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We report drastically new physics associated with wave scattering in pseudospin-1 systems whose
band structure consists of a conventional Dirac cone and a topologically flat band. First, for small
scatterer size, we find a surprising revival resonant scattering phenomenon and identify a peculiar
type of boundary trapping profile through the formation of unusual vortices as the physical mecha-
nism. Second, for larger scatterer size, a perfect caustic phenomenon arises as a manifestation of the
super-Klein tunneling effect, leading to the scatterer’s being effectively as a Veselago lens. Third,
in the far scattering field, an unexpected isotropic behavior emerges at low energies, which can be
attributed to the vanishing Berry phase for massless pseudospin-1 particles and, consequently, to
constructive interference between the time-reversed backscattering paths. We develop an analytic
theory based on the generalized Dirac-Weyl equation to fully explain these phenomena and articulate
experimental schemes with photonic or electronic systems.
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I. INTRODUCTION

Solid state materials whose energy bands contain a
Dirac cone structure have been an active area of re-
search since the experimental realization of graphene1,2.
From the standpoint of quantum transport, the Dirac
cone structure and the resulting pseudospin characteris-
tic of the underlying quasiparticles can lead to uncon-
ventional physical properties/phenomena such as high
carrier mobility, anti-localization, chiral tunneling, and
negative refractive index, which are not usually seen in
traditional semiconductor materials. Moreover, due to
the underlying physics being effectively governed by the
Dirac equation, relativistic quantum phenomena such as
Klein tunneling, Zitterbewegung, and pair creations can
potentially occur in solid state devices and be exploited
for significantly improving or even revolutionizing con-
ventional electronics. Uncovering/developing alternative
materials with a Dirac cone structure has also been ex-
tremely active3,4. In this regard, the discovery of topolog-
ical insulators5,6 indicates that Dirac cones with a topo-
logical origin can be created, leading to the possibility
of engineering materials to generate remarkable physical
phenomena such as zero-field half-integer quantum Hall
effect7, topological magneto-electric effect8, and topolog-
ically protected wave transport9,10.
A parallel line of research has focused on developing

photonic materials with a Dirac cone structure, due to
the natural analogy between electromagnetic and mat-
ter waves. For example, photonic graphene11,12 and
photonic topological insulators13–18 have been realized,
where novel phenomena of controlled light propagation
have been demonstrated. Due to the much larger wave-
length in optical materials as compared with the elec-
tronic wavelength, synthetic photonic devices with a
Dirac cone structure can be fabricated at larger scales
with greater tunabilities through modulations. The ef-

forts have led to systems with additional features in the
energy band together with the Dirac cones, opening pos-
sibilities for uncovering new and “exotic” physics with
potential applications that cannot even be conceived at
the present.

The materials assumed in our work are those whose
energy bands consist of a pair of Dirac cones and a topo-
logically flat band, electronic or optical. For example,
in a dielectric photonic crystal, Dirac cones can be in-
duced through accidental degeneracy that occurs at the
center of the Brillouin zone. This effectively makes the
crystal a zero-refractive-index metamaterial at the Dirac
point where the Dirac cones intersect with another flat
band19–23. Alternatively, configuring an array of evanes-
cently coupled optical waveguides into a Lieb lattice24–27

can lead to a gapless spectrum consisting of a pair of
common Dirac cones and a perfectly flat middle band at
the corner of the Brillouin zone. As demonstrated more
recently, loading cold atoms into an optical Lieb lattice
provides another experimental realization of the gapless
three-band spectrum at a smaller scale with greater dy-
namical controllability of the system parameters28. With
respect to creating materials whose energy bands con-
sist of a pair of Dirac cones and a topologically flat
band, there have also been theoretical proposals on Dice
or T3 optical lattices29–34 and electronic materials such
as transition-metal oxide SrTiO3/SrIrO3/SrTiO3 trilayer
heterostructures35, 2D carbon or MoS2 allotropes with
a square symmetry36,37, SrCu2(BO3)2

38 and graphene-
In2Te2 bilayer39.

In spite of the diversity and the broad scales to re-
alize the band structure that consists of two conical
bands and a characteristic flat band intersecting at a
single point in different physical systems, there is a uni-
fied underlying theoretical framework: generalized Dirac-
Weyl equation for massless spin-1 particles31. For con-
venience, we call such systems pseudospin-1 Dirac cone
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systems. Comparing with the conventional Dirac cone
systems with massless pseudospin/spin-1/2 quasiparti-
cles (i.e., systems without a flat band), pseudospin-1 sys-
tems can exhibit quite unusual physics such as super-
Klein tunneling for the two conical (linear dispersive)
bands23,32,40,41, diffraction-free wave propagation and
novel conical diffraction24–27, flat band rendering diver-
gent dc conductivity with a tunable short-range dis-
order42, unconventional Anderson localization43,44, flat
band ferromagnetism28,45,46, and peculiar topological
phases under external gauge fields or spin-orbit cou-
pling35,47–49. Especially, the topological phases arise due
to the flat band that permits a number of degenerate
localized states with a topological origin (i.e., “caging”
of carriers)50. Most existing works, however, focused
on the physics induced by the additional flat band, and
the scattering/transport dynamics in pseudospin-1 sys-
tems remains largely unknown (except the super-Klein
tunneling behavior). Our main question is the follow-
ing: what types of transport properties can arise form
pseudospin-1 systems whose band structure is character-
ized by coexistence of a pair of Dirac cones and a flat
band? To address this question in the simplest possible
setting while retaining the essential physics, we study bal-
listic wave scattering against a circularly symmetric po-
tential barrier. We note that for conventional Dirac cone
systems with pseudospin or spin-1/2 quasiparticles, there
has been extensive work on scattering51–53 with phenom-
ena such as caustics54, Mie scattering resonance55, bire-
fringent lens56, cloaking57, spin-orbit interaction induced
isotropic transport and skew scattering58,59, and elec-
tron whispering gallery modes60. To our best knowledge,
prior to our work there were no corresponding studies for
pseudospin-1 Dirac cone systems.

Our main findings are three: revival resonant scatter-
ing, super-Klein tunneling induced perfect caustics, and
universal low-energy isotropic transport without broken
symmetries for massless quasiparticles. First, for small
scatterer size, the effective three-component spinor wave
exhibits revival resonant scattering as the incident wave
energy is varied continuously - a phenomenon that has
not been reported in any known wave systems. Strik-
ingly, the underlying revival resonant modes show a pe-
culiar type of boundary trapping profile in their inten-
sity distribution. While the profile resembles that of a
whispering gallery mode, the underlying mechanism is
quite different: these modes occur in the wave dominant
regime through the formation of fusiform vortices around
the boundary in the corresponding local current patterns,
rather than being supported by the gallery type of or-
bits through total internal reflections. Second, for larger
scatterer size where the scattering dynamics are semi-
classical, a perfect caustic phenomenon arises when the
incident wave energy is about half of the barrier height,
as a result of the super-Klein tunneling effect. A conse-
quence is that the scatterer behaves as a lossless Vese-
lago lens with effective negative refractive index result-
ing from the Dirac cone band structure. Compared with

conventional Dirac cone systems for pseudospin-1/2 par-
ticles, the new caustics possess remarkable features such
as significantly enhanced focusing, vanishing of the sec-
ond and higher order caustics, and a well-defined static
cusp. Third, in the far scattering field, an isotropic be-
havior arises at low energies. Considering that there is no
broken symmetry so the quasiparticles remain massless,
the phenomenon is quite surprising as conventional wis-
dom would suggest that the scattering be anisotropic. By
analyzing the characteristic ratio of the transport to the
elastic time as a function of the scatterer size, we find that
the phenomenon of scattering isotropy can be attributed
to vanishing of the Berry phase for massless pseudospin-1
particles that results in constructive interference between
the time-reversed backscattering paths. Because of the
isotropic structure, the emergence of a Fano-type reso-
nance structure in the function of the ratio versus the
scatterer size can be exploited to realize effective switch
of wave propagation from a forward dominant state to
a backward dominant one, and vice versa. We develop
an analytic theory with physical reasoning to understand
the three novel phenomena, and articulate experimental
verification schemes with photonic or electronic systems.

II. RESULTS

We consider scattering of pseudospin-1 particle from
a circularly symmetric scalar potential barrier of height
V0 defined by V (r) = V0Θ(R − r), where R is the scat-
terer radius and Θ denotes the Heaviside function. The
band structure for the particle consists of a pair of Dirac
cones and a flat band. A comprehensive description of
the Hamiltonian, its properties, the boundary conditions,
and detailed solutions of the scattering waves is given
in Appendix A. To characterize the scattering dynamics
quantitatively, we use the scattering efficiency, defined as
a ratio of the scattering to the geometric cross sections55:

Q =
σ

2R
, (1)

where the scattering cross section σ can be calculated
through the far field radial reflected current, as detailed
in Appendix B.

A. Near-field behavior 1: Revival resonant
scattering

To uncover unusual physics, we calculate and analyze
the scattering efficiency Q as a function of the reduced
barrier strength V0R (normalized by the group velocity vg
associated with the Dirac cone) and the relative incident
energy E/V0. In order to highlight the unique manifesta-
tions of the unconventional band structure, we focus on
the under barrier scattering process in which the particle
energy is below the barrier height: 0 < E/V0 < 1. To be
concrete, we choose E/V0 = 0.01, 0.1, 0.9 and, for each
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FIG. 1. General behaviors of the scattering effi-
ciency versus the scatterer strength. Scattering effi-
ciency Q as a function of the scatterer strength V0R for a
number of representative values of the relative incident en-
ergy: (a) E/V0 = 0.01, (b) E/V0 = 0.1, and (c) E/V0 = 0.9.
The middle and bottom panels show the corresponding prob-
ability density and local current density profiles, respectively.
In (a-c), the blue curves are for the conventional massless
pseudospin/spin-1/2 case while the red ones are for the mass-
less pseudospin-1 wave system. Certain features can be un-
derstood by referring to the resonance width expressions
Γ1 ∝ (kR)3 for the resonances associated with the |l| = 1
channel and Γ0 ∝ (kR) ≫ Γ1 for those with the l = 0 chan-
nel. For example, in (a), the second and fourth modes belong
to the normal excitations of the |l| = 1 channel, which are
located about the first (V0R ∼ 3.8) and the second (V0R ∼ 7)
zeros of the Bessel function J1 in the domain of V0R, while
the first, third and fifth modes are the excitations of normal
modes belonging to the l = 0 channel, which are located about
the first (∼ 2.4), the second (∼ 5.5) and the third (∼ 8.7)
zeros of the Bessel function J0(V0R). This is why the long
lifetime (corresponding to narrow resonance width) appears
in the fourth mode but not in the third and fifth modes. This
argument holds in the regime kR ≪ 1 and E/V0 ≪ 1.

fixed value of E/V0, we calculate the scattering efficiency
Q versus the barrier strength V0R. For the three chosen
values of E/V0, the results are shown by the respective
red curves in Figs. 1(a-c). We see that there are well-
separated sharp resonances in Q for small values of E/V0
[e.g., Fig. 1(a)], while broadened and overlapping ripple
structures occur for larger values of E/V0 [e.g., Figs. 1(b)
and 1(c)]. Using the characteristic size parameter kR,
we can generally classify two distinct scattering regimes:
kR ≪ 1 and kR ≫ 1. In the former case (kR ≪ 1), the
incident wavelength 2π/k is much larger than the range
R of the scattering potential. In this case, the wave ef-
fects dominate the scattering dynamics with a remark-
able resonance characteristic, as shown in Figs. 1(a) and
1(b). The case kR ≫ 1, i.e., (1−E/V0)/(E/V0)kR ≫ 1,
corresponds to the semiclassical limit where the classical
ray picture is applicable. In this case, the scatterer acts
essentially as a Veselago reflector/lens due to an equiva-
lent negative refractive index arising from the particular

band structure of Dirac cones with a flat band.
From the explicit summation form of Q and the reflec-

tion coefficients Al (labeled by the angular momentum
l) obtained within the generalized partial-wave decom-
position formalism in Appendix B, we see that the size
parameter kR provides a general estimate of the maxi-
mum number of angular momentum channels contribut-
ing to the scattering process. Accordingly, we can obtain
a closed form of Q in the limit of kR ≪ 1, where only
a few lowest channels dominate in a given range of the
barrier strength, say V0R ∈ [0.01, 10]. Specifically, using
the short-range (x≪ 1) behavior of the Bessel functions
appearing in the solutions of the scattering problem, we
get a closed expression for the dependence of the scatter-
ing efficiency Q on the effective barrier strength V0R for
kR≪ 1 and E/V0 ≪ 1, which reads

Q ≈ 2

kR

[

Γ2
0

Γ2
0 + (V0R− x0 + kR ln (γEkR/2))

2+

2× Γ2
1

Γ2
1 + (V0R− x1 − kR)

2

]

,

(2)

where γE is the constant appearing in the small
value approximation of the Bessel function: Y0(x) ≈
(2/π) ln (γEx/2)for x≪ 1 and the lowest |l| = 0, 1 chan-
nels give the leading contribution to and hence domi-
nate the scattering process with well-separated symmet-
ric sharp resonances around V0R = x0, x1, which corre-
spond to the zeros of the Bessel functions J0 and J1. The
respective lifetimes are given by

1

Γ0
=

2

πkR
and

1

Γ1
=

2

π(kR)3
.

From Eq. (2), we see that, for kR ≪ 1 and E/V0 ≪ 1,
the resonances exhibit a Lorentzian shape (also known
as the Breit-Wigner distribution). Due to their longer
lifetime: 1/Γ1 ≫ 1/Γ0, the resonances associated with
the |l| = 1 channel are much narrower than those with
l = 0. In the limit kR → 0, the resonant excitations are
typically positioned at the zeros of Jl(V0R) with an in-
finite lifetime (i.e., zero resonant widths) that physically
correspond to a bound state in the antidot potential pro-
file without an incident wave. Further insights can be
gained by considering the local probability and current
density distributions of one particular excitation of the
normal modes, e.g., the first resonance associated with
the |l| = 1 channel, as indicated in Figs. 1(a2) and 1(a4).
Analytically, we obtain the probability density inside the
scattering region (r < R) as

ρ< ≈|B1|2
[

J2
1 (V0r) +

J2
0 (V0r) + J2

2 (V0r)

2

+
(

J2
1 − J0J2

)

cos (2θ)
]

,

(3)

together with the local current distribution



4

j< ≈−ℜ(B∗
1B0)

[

2J2
1 (V0r) + J2

0 (V0r)− J0(V0r)J2(V0r)
]

cos θêr

+ ℜ(B∗
1B0)J0(V0r) [J0(V0r) + J2(V0r)] sin θêθ,

(4)

where ℜ(B∗
1B0) denotes the real part of (B∗

1B0), and Bl

are the transmission coefficients (Appendix B). When a
scattering resonance emerges, the magnitude of the trans-
mission coefficient behaves as

|B1| ∼
1

kRJ1(V0R)
≫ 1,

leading to a noticeable probability density concentration
inside the scatterer, indicating the occurrence of wave
trapping/confinement. Moreover, it follows from Eq. (4)
that, accompanying the confinement, a vortex pattern
symmetric with respect to the x−axis is formed. In gen-
eral, in the resonant scattering regime, the incident wave
is confined/trapped in vortices (as demonstrated in the
bottom panel of Fig. 1) rather than through the conven-
tional total internal reflection mechanism.
Comparing with the conventional pseudospin-1/2

Dirac cone systems [cf., Figs. 1(a1) and 1(a3), as well
as the blue curve in Fig. 1(a)], we see that there are com-
mon features in the scattering curve and trapping mecha-
nism but with different resonant wave/current patterns.
In particular, the trapping intensity distribution is ra-
dially symmetric for the pseudospin-1/2 case, but for a
pseudospin-1 particle, there is an angular dependence of
the scattering amplitude with a well-defined rotational
symmetry, which can be analyzed for a specific resonant
mode using Eq. (3).
Given the particular range of the scattering strength

V0R as set in Figs. 1(a-c), we see that increasing E/V0
leads to larger values of kR and hence the scattering pro-
cess involves higher angular momentum channels. As a
result, more quasi-bound modes can be excited, gener-
ating overlapping and broadened resonances, as shown
in Figs. 1(b) and 1(c). In the limit of kR ≫ 1, say
V0R ≫ 1 for E/V0 ∼ 1, we enter the semiclassical
regime where the ray picture is applicable. We obtain
Q ≈ 2 [1− π cos(2V0R− π/4)/4V0R] as a damped os-
cillatory function of the scattering strength V0R about
a constant value. Distinct from the resonant scattering
regime dominated by wave interference/diffraction, in the
semiclassical regime the scatterer acts as a Veselago re-
flector due to its effective negative refractive index. The
associated local probability density and current density
patterns in typical situations for both conventional mass-
less pseudospin-1/2 and massless pseudospin-1 cases are
shown in Figs. 1(b1-b4) and 1(c1-c4), respectively.
To gain further insights into the scattering behaviors,

we plot Q as a function of V0R and E/V0, as shown in
Figs. 2(a) and 2(b), respectively. As expected, for the
pseudospin-1/2 Dirac cone system, the curve of Q versus
V0R tends to be smooth as E/V0 is increased [Fig. 2(a)].
However, for the pseudospin-1 Dirac cone system shown
in Fig. 2(b), the remarkable phenomenon of revival reso-

FIG. 2. Scattering efficient Q versus the scatterer
strength V0R and the relative incident energy E/V0

for (a) massless pseudospin-1/2 and (b) massless pseudospin-
1 wave systems. The black curve is for E/V0 = 0.49 with a
highlighted visual effect.

nant scattering emerges: the sharp resonances disappear,
reappear unexpectedly, and then disappear again with
continuous increase in E/V0. We emphasize that this
revival phenomenon is quite exceptional which, to our
knowledge, has not been reported in any other known
wave systems. In the limit of V0R ≪ 1 (V0R > kR), we
obtain

Q ≃ 2

kR

[

P 2
0

P 2
0 +Q2

0

+ 2× P 2
1

P 2
1 + (4 +Q1)2

]

, (5)

where

P0 = πkR, and

Q0 = 2 [kR ln(γEkR/2)− J0(V0R− kR)/J1(V0R− kR)] ,

with P1 and Q1 given by [P1, Q1] = kR[P0, Q0]. The first
term of Eq. (5),

P 2
0

P 2
0 +Q2

0

≈ π2J2
1 (V0R− kR)

4J2
0 (V0R− kR)

(kR)2

≃ π2(1− E/V0)
2

16
(V0R)

2(kR)2 ≪ 1,

is off-resonance. Remarkably, the second term generates
an additional resonance for 4+Q1 = 0, which corresponds
to the emerging revival resonance observed. Explicitly,
the associated revival resonant condition can be obtained
from 4 + kRQ0 = 0 as E/V0 ≈ 1/2, which agrees with
the numerical results as displayed in Fig. 2(b).
Certain remarkable features of the revival resonances

can be revealed through the underlying revival resonant
modes (RRMs) defined in terms of the associated local
probability and current density patterns. We find that
the RRMs exhibit unusual boundary trapping profiles,
where the higher the resonance frequency (energy) the
more pronounced the trapping. Examining the corre-
sponding local current density distribution of a specific
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FIG. 3. Vortex-based wave trapping for massless
pseudospin-1 scattering. (a-c) Schematic illustration of
three types of vortex-based wave trapping. (d) Wave pattern
near the boundary for a massless pseudospin-1/2 particle for
E/V0 = 0.086. (e,f) Boundary wave patterns for the mass-
less pseudospin-1 case for E/V0 = 0.044 and E/V0 = 0.487,
respectively. The value of V0R is set to be 4.5 for all cases.

RRM, we find that the incident wave is fed into fusiform
vortices about the boundary and is trapped there. In
contrast, for conventional pseudospin-1/2 scattering, no
such trapping phenomenon occurs. Using the general
vortex-based trapping mechanism, we can get an intu-
itive physical picture for the unusual boundary trapping
phenomenon through a qualitative analysis of vortex for-
mation in the local current distribution stipulated by the
boundary conditions. In particular, for a given local cur-
rent configuration outside the scattering boundary, as in-
dicated by the light blue arrows in Figs. 3(a-c), we sketch
the possible local current patterns inside the boundary,
denoted by the blue, green and red arrows, respectively.
This can be done with the boundary conditions defined
in terms of the spinor wavefunction Ψ = [ψ1, ψ2, ψ3]

T

and their effect on the associated local current field j

(see Appendix A). Since continuity is the only constraint
on the normal component of the local currents at the
boundary (the tangent component is in general discon-
tinuous and can even have opposite directions), there is
an additional freedom to configure the corresponding cur-
rent pattern inside the potential region for a particular
pattern outside. This leads to the remarkable fusiform
boundary vortices as illustrated in Fig. 3(c) with the
dramatic phenomenon of boundary trapping and, con-
sequently, to the resonances in the curve of the scatter-
ing efficiency. Note that, for the conventional scalar or
spinor wave systems, the current configuration is well-
determined in the sense that, given a configuration on
one side of the boundary, that on the other side is then

determined completely. This is due to the continuity in
both components of the local currents at the boundary,
as illustrated in Fig. 3(a). As a concrete example, we
demonstrate the full local current patterns in Figs. 3(d-f),
where the former two represent the typical local current
profiles underlying the conventional low-order resonant
modes excited in the massless pseudospin-1/2 and mass-
less pseudospin-1 wave systems, respectively, while the
last one is for that of the RRM that arises only for the
massless pseudospin-1 wave system.
For pseudospin-1 Dirac cone systems, a remarkable

phenomenon is super-Klein tunneling (see Appendix A),
which occurs when the energy of the incident particle
is about one half of the potential height. In this case,
forward scattering is maximized. In contrast, the re-
vival scattering resonances are associated with fusiform
vortices about the boundary, creating perfect wave trap-
pings there and eliminating any forward scattering. Both
super-Klein tunneling and revival resonant scattering de-
pend on the scatterer strength V0R and the relative in-
cident energy E/V0. From an applied point of view, it is
thus possible to switch the super-Klein-tunneling domi-
nant forward scattering on and off efficiently by tuning
the parameters. In fact, the higher pseudospin degree
of freedom and the flexible scattering boundary condi-
tions render richer current patterns that can be manip-
ulated through parameter perturbation. This may find
applications in novel photonic integrated circuit design,
as pseudospin-1 systems have been realized experimen-
tally in a variety of photonic crystals19,20,23–26,28.
While the RRMs uncovered appear similar to the well-

known whispering gallery modes (WGMs) in terms of
the intensity profiles, we emphasize that the underlying
mechanisms are quite different. In particular, the WGMs
are due to the total internal reflection within an effec-
tive semiclassical ray regime, but the RRMs result from
the formation of unusual, dominant vortices locally at-
tached to the boundary due to wave interference and can
thus occur for much smaller scatterer size kR, a regime
in which the semiclassical ray approximation fails. An
explicit comparison of conventional resonant, revival res-
onant and whispering gallery modes for the pseudospin-1
Dirac cone system is presented in Fig. 4.

B. Near-field behavior 2: perfect caustics

Caustics, a spatial region in which the density of
light rays is singular, occur in the semiclassical regime.
This phenomenon is quite common in daily life, mostly
through geometric optics. For a pseudospin-1/2 Dirac
cone system, caustics can occur due to the tunable effec-
tive negative refractive index and the Klein tunneling ef-
fect, as shown in Figs. 5(a) and 5(c). For the pseudospin-
1 Dirac cone system, the surprising phenomenon of per-
fect caustic/lens behavior occurs, as shown in Figs. 5(b)
and 5(d) for the same parameter as in Figs. 5(a) and 5(c),
which emerges in the regime where the incident wave-



6

FIG. 4. Comparision of conventional resonant, re-
vival resonant and whispering gallery modes for
pseudospin-1 Dirac cone system. (a-c): Typical prob-
ability distributions for the conventional resonant mode
(CRM), revival resonant mode (RRM) and whispering gallery
mode (WGM), respectively, where the scattering parame-
ters [E/V0,V0R] are: (a) [0.2, 11.598], (b) [0.487,4.5] and (c)
[0.4157, 100]. (d-f) The corresponding current patterns.

length is much smaller than the scatterer radius R. The
caustic patterns for the massless pseudospin-1 system are
“perfect” in the sense that they are significantly more
focused/concentrated than the pseudospin-1/2 counter-
parts. We find that perfect caustics are a result of the
super-Klein tunneling effect for massless pseudospin-1
particle, where the transmission coefficient approaches
unity for any incident angle23,32,40,41. Specifically, for a
single straight scattering interface, we obtain the trans-
mission coefficient for incident angle θ (−π/2 ≤ θ ≤ π/2)
as

T =
4ττ ′ cos θ′ cos θ

cos2 θ′ + cos2 θ + 2ττ ′ cos θ′ cos θ
, (6)

with the refractive angle given by

θ′ = π − tan−1 |E/V0| sin θ
√

(1− E/V0)2 − (E/V0)2 sin
2 θ
,

where τ = sgn(E) and τ ′ = sgn(E − V0). It follows from
Eq. (6) that T ≡ 1 for E/V0 = 1/2, regardless of the
incident angle, as shown by the thick red curve in Fig. 6,
signifying a super-Klein tunneling behavior. For compar-
ison, the incident angle dependent transmission probabil-
ity for the conventional pseudospin-1/2 system is shown
as the thick blue line in the same figure.
Within the ray formalism and based on differential ge-

ometry54, we obtain analytically the following caustic en-
velope equation defining a curve rc = (xc, yc) as

rc(p, θ)

R
= (−)p−1

[

(− cosΘ, sinΘ) + cosβ
1 + 2(p− 1)β′

1 + (2p− 1)β′

× (cos (Θ + β),− sin (Θ + β))] ,
(7)

FIG. 5. Caustic behavior in the semiclassical regime
and perfect caustics in pseudospin-1 Dirac cone sys-
tems. The probability and local current density patterns,
respectively, for (a,c) conventional pseudo-1/2 and (b,d)
pseudospin-1 Dirac cone systems. The probability density
patterns in (a) and (b) are plotted on a logarithmic scale.
The corresponding local current density patterns in (c) and
(d) are color-coded with magnitude normalized by its maxi-
mum. The parameters are kR = 300 and E/V0 = 1/2.

where Θ = θ+2(p−1)β, sinβ = sin θ/|1−V0/E|, and β′ =

cos θ/
√

(1− V0/E)2 − sin2 θ with p being the number of

chords inside the scattering region corresponding to p−1
internal reflections. Intuitively, the caustics for p > 1 are
less visible since the ray intensity decreases after each
internal reflection. However, for our pseudospin-1 Dirac
cone system, the super-Klein tunneling effect for E/V0 =
1/2 will suppress the p > 1 caustics completely, leading
to a perfect caustic for p = 1, which intuitively can be
better seen from the corresponding local current patterns
in Figs. 5(c,d).

While super-Klein tunneling T ≡ 1 occurs exactly for
E/V0 = 0.5 for the entire range of the incident angle,
even when E/V deviates from the value of 0.5 (e.g.,
E/V = 0.4), T ≈ 1 still persists for a substantial range
of the incident angle, as shown in the top-right corner of
Fig. 7. In addition, the phenomenon of perfect caustics
holds as well, as shown in Figs. 7(b,d). Because of the
flexible energy range for super-Klein tunneling and per-
fect caustics to occur, it may be feasible to observe these
phenomena in experiments.

C. Far-field behavior: isotropic scattering of
massless pseudospin-1 quasiparticles and control

Far away from the scattering center, i.e., r ≫ R, for
unit incident density, the spinor wavefunction can be
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FIG. 6. Super-Klein tunneling in pseudospin-1 Dirac
cone systems. Transmission probability: red and blue
curves are for the massless pseudospin-1 and pseudospin-1/2
particles, respectively, with E/V0 = 0.5 (solid lines) and
E/V0 = 0.4 (dash lines). For the former (solid red line) the
transmission is unity, regardless of the incident angle.

FIG. 7. Robustness of super-Klein tunneling and per-
fect caustics in pseudospin-1 Dirac cone systems. Top
panels: polar plots of the transmission probability for differ-
ent values of E/V0 as indicated. The left column is for the
pseudospin-1/2 system, while the right is for the pseudospin-
1 system. Parameters used for generating the caustic pat-
terns are kR = 300 and E/V0 = 0.4 (rather than exactly at
E/V0 = 0.5).

written as

Ψ>(r, θ) ≈
1

2





1√
2τ
1



 eikr cos θ +
1

2





e−iθ
√
2τ
eiθ





f(θ)√
r
eikr,

(8)

where f(θ) denotes the 2D far-field scattering amplitude
in the direction defined by the angle θ with the x axis.
The differential and the total cross sections are given,
respectively, by

dσ

dθ
= |f(θ)|2, (9)

and

σ =

∫ 2π

0

|f(θ)|2dθ. (10)

In addition, we define the transport or momentum-
relaxation cross section as

σtr =

∫ 2π

0

dθ|f(θ)|2(1− cos θ). (11)

The three types of cross sections are experimentally mea-
surable and can be used to quantitatively characterize the
basic scattering and transport physics for pseudospin-1
Dirac cone systems. For example, consider such a system
with randomly distributed identical scatterers of low con-
centration, i.e., nc ≪ 1/R2, the conductivity in units of
the conductance quantum G0 can be expressed as (see
Appendix C)

G

G0
=

k

ncσtr
= vgkτtr, (12)

where the sample size is assumed to be larger than the
mean-free path L = vgτtr with τtr being the transport
mean free time, and vg is the group velocity. The elastic
scattering time (the quantum lifetime) τe can be deter-
mined from the total cross section through

1

τe
= ncvgσ. (13)

The two time scales define the following characteristic
ratio:

ξ =
τtr
τe

=
σ

σtr
≡

∮

dθ|f(θ)|2
∮

dθ|f(θ)|2(1− cos θ)
, (14)

which can be used to characterize the far-field behavior
of the scattering process. Through a detailed analysis,
we obtain the following formula (see Appendix B):

ξ =
2
∑

l sin
2 δl

∑

l sin
2(δl+1 − δl)

, (15)

where δl is the scattering phase shift associated with an-
gular momentum l.
We present our finding of the general isotropic na-

ture of low-energy scattering for massless pseudospin-1
wave. To be concrete, we calculate from Eq. (15) the
ratio ξ as a function of kR for a given barrier strength
V0R = 5. The result is shown as the red curves in Fig. 8,
where we see that there is a characteristic constant ra-
tio ξ ≈ 1 of the transport time to the elastic time for
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kR ≪ 1. For comparison, we calculate the correspond-
ing ratio for the massless pseudospin-1/2 wave, where
low-energy scattering is universally anisotropic as char-
acterized by the constant ratio ξ ≈ 253,58. Our result
indicates that, for a massless pseudospin-1 particle, back
scattering is as pronounced as forward scattering. This
finding is quite counterintuitive as, if the massless na-
ture of the quasiparticles is sustained, they can penetrate
through potential barriers of arbitrary strength via the
mechanism of Klein tunneling, making forward scatter-
ing more pronounced. Since super-Klein tunneling can
occur for massless pseudospin-1 quasiparticles but the
scattering is isotropic at low energies, the message is that,

to generate isotropic transport, it may not be necessary
to break symmetries to alter the massless nature of the
quasiparticles through, e.g., additional mechanisms such
as spin-orbit interactions. Equivalently, an isotropic ratio
ξ for massless quasiparticles does not necessarily imply
any symmetry breaking leading to a finite mass.
To gain deeper insights into the physics underlying the

counterintuitive phenomenon of isotropic scattering for
massless particles, we analyze the characteristic ratio ξ
in terms of the scattering cross sections. The reflection
coefficient associated with angular momentum l satisfies
Al = A−l. Using this relation, we obtain the differential
cross section as (Appendix B)

dσ

dθ
=

2

πk
{|A0|2 + 2

∞
∑

n=1

|An|2[1 + cos (2nθ)] + 4

∞
∑

n=1

ℜ(A0A
∗
n) cos (nθ) (16)

+ 8

∞
∑

m>n=1

ℜ(AnA
∗
m) cos (nθ) cos (mθ)}.

In the regime kR ≪ 1 where the total angular momentum
channels (l = 0,±1) dominate the scattering process, we
have

dσ

dθ
≈ 2

πk

{

|A0|2 + 2|A1|2[1 + cos (2θ)]
}

, (17)

resulting in an isotropic ratio that agrees with the simu-
lation result:

ξ ≡
∮

dθ dσ
dθ

∮

dθ dσ
dθ (1− cos θ)

≈ 1. (18)

A remarkable feature associated with the expression of
dσ/dθ in Eq. (17) is the presence of backscattering char-
acterized by a finite differential cross section at θ = π:

dσ

dθ

∣

∣

∣

θ=π
=

2

πk

[

|A0|2 + 4|A1|2
]

, (19)

which results from the constant term contributed by
the l = 0 channel and the constructive interference
between the time-reversed scattering paths denoted by
l = ±1. The underlying physical picture can then be
understood, as follows. Consider the pseudohelicity de-

fined as ĥ = S · k/k. Its eigenvalues are conserved dur-
ing the scattering process because of the commutation

[ĥ, Ĥ ] = 0 for the massless pseudospin-1 system. In gen-
eral, when time-reversal symmetry is taken into account,
a typical backscattering process consists of a pair scatter-
ing paths with a 2π relative rotation of the pseudospin
between them. This leads to a phase difference deter-
mined by the underlying Berry phase eiΦB . For a mass-
less pseudospin-1 particle, we have ΦB = 0. There is thus
coherent interference for backscattering, which makes the
low-energy scattering isotropic. When this general pic-
ture is applied to a conventional pseudospin-1/2 Dirac

cone system with ΦB = π, it is straightforward to see
that, for backscattering there is complete destructive in-
terference and the zero total angular momentum channel
is absent51,61. In particular, we have, for the differential
cross section, dσ/dθ ∼ (1 + cos θ) for kR≪ 1. The ratio
ξ thus becomes ξ ≈ 2/

∮

dθ(1− cos 2θ) = 2. The analysis
agrees with the numerical results in Fig. 8.

Another phenomenon is the emergence of Fano-like
resonance profile for larger values of kR where higher
angular momentum channels can be excited and inter-
fere with the lower ones, as manifested in the behav-
ior of ξ versus kR. This provides a way to manipulate
Klein-tunneling based scattering. In particular, for the
conventional pseudospin-1/2 Dirac cone system (as illus-
trated by the blue curves in the insets (II) and (III) of
Fig. 8), the preferred scattering directions can be con-
trolled through tuning of the quantity kR. However, for
such particles, since backscattering is typically totally
suppressed, it is not possible to switch between forward
and backward scattering. Remarkably, controlled switch-
ing in the scattering dynamics from forward to back-
ward and vice versa can be done for our pseudospin-1
system. There are in fact a number of controllable scat-
tering scenarios ranging from the isotropic type (ξ ≈ 1),
the backscattering dominant type (ξ < 1), and the for-
ward scattering dominant type (ξ > 2), and the switches
among them can be realized by tuning the scattering pa-
rameter kR. The feasibility of controlled scattering can
be seen from the red curves in the insets of Fig. 8. This
capability of scattering control can have potential ap-
plications in unconventional photonic/electronic circuit
design.



9

10
−3

10
−2

10
−1

10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

kR

ξ

  0.2
  0.4
  0.6
  0.8
  1

30

210

60

240

90

270

120

300

150

330

180 0

  0.2
  0.4
  0.6
  0.8
  1

30

210

60

240

90

270

120

300

150

330

180 0

  0.2
  0.4
  0.6
  0.8
  1

30

210

60

240

90

270

120

300

150

330

180 0

(III)

(II)

(I)

(I)

(II)

(III)

FIG. 8. Isotropic scattering of massless pseudospin-1
quasiparticle. Ratio ξ as a function of kR for V0R = 5:
the red and blue lines are for the massless pseudospin-1 and
pseudospin-1/2 cases, respectively.

III. DISCUSSION

Using a general Hamiltonian for pseudospin-1 systems
whose energy band structure constitutes a pair of Dirac
cones and a topologically flat band, we investigate the
basic problem of wave scattering from a circularly sym-
metric potential barrier. In spite of its simplicity, the
system gives unusual and unexpected physics: revival
resonant scattering, perfect caustics, and isotropic scat-
tering for massless quasiparticles. In particular, for small
scatterer size, the effective three-component spinor wave
exhibits revival resonant (Mie) scattering features as the
incident wave energy is varied continuously - a surprising
phenomenon which, to our knowledge, has not been re-
ported in any known wave systems. For larger scatter size
rendering semiclassical the underlying scattering dynam-
ics, a super-caustic phenomenon arises when the incident
wave energy is about half of the barrier height, which
is essentially a manifestation of the super-Klein tunnel-
ing effect for massless pseudospin-1 particles. Because
of Klein tunneling, intuitively wave scattering should be
anisotropic due to suppression of backward scattering,
which is indeed the case for conventional pseudospin-1/2
particles. However, for a pseudospin-1 particle, the asso-
ciated Berry phase can lead to constructive interference
in the backward direction, leading to the counterintu-
itive phenomenon of isotropic scattering even for massless
quasiparticles. We develop an analytic theory and phys-
ical understanding with extensive numerical support to
substantiate our findings.
It is possible to conduct experimental test of the find-

ings of this paper. For example, in a recent work23, it
was demonstrated for a class of two-dimensional dielec-
tric photonic crystals with Dirac cones induced acciden-
tally19–22 that the Maxwell’s equations can lead to an
effective Hamiltonian description sharing the same math-
ematical structure as that of massless pseudospin-1 parti-
cles. Especially, the photonic analogy of the gate poten-

tial in the corresponding electronic system can be real-
ized by manipulating the scaling properties of Maxwell’s
equations. Recent experimental realizations of photonic
Lieb lattices consisting of evanescently coupled optical
waveguides implemented through the femtosecond laser-
writing technique24–27 make them prototypical for study-
ing the physics of pseudopsin-1 Dirac systems. With a
particular design of the refractive index profile across
the lattice to realize the scattering configuration, our
findings can be experimentally tested. Loading ultra-
cold atoms into an optical Lieb lattice fabricated by in-
terfering counter-propagating laser beams28 provides an-
other versatile platform to test our findings, where ap-
propriate holographic masks can be used to implement
the desired scattering potential barrier32,62. In elec-
tronic systems, we note that the historically studied but
only recently realized 2D magnetoplasmon system63 is
described by three-component linear equations with the
same mathematical structure of massless pseudospin-1
particles, which can serve as a 2D electron gas system to
test our results.

From an applied perspective, the phenomenon of re-
vival resonant scattering can be a base for articulating
a new class of microcavity lasers based on the princi-
ples of relativistic quantum mechanics. It may also lead
to new discoveries in condensed matter physics through
exploiting the phenomenon in electronic systems. The
phenomenon of perfect caustics can have potential appli-
cations in optical imaging defying the diffraction limit as
well as in optical cloaking.
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Appendix A: Hamiltonian and general properties

The effective low-energy Hamiltonian associated with
pseudospin-1 Dirac cones can be written, in the unit h̄ =
1, as23,24,40

H0 = vgS · k, (A1)

where vg is the magnitude of the group velocity asso-
ciated with the Dirac cone, k = (kx, ky) denotes the
wavevector, and S = (Sx, Sy) is a vector of matrices with
components

Sx =
1√
2





0 1 0
1 0 1
0 1 0



 and Sy =
1√
2





0 −i 0
i 0 −i
0 i 0



 .

(A2)
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Along with another matrix

Sz =





1 0 0
0 0 0
0 0 −1



 ,

the three matrices form a complete representation of
spin-1, which satisfies the angular momentum commuta-
tion relations [Sl, Sm] = iǫlmnSn with three eigenvalues:
s = ±1, 0, where ǫlmn is the Levi-Civita symbol. It fol-
lows from Eq. (A1) that the energy spectrum consists of
three bands that intersect at the Dirac point: a disper-
sionless flat band E0(k) = 0 and two linearly dispersive
bands Eτ (k) = τvg|k| with τ = ±1 being the band in-
dex. The corresponding eigenfunctions in the position
representation r = (x, y) are

ψk,τ (r) = 〈r|k, τ〉 = 1

2

[

e−iθ,
√
2τ, eiθ

]T

eik·r, (A3)

for the dispersive bands and

ψk,0(r) = 〈r|k, 0〉 = 1√
2

[

−e−iθ, 0, eiθ
]T
eik·r, (A4)

for the flat band, where θ = tan−1(ky/kx). The current
operator is defined from Eq. (A1) as

ĵ = ∇kH0 = vgS. (A5)

The local current in a given state ψ(r) = [ψ1, ψ2, ψ3]
T

can thus be expressed as

j(r) = vgψ
†Sψ ≡ (jx, jy)

=
√
2vg (ℜ[ψ∗

2(ψ1 + ψ3)],−ℑ[ψ∗
2(ψ1 − ψ3)]) ,

(A6)

which satisfies the common continuity equation

∂

∂t
ρ+∇ · j = 0, (A7)

where ρ = ψ†ψ is the probability density associated with
state ψ. From Eqs. (A3) and (A4), we see that the as-
sociated local current density satisfies j0 = 0 for the flat
band plane-wave, and

jτ = vg(cos θ, sin θ) = τvg
k

|k| , (A8)

for the dispersive band plane-wave. In terms of the Berry
phase associated with the band structure, we obtain from
Eqs. (A3) and (A4) the corresponding Berry connections

Aτ
k
= 〈k, τ |i∇k|k, τ〉 = 0,

A0
k
= 〈k, 0|i∇k|k, 0〉 = −2Aτ

k
= 0

for all three bands. The Berry phase is thus given by

Φτ,0
B =

∮

C
τ,0

kd

dk · Aτ,0
k

= 0, (A9)

for any closed path Cτ,0
kd

encircling the degeneracy point
kd of the momentum space defined in each band. We
note that the vanishing or 2π quantized Berry phase is
consistent with the fundamental properties of spin-1 par-
ticles.

Super-Klein tunneling. A remarkable phenomenon
for pseudospin-1 Dirac cone systems, which is not usu-
ally seen in conventional Dirac cone systems such as
graphene and topological insulators, is super-Klein tun-
neling23. Specifically, following the standard treatment
of Klein tunning for graphene systems64, one can con-
sider the basic problem of wave scattering from a rect-
angular scalar (electrostatic) potential barrier defined
as V (x, y) = V0Θ(x)Θ(D − x) with barrier width D
and height V0. The transmission probability based on
the effective Hamiltonian Eq. (A1) for incident energy
E 6= 0, V0 is given by

T =
(1− γ2)(1 − γ′2)

(1− γ2)(1 − γ′2) + 1
4 (γ + γ′)2 sin2 (qxD)

, (A10)

where γ = τ sin θ, γ′ = τ ′ sin θ′ with τ = sgn(E), τ ′ =
sgn(E−V0), θ = tan−1 (ky/kx) is the incident angle, and
θ′ = arctan (ky/qx) with

qx =
√

(E − V0)2 − k2y .

A striking feature of Eq. (A10) is that, when the incident
wave energy is one half of the potential barrier height, i.e.,
E = V0/2, one has τ = −τ ′, θ = θ′ and, consequently,
perfect transmission with T ≡ 1 for any incident angle θ
- hence the term “super-Klein tunneling.”

Appendix B: Analysis of scattering of massless
pseudospin-1 wave

Due to the circular symmetry of the scattering poten-
tial, it is convenient to formulate the solution in the polar
coordinates r = (r, θ), in which the Hamiltonian is

Ĥ = Ĥ0+V (r)1 =
vg√
2





0 L̂− 0

L̂+ 0 L̂−

0 L̂+ 0



+V0Θ(r−R)1,

(B1)
with the compact operator given by

L̂± = −ie±iθ

(

∂r ± i
∂θ
r

)

.

The z component of the total angular momentum is Ĵz =
−i∂θ + Ŝz, and we have [Ĥ, Ĵz] = 0. For a conventional
two-dimensional Dirac cone system with massless spin-
1/2 excitations, we have

(

0 L̂−

L̂+ 0

)

(

f
(0,1)
l (kr)

iτf
(0,1)
l+1 (kr)eiθ

)

eilθ

= E

(

f
(0,1)
l (kr)

iτf
(0,1)
l+1 (kr)eiθ

)

eilθ,

(B2)

where the radial function f
(0)
l = Jl is the Bessel’s func-

tion, and f
(1)
l = H

(1)
l is the Hankel’s function of the first
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kind. Assuming V0 = 0, we obtain solutions to Eq. (B1):

ψ
(0,1)
lE (r, θ) =

1√
2π







f
(0,1)
l−1 (kr)e−iθ

iτ
√
2f

(0,1)
l (kr)

−f (0,1)
l+1 (kr)eiθ






eilθ, (B3)

for the dispersive band E = τvgk, and

ψ
(0,1)
l0 (r, θ) =

1√
2π







f
(0,1)
l−1 (kr)e−iθ

0

f
(0,1)
l+1 (kr)eiθ






eilθ (B4)

for the flat band E = 0. Apparently, ψlE and ψl0 act as a
spinor spherical wave basis for massless spin-1 excitation
governed by Hamiltonian (A1). To reveal and character-
ize the basic scattering features/mechanisms in a mass-
less pseudospin-1 Dirac cone system, we turn on the cir-
cularly symmetric scattering potential V (r) = V0Θ(R−r)
and launch an incident plane spinor wave of a massless
spin-1 particle outside the scattering region (r > R).
Without loss of generality, we assume that the incident
wave propagating along the x axis with a finite incident
energy |E| > 0 is explicitly given by

ψI
k,τ (r, θ) =

1

2





1√
2τ
1



 eikr cos θ. (B5)

Making use of the Jacobi-Anger identity

eiz cos θ ≡
∞
∑

l=−∞

ilJl(z)e
ilθ,

we can rewrite the incident wave in the spinor spherical
wave basis as

ψI
k,τ (r, θ) =

1

2

∑

l

il−1





Jl−1e
i(l−1)θ

iτ
√
2Jle

ilθ

−Jl+1e
i(l+1)θ





=

√

π

2

∞
∑

l=−∞

il−1ψ
(0)
lE (r, θ).

(B6)

Since the total (pseudo-)angular momentum is conserved
during scattering, the reflected wave can be written as
(r > R)

ψR
k,τ (r, θ) =

√

π

2

∞
∑

l=−∞

il−1Alψ
(1)
lE (r, θ). (B7)

Similarly, we define the transmitted wave inside the scat-
tering region (r < R) as

ψT
q,τ ′(r, θ) =

√

π

2

∞
∑

l=−∞

il−1Blψ
(0)
lE′(r, θ), (B8)

where q = |E − V0|/vg and E′ = E − V0 = τ ′vgq. The
total wavefunction outside the scattering region (r > R)
is given by

Ψ>(r, θ) = ψI
k,τ (r, θ)+ψ

R
k,τ (r, θ) = [ψ>

1 , ψ
>
2 , ψ

>
3 ]

T , (B9)

while the wavefunction inside the scattering region (r <
R) is

Ψ<(r, θ) = ψT
q,τ ′(r, θ) = [ψ<

1 , ψ
<
2 , ψ

<
3 ]

T . (B10)

In order to determine the reflection and transmission
coefficients, Al and Bl, respectively, we need the exact
boundary conditions (BCs) imposed on the total wave
functions at the scattering interface (r = R).
Boundary conditions for massless pseudospin-1 scat-

tering. Recalling the commutation relation [Ĵz, Ĥ ] = 0
(i.e., conservation of the total angular momentum), we
define the following wavefunction

Ψ(r, θ) = [ψ1, ψ2, ψ3]
T =





R1(r)e
−iθ

R2(r)
R3(r)e

iθ



 eilθ, (B11)

which satisfies

ĤΨ = EΨ. (B12)

Substituting Eq. (B11) into Eq. (B12) and eliminating
the angular components, we obtain the following one-
dimensional, first-order ordinary differential equation for
the radial component of the wavefunction:

−i vg√
2





0 d
dr + l

r 0
d
dr − l−1

r 0 d
dr + l+1

r

0 d
dr − l

r 0









R1(r)
R2(r)
R3(r)





= [E − V (r)]





R1(r)
R2(r)
R3(r)



 .

(B13)
Directly integrating the radial equation over a small in-
terval r ∈ [R − η,R + η] defined about the interface at
r = R and taking the limit η → 0, we obtain

R2(R− η) = R2(R + η),

R1(R− η) +R3(R− η) = R1(R + η) +R3(R + η),
(B14)

provided that the potential V (r) and the radial wave-
function components R1,2,3(r) are all finite. Reformulat-
ing the continuity conditions in terms of the correspond-
ing wavefunctions, we obtain the boundary conditions for
scattering of massless pseudospin-1 wave as

ψ<
2 (R, θ) = ψ>

2 (R, θ),

ψ<
1 (R, θ)e

iθ + ψ<
3 (R, θ)e

−iθ = ψ>
1 (R, θ)e

iθ + ψ>
3 (R, θ)e

−iθ.
(B15)

It follows from Eq. (B15) that in general there is a dis-
continuity in the spinor components ψ1 and ψ3.
To see the physical meaning underlying the boundary

conditions, we calculate the associated local current den-
sity in a given state Ψ = [ψ1, ψ2, ψ3]

T , which in the polar
coordinates reads
{

jr = vgΨ
†S · êrΨ =

√
2vgℜ

[

ψ∗
2

(

ψ1e
iθ + ψ3e

−iθ
)]

,

jθ = vgΨ
†S · êθΨ = −

√
2vgℑ

[

ψ∗
2

(

ψ1e
iθ − ψ3e

−iθ
)]

,
(B16)
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where êr = (cos θ, sin θ) and êθ = (− sin θ, cos θ). We
conclude from Eq. (B16) that the boundary conditions
in Eq. (B15) imply conservation/continuity of the radial
(normal) current density jr across the boundary, but the
angular (tangent) current density jθ needs not to be con-
tinuous across the boundary in general. In addition, with
respect to the probability density ρ = |ψ1|2+|ψ2|2+|ψ3|2,
we infer from the boundary conditions the following two
features: (1) ρ< 6= ρ> in general (2) a larger probability
density difference ∆ρ = ρ< − ρ> will occur if there is
a prominent imbalance in the wavefunction components
between ψ1 and ψ3 across the boundary. For the closed
scattering boundary studied in this paper, we have ρ< =
|R<

1 |2 + |R<
2 |2 + |R<

3 |2 and ρ> = |R>
1 |2 + |R>

2 |2+ |R>
3 |2.

Making use of the boundary conditions in Eq. (B14), we
obtain

∆ρ =
(

|R<
1 |2 + |R<

3 |2
)

−
(

|R>
1 |2 + |R>

3 |2
)

, (B17)

with the constraint R<
1 +R<

3 = R>
1 +R>

3 ≡ 2R. Defin-
ing δ as the (radial) wavefunction component imbalance

strength and then substituting

R<
1 = R−δ<,R<

3 = R+δ<;R>
1 = R−δ>,R>

3 = R+δ>

into Eq. (B17), we obtain

∆ρ = 2
(

δ2< − δ2>
)

. (B18)

As a result, we see that there is a remarkable increase
in the probability density, ∆ρ ∼ 2δ2<, from the outer
to the interior of the scattering boundary if the scatter-
ing potential redistributes the wavefunction components
such that |δ<| ≫ |δ>| ∼ 0, suggesting the emergence of a
strong boundary confinement/trapping phenomenon.
Imposing the boundary conditions on the total wave-

functions on both sides of the scattering region as in
Eqs. (B9) and (B10), we get







BlJl(qR) = ττ ′
[

Jl(kR) +AlH
(1)
l (kR)

]

,

BlX
(0)
l (qR) = X

(0)
l (kR) +AlX

(1)
l (kR),

(B19)

where

X
(0,1)
l = f

(0,1)
l−1 − f

(0,1)
l+1 .

Solving Eq. (B19), we obtain the reflection and transmis-
sion coefficients, respectively, as

Al = − Jl(qR)X
(0)
l (kR)− ττ ′X

(0)
l (qR)Jl(kR)

Jl(qR)X
(1)
l (kR)− ττ ′X

(0)
l (qR)H

(1)
l (kR)

, (B20)

Bl =
H

(1)
l (kR)X

(0)
l (kR)−X

(1)
l (kR)Jl(kR)

H
(1)
l (kR)X

(0)
l (qR)− ττ ′X

(1)
l (kR)Jl(qR)

. (B21)

The θ-independent expressions of Al and Bl are consis-
tent with the rotational symmetry of the system. Using

the basic relations J−l = (−)lJl and H
(1)
−l = (−)lH

(1)
l , we

have A−l = Al and B−l = Bl. Once Al and Bl have been
obtained, the resulting probability density ρ = Ψ†Ψ and
the local current density j = vgΨ

†SΨ can be calculated.
Scattering efficiency. To quantify the scattering dy-

namics of massless pseudospin-1 particle, we use the

scattering efficiency in terms of the scattering cross sec-
tion as Q = σ/(2R). In general, the various scattering
cross sections can be calculated using the far field ra-
dial reflected current. For example, for the incident wave
given in Eq. (B5), we have σ = 1/(τvg)

∫ π

−π j
ref
∞ rdθ with

jref∞ ≡ limr→∞ jrefr (θ) being the far-field radial reflected
current. We have

jrefr (θ) =
τvg
2

ℜ







∑

l,m

im−l−1A∗
lAmH

(2)
l (kr)

[

H
(1)
m−1(kr)−H

(1)
m+1(kr)

]

ei(m−l)θ







. (B22)

With the asymptotic expressions of the Hankel functions

H
(1,2)
l (kr) ∼

√

[2/(πkr)]e±i(kr−l π
2
−π

4
) for kr ≫ 1, we

have

jref∞ ∼ 2τvg
πkr

ℜ





∑

l,m

A∗
lAme

i(m−l)θ



, (B23)
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and finally arrive at

σ =
4

k

∑

l=−∞

|Al|2, (B24)

and

Q =
2

kR

∞
∑

l=−∞

|Al|2 =
2

kR

(

|A0|2 + 2
∞
∑

n=1

|An|2
)

.

(B25)

Far-field behavior: general analysis. Far away from
the scattering center, i.e., r ≫ R, for unit incident den-
sity, the spinor wavefunction can be written as

Ψ>(r, θ) ≈
1

2





1√
2τ
1



 eikr cos θ +
1

2





e−iθ
√
2τ
eiθ





f(θ)√
r
eikr,

(B26)
where f(θ) denotes the 2D far-field scattering amplitude
in the direction defined by angle θ with the x axis. The
differential and the total cross sections are given, respec-
tively, by

dσ

dθ
= |f(θ)|2, (B27)

and

σ =

∫ 2π

0

|f(θ)|2dθ. (B28)

In addition, we define the transport or momentum-
relaxation cross section as

σtr =

∫ 2π

0

dθ|f(θ)|2(1 − cos θ). (B29)

The three types of cross sections are experimentally mea-
surable and can be used to quantitatively characterize the
basic scattering and transport physics for pseudospin-1
Dirac cone systems. For example, consider such a system
with randomly distributed identical scatterers of low con-
centration, i.e., nc ≪ 1/R2, the conductivity in units of
the conductance quantum G0 can be expressed as

G

G0
=

k

ncσtr
= vgkτtr, (B30)

where the sample size is assumed to be larger than the
mean-free path L = vgτtr with τtr being the transport
mean free time. The elastic scattering time (the quantum
lifetime) τe can be determined from the total cross section
through

1

τe
= ncvgσ. (B31)

The ratio of the two characteristic times defines the fol-
lowing pertinent dimensionless parameter

ξ =
τtr
τe

=
σ

σtr
≡

∮

dθ|f(θ)|2
∮

dθ|f(θ)|2(1− cos θ)
, (B32)

leading to insights into the type and the spatial structure
of the impurities presented in the sample. In particular,
long-range impurities have a large value of ξ, while a
small value implies that the impurities are short-ranged
or have sharp boundaries. Equation (B32) can be used
to measure the degree of angular anisotropy of the scat-
tering process. In fact, a recent work58 demonstrated
that there is a general constant ξ ≈ 2 characterizing the
anisotropic feature of low-energy scattering for massless
pseudospin-1/2 wave in the presence of short-range scat-
terers, while the spin-orbit interactions that make the
quasiparticles massive can dramatically change this sce-
nario, effectively leading to an isotropic ratio of ξ ≈ 1 - a
typical signature of scattering of massive particles at low
energies. More recently, the angular scattering feature
for a general α-T3 model was studied65, and an explicit
relation between ξ and the underlying Berry phase ΦB

was obtained with the finding that massless pseudospin-1
wave (i.e., for ΦB = 0) possesses the much larger ratio
of ξ = 3. These results imply that scattering of mass-
less pseudospin-1 wave should be much more anisotropic
than the massless pseudospin-1/2 wave, due to super-
Klein tunneling. However, we find that this may not
be true for massless pseudospin-1 wave in general. In
contrast, the underlying low-energy scattering displays a
remarkable isotropic character (i.e., ξ ≈ 1) even without
any symmetry breaking affecting the massless nature of
the quasiparticle.
From the exact expression of Ψ> [Eq. (B9)], we ob-

tain the scattering amplitude in terms of the reflection
coefficients Al as

f(θ) = e−iπ
4

√

2

πk

∞
∑

l=−∞

Ale
ilθ =

e−iπ/4

√
2πk

∞
∑

l=−∞

(Sl− 1)eilθ,

(B33)
where

Sl ≡ 1 + 2Al = −
Jl(qR)

[

H
(2)
l−1(kR)−H

(2)
l+1(kR)

]

− ττ ′ [Jl−1(qR)− Jl+1(qR)]H
(2)
l (kR)

Jl(qR)
[

H
(1)
l−1(kR)−H

(1)
l+1(kR)

]

− ττ ′ [Jl−1(qR)− Jl+1(qR)]H
(1)
l (kR)

= e2iδl , (B34)

with δl denoting the scattering phase shift associated with angular momentum l. Substituting the expression
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of f(θ) into Eqs. (B27)-(B29), we obtain the differential
cross section as

dσ

dθ
=

1

2πk

∣

∣

∣

∣

∣

∑

l

(Sl − 1)eilθ

∣

∣

∣

∣

∣

2

. (B35)

Similarly, the other two cross sections are given by

σ =
1

k

∑

l

|Sl − 1|2 = 4

k

∑

l

sin2 δl, (B36a)

σtr = σ − 1

k

∑

l

ℜ
[

(Sl − 1)(S∗
l+1 − 1)

]

, (B36b)

=
2

k

∑

l

sin2(δl+1 − δl). (B36c)

With the definition of f(θ) [Eq. (B33)], the underlying
optical theorem can be expressed as

σ =

√

8π

k
ℑ
[

e−iπ
4 f(0)

]

, (B37)

where ℑ· denotes the imaginary part. We finally obtain
the following formula for the characteristic ratio:

ξ =
2
∑

l sin
2 δl

∑

l sin
2(δl+1 − δl)

. (B38)

Appendix C: Derivation of Eq. (12) or Eq. (B30)

In two dimensions, it follows from the Boltzmann
transport equation that the resulting current i due to
an applied electric field E takes the general form given

by66

i =
ge2

(2π)2

∫

d2kτtr
∂f(ǫ)

∂ǫ
(vk ·E)vk, (C1)

where g denotes the degeneracies, f(ǫ) is the Fermi dis-
tribution function, and vk = (1/h̄)∇kǫ(k) is the band
velocity. The transport relaxation time τtr can be calcu-
lated from Fermi’s golden rule, which for our scattering
process takes the following form in relation to the trans-
port cross section

1

τtr
=

1

(2π)2

∫

d2k′(1−cosφ)W (k′,k) = ncvgσtr , (C2)

where nc is the concentration of impurities and

W (k′,k) =
4π2h̄v2gnc

k
|f(φ)|2δ(ǫk − ǫk′) (C3)

is the quantum scattering rate from state |k〉 to final state
|k′〉 with the scattering angle φ = arccos(k · k′/k2) and
the scattering amplitude f(φ) at the angle φ. Comparing
with the standard macroscopic equation (Ohm’s law) i =
G · E with G being the conductivity tensor, we obtain,
for E = Eex,

G = Gxx =
ge2

(2π)2
1

h̄2

∫ 2π

0

cos2 θdθ

∫

ǫdǫ
∂f(ǫ)

∂ǫ
τtr. (C4)

At zero temperature, we have

G =
ge2

4π

ǫ

h̄2
τtr = G0vgkτtr = G0

k

ncσtr
, (C5)

where g = 4 is assumed (accounting for spin and valley)
and G0 = 2e2/h is the conductance quantum or, equiva-
lently, the quantized unit of conductance.
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