7)
ss g

±
7 ±t

(7)
sx g

±
7 0 t

(7)
sz g

±
7

∓t
(7)
sx g

−
7 t

(7)
xx g

±
7 0 ±t

(7)
xz g

±
7

0 0 t
(7)
yy g

±
7 0

−t
(7)
sz g

±
7 ±t

(7)
xz g

±
7 0 t

(7)
zz g

±
7











, (A16)

witj

g±7 (k) = eid
±

7 ·k; (A17)

T8 =











t
(8)
ss g

+
8 t

(8)
sx g

−
8 0 0

−t
(8)
sx g

−
8 t

(8)
xx g

+
8 0 0

0 0 t
(8)
yy g

+
8 0

0 0 0 t
(8)
zz g

+
8











, (A18)

with

g±8 (k) = eid8·k ± e−id8·k. (A19)

In those relations, t
i
ss = Vssσ(di), t

i
αβ =

(dαi d
β
i /(di)

2)Vppσ(di) + (δαβ − dαi d
β
i /(di)

2)Vppπ(di)
and t

i
sα = (dαi /di)Vspσ(di), where di = (dxi , d

y
i , d

z
i ) and

di = |di|. The indices run as follows: i = 1, . . . , 8 and
α, β=x,y,z. The phase factors gi are defined as function
of the distances and the wave number k.

These definitions are similar to those used in the previ-
ous models in the literaturel,16 with the addition of new
interatomic matrix elements T3, T4, T5, T6, T7, and T8.
The reason for introducing these new parameters is that
the two interatomic matrix elements T1 and T2 provided
by the Slater-Koster coefficients are not sufficient to accu-
rately describe the band structure of phosphorne. These
must be modified in order to provide an accurate repre-
sentation of the band gap. By diagonalizing H , the band
dispersion of monolayer phosphorus can be obtained, as
shown in Fig. 2.

1 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S.
Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109

(2009).

http://link.aps.org/doi/10.1103/RevModPhys.81.109


11

2 W. Xie and Z. Li, Solid State Communications 225, 22
(2016).

3 L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng,
X. H. Chen, and Y. Zhang, Nat Nano 9, 372 (2014).

4 H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek,
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