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A general model for treating the effects of three dimensional (3D) interface roughness (IFR) in
layered semiconductor structures has been developed and experimentally verified. The configur-
ational average of the IFR potential produces an effective grading potential in the out-of-plane
direction, which significantly alters the energy spectrum of the structure. The scattering self-energy
of the 3D IFR is also derived. Under strong IFR, this scattering effect is shown to be dominant
over phonon interaction and impurity scattering. When applied to intersubband transitions, these
theoretical predictions explain the experimentally observed anomalous energy shift and unusual
broadening in the intersubband transitions in III-Nitride superlattices.

Heterointerfaces are commonly found in a wide range
of research fields1–5. They are frequently associated with
significant interface roughness (IFR), for instance in III-
nitride heterostructures, II-VI thin films including ZnSe
or HgTe, perovskite quantum wells (QWs), and mag-
netic multilayers6–10. IFR plays an crucial role in the
transport and optical characteristics of such structures.
Traditional approaches to the effects of IFR are based
on the premise of near-perfect interfaces. As such, a
two-dimensional (2D) IFR random potential is assumed,
which only appears on the ideal interface plane. Such a
2D approximation has been universally applied in stud-
ies ranging from condensed matter heterointerfaces to
the Casimir effect11–18. In semiconductor samples with
very high growth quality, a QW layer can even be re-
garded as adjoining regions of zero IFR.19,20. While
these treatments are valid when IFR is sufficiently small,
their general validity remains unverified. In the mean
while, various interesting phenomena have been observed
in the study of subband structures in QWs. Examples
include anomalous intersubband (ISB) transition energy
shift between experimental observations and theoretical
predictions, unusual broadening in the ISB transition
spectra, and topological phase transitions1,8,21–29. Un-
derstanding the subband structure and especially the role
of 3D IFR is essential for further scientific study and
device implementations30. Thus it is of interest to revisit
the underlying theoretical model of IFR.

Here, we develop a model to accommodate IFR in the
general 3D scenario. The generic stochastic form of the
IFR potential with explicit 3D dependence is retained,
i.e. dropping the 2D approximation. The configurational
average of the IFR potential produces effective interface
grading (EIG) on the lowest order, which significantly
alters the energy spectrum. We also derive the IFR scat-
tering self-energy for the general case. The IFR scat-
tering is shown to be dominant over longitudinal optical
(LO) phonon and impurity scattering when strong IFR
exists. Such IFR scattering leads to extra broadening in
the optical spectra. These predictions are confirmed by
the experimental examination of ISB transitions in III-

nitride superlattices. This model also allows quantitative
extraction of the roughness parameters.
We take a full quantum approach to the effects of 3D

IFR within the framework of non-equilibrium Green’s
functions31–33. The model is explained as follows. The
general Hamiltonian can be written as H = H0 +Hi +
H ifr. The non-interacting H0 includes the effective mass
Hamiltonian within k·p theory34, i.e. the superlattice po-
tential assuming ideally smooth interfaces. The nonlinear
spontaneous and piezoelectric polarization potentials are
also contained in H0. H0 is separable and can be di-
agonized straightforwardly, whose eigen-system is known
as the Wannier-Stark (WS) basis. The wave functions

of a WS state is expressed as 1/
√
Aeikrψµ(z), where the

index µ represent the confined states in the out-of-plane
direction z, r stands for the in-plane coordinates, and k

represents the in-plane momentum. An example of such
a structure is shown in Fig. 1 (left part, blue curves). The
interacting term Hi includes the electron-phonon inter-
action, the impurity scattering and the electron-electron
interaction, respectively. H ifr represents the IFR random
potential. The matrix element of H ifr in the WS basis is
denoted as V ifr

µν (k,k
′).

The characteristics of the structure are obtained by
firstly solving the Dyson equation

(ǫ− h0µν,k − hMF
µν,k)G

R
νk,µ′k′(ǫ)

= δµ,µ′δk,k+ (Σe-ph
µk,νk′′(ǫ) + Σimp

µk,νk′′(ǫ))G
R
νk′′,µ′k′(ǫ)

+ (Σg
µk,νk′′+Σs

µk,νk′′(ǫ))GR
νk′′,µ′k′(ǫ)

(1)

where ǫ is energy, h0 is the matrix element of H0, δ is the
Kronecker delta and GR is the retard Green’s function.
Repeated indices are summed. The self-energies Σ’s are
explained as follows. Σe-ph and Σimp are the self-energies
of electron-phonon interaction and impurity scattering,
respectively. They contribute to the broadening of sub-
band states and ISB transitions. They are calculated
with the Fock-type diagram in the self-consistent Born
Approximation (SCBA)33. The electron-electron Cou-
lomb interaction is treated in the mean-field approxima-
tion, and the mean-field potential hMF is calculated by
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Figure 1. Subband structure of a 100-period GaN 1.5 nm /
AlN 3 nm superlattice, with a Si doping of 1.6 × 1019 cm−3 in
the wells. An Al0.67Ga0.33N template is employed. Left: the
original superlattice potential (blue) and that containing Σg

(red), assuming η = 5.5 Å and λ = 7 Å. The calculated wave
functions of the WS and proper-WS states are also plotted
(dashed). Right: ℑ(GR

µµ,k=0) and the total DOS obtained in
the full calculation.

the Poisson equation

∂2zh
MF(z) =

e

ε



2i
∑

µ,k

∫

dǫ

2π
G<

µµk(ǫ)ψ
2
µ(z)− ρd(z)





(2)
where ε is the permittivity, G<(ǫ)=−2in(ǫ)ℑGR(ǫ), n(ǫ)
is the Fermi-Dirac distribution, and ρd(z) is the density
of the ionized impurities.
Σg and Σs in equation (1) are IFR originated self-

energies:

Σg
µk,νk′′ = 〈V ifr

µ,ν(k,k
′′)〉 (3)

Σs
µk,νk′′ (ǫ) = 〈V ifr

µα (k,k1)V
ifr
βν (k2,k

′′)〉GR
αk1,βk2

(ǫ) (4)

where the angle brackets 〈〉 are understood as the config-
urational average. Σg corresponds to the “single leg” dia-
gram of random potential scattering. Σs is the scatter-
ing self-energy induced by IFR, which is handled within
SCBA. The expressions of Σg and Σs depend on V ifr.
Generically, the IFR stochastic potential V ifr is a 3D

function:

V ifr(z, r) =
∑

j

δEj(θ(z̃j − ξj(r))− θ(z̃j)) (5)

where δEj is the band offset at the jth interface, zj is
the j’s interface position, z̃j

.
= z − zj, θ is the Heaviside

function, and ξj(r) is the interface fluctuation at the in-
plane location r of the jth interface. In (5) we retain
the original form of the IFR stochastic potential with

explicit 3D dependence, and the approximation of a 2D
IFR potential is dropped.
ξj(r) is a Gaussian random process35 with a probabil-

ity distribution density fξ(ζ) and a correlation as

fξ(ζ) =
e−ζ2/2η2

√
2πη

, 〈ξj(r1) ξj(r2)〉 = η2e−r2/λ2

(6)

where η is the roughness height, λ is the correlation
length, and r = |r1 − r2|. Furthermore, the joint prob-
ability density at ξj(r1) = ζ and ξj(r2) = ζ′ is

f
(2)
ξj,r

(ζ, ζ′) =
1

2π
√

det(C)
e−(ζ,ζ′)C−1(ζ,ζ′)T (7)

where C = η2(I+e−r2/λ2

σx) is the correlation matrix, I
and σx are the identity matrix and the x-Pauli matrix,
respectively.
With the original 3D form of IFR potential retained in

(5), Σg can be expressed as36

Σg
µk,νk′′ = V g

µk,νk′′ − V 0
µk,νk′′ (8)

where

V g
µk,νk′′

V 0
µk,νk′′

= 4π2δk,k′′

∫

dz
∑

j

δEj
Fξ(z̃j)
θ(z̃j)

ψ∗

µ(z)ψν(z)

(9)

and Fξ(z̃j) = (1+erf(z̃j/
√
2η))/2 is the cumulative prob-

ability distribution. erf is the error function.
If a 2D IFR potential is assumed, the “single leg” dia-

gram of Σg would produce a universal constant zero, thus
has no physical effect. We recognize V 0 as precisely the
unperturbed superlattice potential with ideally smooth
interfaces. Σg can be merged into h0, retaining the separ-
ability of the Hamiltonian. In the following, we call the
basis formed by the eigenstates of H0 +Σg the “proper-
WS” basis.
We have plotted an example of the superlattice poten-

tial added with Σg in Fig. 1 (left part, red curves). It
is observed that the inclusion of Σg leads to an effective
interface grading. As a result, the shape and the depth of
the wells are reduced, causing a narrowing in the energy
spacing between the proper-WS subbands.
Due to 3D IFR, the polarization charges at each inter-

faces are slightly distributed in z. This induces a small
correction of ≤ 30 meV in the ISB transition energies
in these samples36. For accuracy, we have included this
effect in our calculation.
The IFR scattering self-energy Σs introduced in (4)

plays a crucial role in the states broadening and the trans-
port characteristics. It can also contribute to the energy
renormalization of the subbands. Based on the 3D IFR
stochastic potential, Σs can be expressed as36

Σs
µkνk′′ (ǫ) =

∫

d2p
∑

j

δE2
j

4π2

∫

d2re−ipr

∫∫

dzdz′

· sgn(zz′)
∫∫

(ζ,ζ′)∈D

dζdζ′f
(2)
ξ,r (ζ, ζ

′)

· Fµαβν(z, z
′) ·GR

α,k−p,β,k′′+p(ǫ)

(10)
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Figure 2. Blue circles: measured ISB absorption spectrum
of design A1, obtained by dividing the transverse magnetic
(TM) by the transverse electric (TE) absorption. Red solid
and dashed curves: calculated ISB absorption spectrum of A1
with and without the effects of 3D IFR, respectively. Fitted
roughness parameters of η = 5.6 Å and λ = 4.3 Å are used.
Inset: normalized ISB absorption spectra of all designs at
room temperature. Interference patterns are discernable in
the spectra.

where Fµαβν(z, z
′) =ψ∗

µ(z)ψα(z)ψ
∗

β(z
′)ψν(z

′), f
(2)
ξ,r (ζ, ζ

′)

is the joint probability distribution found in (7), and the
domain of integration is

D = { (−∞, z̃j), z̃j < 0
(z̃j ,∞), z̃j > 0

× { (−∞, z̃′j), z̃
′

j < 0
(z̃′j ,∞), z̃′j > 0

(11)

To retrieve the energy structure of the superlattices,
the Dyson equation (1) and the Poisson equation (2) are
calculated iteratively. The calculated imaginary parts
of the Green’s functions ℑ(GR

µµ,k=0) of the structure in
Fig. 1 are also plotted in the right part of the figure. They
represent the density of states (DOS) of the proper-WS
subbands. The total DOS,

∑

k2ℑ(GR
µµ,k), is also plotted

in Fig. 1. The staircase shape of the total DOS is a signa-
ture of a 2D system. The onset of each step corresponds
to one proper-WS subband. Based on the full Green’s
functions, the ISB transition spectrum is generated by
a conventional method, i.e. calculating the real part of
conductivity using the Kubo formula33,36,37

For a systematic study of the effect of 3D IFR in
the subband structure, we have designed, fabricated
and characterized a series of GaN/Al(Ga)N superlattices
with varying parameters listed in Table I. All samples
are grown by metal organic chemical vapor deposition
(MOCVD) on c-plane sapphire. Multi-layered templates
are employed. The final template layer is strain relaxed
AlxGa1−xN with an Al composition matching the aver-
age value of the active layers, ensuring balanced strain
in the superlattices. The average thickness of each layer
is controlled within ±3.5% of the designed value. Mul-
tiple samples (≥ 3) are grown for one design to ensure
repeatability. An experimental estimation of the rough-

ness height is obtained through characterization of the
top surface morphology. To this end, atomic force micro-
scope (AFM) measurements are performed at multiple
locations on all wafers. An average roughness height of
6 Å is measured with a standard error of ±2 Å.

Table I. III-nitride superlattice structures. The number of
periods is 100. Si doping is introduced in the wells.

Sample GaN (nm) AlN (nm) Doping (×1019 cm−3)

A1 1.5 3.0 0.8

A2 1.5 3.0 1.6

A3 1.5 3.0 3.2

B 2.0 5.0 1.6

C 3.0 5.0 1.6

D 3.0 3.0 (Al0.6Ga0.4N) 0.8

In Fig. 2 we have plotted the calculated absorption
spectrum of design A1 with (red solid curve) and without
(red dashed curve) the IFR effects. The measured ab-
sorption spectrum is also shown (blue circles). The rel-
evant material parameters used in the calculation can be
found in Ref.38. The observed optical absorption only
appears in the transverse magnetic polarization, which is
a signature of ISB transition. The measured peak trans-
ition energy at 0.69 eV exhibits a redshift of 0.23 eV from
the baseline calculation. In contrast, with the effects of
3D IFR included, the full calculation successfully repro-
duces both the peak transition energy and the broadening
of the experimental result. In the inset of Fig. 2, we plot
the measured ISB absorption spectra of all the designs in
Table I. The peak transition energies span 0.39 eV - 0.69
eV. A summary of the measured peak energies (purple)
and those calculated without considering the IFR effects
(green) are shown in Fig. 3. As a demonstration of the
effect of EIG, the ISB transition energies calculated with
H0+Σg+HMF are also shown in Fig. 3 (red). A univer-
sally fitted roughness height of 5.5 Å is employed in the
calculation. All measured ISB transitions exhibit clear
redshifts of up to 25% compared to the results from the
baseline calculation. The deviation in the average layer
thickness of ±3.5% can only lead to an energy shift of less
than ±20 meV, which can not account for such a signi-
ficant discrepancy. The electron-electron and electron-
ionized impurity interactions in these structures merely
contribute to ≤ 5 meV of energy shift in the subbands,
thus is not the main reason for the observed discrepancy
either. In the mean while, the calculation equipped with
Σg immediately brings the predicted ISB transition en-
ergies close to the experimental results. This is a clear
evidence of the effect of 3D IFR, since the conventional
2D approximation of IFR does not produce EIG at all.
The measured full widths at half maximum (FWHM)

of the ISB transitions range from 50 meV to 150 meV
(13% - 23% of the transition energy) in different designs.
A summary is shown in the inset of Fig. 3. Such val-
ues are significantly larger than those found in the III-
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Figure 3. Green: calculated ISB transition energy without
IFR effects for each design. Blue: Measured ISB peak trans-
ition energies. Red: calculation with H0 + Σg +HMF. Inset:
Measured FWHM of the ISB transitions (purple) and that
calculated without the effects of IFR (green).

phosphide or -arsenide material system. As a compar-
ison, the calculated FWHM’s without the IFR effects
are also plotted in the inset. The results are merely
20% - 40% of the measured values, clearly indicating
the importance of the missing factor, the IFR scatter-
ing. With the full model developed above, one can ex-
tract the roughness height η and the correlation length
λ in each sample by fitting the peak position and the
FWHM of the ISB transition at the same time. A sum-
mary of the extracted η’s and λ’s are shown in Fig. 4.
The experimental estimation of the roughness height η
is also indicated in the shaded region. All fitted η’s
reside within the range of experimental result. For the
correlation length λ, proper experimental measurement
methods are still under discussion, with large uncertainty
found in the reported values (14 Å ∼ 120 Å) in the more
studied materials35,39–41. It is worthy to note that in our
model the energy shift and the broadening provide two
constraints, which enable simultaneous fitting of η and
λ. The resulting λ’s range from 4 Å to 10 Å. The vari-
ation among these samples is understandable since they
have different structure designs and are grown on tem-
plates with different material compositions. The correla-
tion lengths found here are generally smaller than those
in III-phosphide or -arsenide materials. This is expec-
ted given that the interfaces in III-nitride materials are
known to be considerably rougher.

In Fig. 5 we plot the semi-classical scattering lifetimes
of IFR, LO phonon and impurities between the ground
state and the first excited state at 300 K32. The plotted
lifetimes take into account both the inter- and intrasub-
band scattering processes, which are responsible for the
broadening of ISB transitions37. The LO phonon scatter-
ing lifetime includes contributions from both the phonon
emission and absorption processes. As is shown, the LO
phonon scattering lifetimes are typically ∼ 0.05 ps, while

Figure 4. Roughness heights η (red circles) and correlation
lengths λ (blue triangles) obtained from fitting to the exper-
imental absorption spectra. The shaded region represent the
experimental estimation of the roughness height, 6± 2 Å.

Figure 5. Scattering lifetimes due to 3D IFR (red), LO phon-
ons (green) and impurities (blue) for all designs. Units are
given in both ps (right axis) and the corresponding energy in
meV (left axis).

those of impurity scattering are > 50 ps. Clear domin-
ance of the IFR scattering of ∼ 0.01 ps is observed, which
is a result of strong 3D IFR.

In summary, we have developed a general model for
treating the effects of 3D IFR in layered semiconductor
structures. Effective interface grading is predicted in the
model, which significantly alters the energy spectrum.
The IFR scattering self-energy is also derived for the gen-
eral 3D case. It is shown to be dominant over phonon
and impurity scattering. Through the full calculation,
the anomalous energy shift and the unusual broadening
in ISB transitions are explained. Beyond optical trans-
itions, the results in this work are applicable to trans-
port phenomena as well. This model is also extendable
to other dimensional structures such as quantum wires
and quantum dots. Equipped with the quantitative res-
ults of this work, mid-infrared ISB emission in III-nitride
superlattices is realized42.



5

ACKNOWLEDGMENTS

This work is supported in part by MIRTHE (NSF-
ERC). The authors would like to thank Dr. Joesph Ma-
ciejko for valuable discussions.

∗ alexys@stanford.edu
1 M. S. Miao, Q. Yan, C. G. Van de Walle, W. K. Lou, L. L.
Li, and K. Chang, Physical review letters 109, 186803
(2012).

2 H. Takagi, H. Kunugita, and K. Ema, Physical Review B
87, 125421 (2013).

3 M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann,
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