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We report quantum transport and Dirac fermions in YbMnBi2 single crystals. YbMnBi2 is a
layered material with anisotropic conductivity and magnetic order below 290 K. Magnetotransport
properties, nonzero Berry phase and small cyclotron mass indicate the presence of Dirac fermions.
Angular-dependent magnetoresistance indicates possible quasi two dimensional (2D) Fermi surface
whereas the deviation from the non-trivial Berry phase expected for Dirac states suggests contribu-
tion of parabolic bands at the Fermi level or spin-orbit coupling.

PACS numbers: 72.20.My, 72.80.Jc, 75.47.Np

I. INTRODUCTION

The energy disperson of carriers in Dirac materials can
be approximated by the relativistic Dirac equation.1 By
now it has been established that Dirac states can be
found in wide range of materials such as iron-based or
copper oxide superconductors, graphene, and topological
insulators.2–9 In the quantum limit all carriers are con-
densed to the lowest Landau level (LL).10 This is easily
realized in laboratory magnetic fields for Dirac fermions
since the distance between the lowest and first LL of
Dirac fermions is large, in contrast to the conventional
electron gas with parabolic energy dispersion. In such a
case the components of the resistivity tensor ρxx and ρxy
are linear in magnetic field,11 quantum Hall effect, non-
trivial Berry phase and large unsaturated linear magne-
toresistance (MR) are observed.5,12–14

Crystals with quasi-2D bismuth layers such as AMnBi2
(A = alkaline earth) have also been shown to host quasi-
2D Dirac states similar to graphene and topological
insulators.15–20 The local arrangement of alkaline earth
atoms and spin-orbit coupling are rather important for
the characteristics of Dirac cone states. In SrMnBi2 the
degeneracy along the band crossing line is lifted except
at the place of anisotropic Dirac cone. In contrast, the
energy eigenvalue difference due to perturbation poten-
tial created by staggered alkaline earth atoms results in
a zero-energy line in momentum space in CaMnBi2.

In the presence of the time reversal or space inver-
sion symmetry breaking doubly degenerate Dirac point
can split into a pair of Weyl nodes with opposite
chirality.21–23 Weyl semimetal signatures due to the space
inversion symmetry breaking have been observed in for
example TaAs, NbAs, TaP, and NbP.24–27 YbMnBi2 is
a material isostructural to CaMnBi2, featuring magnetic
order at similar temperatures.16,28 Therefore, the obser-
vation of Weyl points and the connecting arc of surface

states in YbMnBi2 might be the first experimental evi-
dence of Weyl semimetal due to time reversal symmetry
breaking.28 It is of interest to study quantum transport in
YbMnBi2. In this paper, we perform magnetoresistance
measurements up to 35 T. The nonzero Berry phase,
small cyclotron mass and large mobility confirm the exis-
tence of Dirac fermions in Bi square nets. The quasi-2D
in plane magnetoresistance (MR) shows a crossover from
parabolic-in-field semiclassical MR to high-field linear-
in-field dependence. The temperature dependence of
crossover field B∗ is quadratic, as expected for Dirac
fermions.

II. EXPERIMENTAL DETAILS

YbMnBi2 single crystals were grown from excess Bi.
Yb, Mn, and Bi were mixed together according to the
ratio Yb: Mn: Bi = 1: 1: 10. Then, the mixture
was placed into an alumina crucible, sealed in a quartz
tube, heated slowly to 900 ◦C, kept at 900 ◦C for 2 h
and cooled to 400 ◦C, where the excess Bi flux was de-
canted. Shiny single crystals with typical size 3 × 3
× 1 mm3 can be obtained. The single crystals free of
residual flux droplets can be obtained by cutting the six
faces of the cuboid. The element analysis was performed
using an energy-dispersive x-ray spectroscopy (EDX) in
a JEOL LSM-6500 scanning electron microscope. Sin-
gle crystal neutron diffraction measurements were per-
formed using the HB3A four-circle diffractometer at the
High Flux Isotope Reactor at Oak Ridge National Lab-
oratory. A crystal specimen of approximately 2 × 2 ×
1 mm3 was loaded in a closed-cycle-refrigerator whose
temperature was controlled in the range (4 - 350) K.
For the measurements we used a monochromatic beam
with the wavelength 1.551 Å selected by a multilayer
[110]-wafer silicon monochromator, and the scattered in-
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FIG. 1. (Color online). (a) Crystal and magnetic structure of
YbMnBi2. Arrows show the ordered Mn magnetic moments,
µMn = 4.3(1)µB , refined at 4 K. The moments point along the
c axis, the magnetic space group describing the AFM order is
P4′/n′m′m : (3/4, 1/4, 0|0, 0,mz)(1/4, 3/4, 0|0, 0,−mz). (b),
(c) Neutron intensity patterns of (200) and (001) nuclear
structural Bragg peaks, respectively, of a YbMnBi2 single
crystal on the two-dimensional position sensitive detector on
HB3a diffractometer, indicating perfect crystalline structure.
(d), (e) Summary of the structural refinement of YbMnBi2
in the magnetically disordered phase at 310 K, and at 4 K,
where it is antiferromagnetically ordered. (f) High resolution
transmission electron microscopy (HRTEM) image and cor-
responding electron diffraction pattern (EDP) viewed along
[110] direction (g). The inset in (g) is the FFT from the im-
age shown in (f). (h) Structural refinement of powder diffrac-
tion data. Ticks mark reflections, top row refers to the main
phase, bottom row refers to Bi2O3 due to sample preparation.

tensity was measured using an Anger-camera type de-
tector. The neutron diffraction data were analyzed by
using the FullProf Suite package. Transmission-electron-
microscopy (TEM) sample was prepared by crushing the
single crystal sample, and then dropping to Lacey carbon
grid. X-ray powder diffraction experiment was performed
at 28-ID-C beamline of NSLS-II at Brookhaven National
Laboratory, and the data were collected on the pulver-
ized sample in a cylindrical polyimide capillary by us-
ing monochromatic beam with wavelength of 0.01858 nm
and Perkin-Elmer image plate detector. Data integration

to 2θ was carried out using Fit2D, while structural re-
finement of P4/nmm model used GSAS operated under
EXPGUI platform.29–31 High-resolution TEM imaging
and electron diffraction were performed using the dou-
ble aberration-corrected JEOL-ARM200CF microscope
with a cold-field emission gun and operated at 200 kV.
Magnetotransport measurements up to 9 T were con-
ducted in a Quantum Design PPMS-9. Magnetotrans-
port at high magnetic field up to 35 T was conducted
at National High Magnetic Field Laboratory (NHMFL)
in Tallahassee. The transport measurements were per-
formed on cleaved and polished single crystals. Polishing
is necessary in order to remove residual bismuth droplets
from the surface of as-grown single crystals. Electrical
contacts used in resistivity measurements were put on
the crystals using a standard four-probe configuration.
Hall resistivity was measured by four-terminal technique
by switching the polarity of the magnetic field H//c to
eliminate the contribution of ρxx due to the misalign-
ment of the voltage contacts. The Hall resistivity is ob-
tained by ρxy = [Vxy(B) − Vxy(−B)] × d/2Ixx, where d
is the thickness of the crystals, Ixx is the longitudinal
current,Vxy(B) is the transverse voltage of the positive
field and Vxy(−B) is the negative field.

III. CRYSTAL AND MAGNETIC STRUCTURE

The crystal and magnetic structure of YbMnBi2 de-
termined by neutron diffraction and high resolution
TEM (HRTEM) is presented in Figure 1. The nu-
clear lattice structure was determined from measure-
ments at T = 310 K, where magnetic order is ab-
sent. The magnetic structure was determined at T =
4 K, and the refined saturated magnetic moment at
this temperature is 4.3(1)µB/Mn. Refinements were
carried out using data sets of 82 reflections, the re-
sulting structural parameters are listed in Table I. R-
factors ∼ 5% were obtained for both temperatures. No
indication of structural transformation between 300K
and 4K has been detected, and no orthorhombic or
monoclinic distortions were observed within the HB3a
wave vector resolution. The data is fit equally well
in both tetragonal and orthorhombic symmetry. The
magnetic space group describing the antiferromagnetic
(AFM) order at 4 K [Fig. 1 (a)] can be refined in
P4′/n′m′m : (3/4, 1/4, 0|0, 0,mz)(1/4, 3/4, 0|0, 0,−mz).
The SEM obtained atomic ratio of Yb: Mn: Bi is 26:
26: 48, consistent with the composition YbMnBi2. Both
HRTEM electron diffraction pattern and fast Fourier
transform can be well indexed as (110)* zone of YbMnBi2
structure. Powder diffraction data are well explained by
P4/nmm model of YbMnBi2 [a=4.488(2) Å, c=10.826(2)
Å], Fig. 1(h). In addition to the main phase, about 10%
by weight of Bi2O3 phase was also observed due to sec-
ondary oxidation of unreacted Bi metal on crystal surface
during pulverization of the single crystal specimen.
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TABLE I. The crystal and magnetic structure parameters
of YbMnBi2 determined by neutron diffraction. The refine-
ment was carried out using 82 Bragg reflections measured on
the HB3A diffractometer using monochromatic neutron beam
with wavelength λ ≈ 1.55Å. Each reflection was measured by
performing the sample rotation (omega) scan to extract the
integrated intensity.

T = 310 K.

Symmetry group: P4/nmm. Bragg R-factor: 5.25.

a = b = 4.48(1), c = 10.80(2). Magnetic moment 0µB/Mn.

Atom x y z Biso Site Multiplicity

Yb1 0.25 0.25 0.73174(19) 1.051(148) 2

Mn1 0.75 0.25 0.0 1.255(255) 2

Bi1 0.75 0.25 0.5 0.917(159) 2

Bi2 0.25 0.25 0.16700(29) 1.027(158) 2

T = 4 K.

Symmetry group: P4/nmm. Bragg R-factor: 4.83.

a = b = 4.46(1), c = 10.73(2). Magnetic moment 4.3(1)µB/Mn.

Atom x y z Biso Site Multiplicity

Yb1 0.25 0.25 0.73143(21) 0.379(173) 2

Mn1 0.75 0.25 0.0 0.707(272) 2

Bi1 0.75 0.25 0.5 0.188(194) 2

Bi2 0.25 0.25 0.16567(32) 0.256(187) 2

IV. RESULTS AND DISCUSSION

Figure 2(a) shows the temperature dependence of the
in-plane (ρab) and out-of-plane (ρc) resistivity at 0 and
9 T for YbMnBi2 single crystal. The in-plane resistivity
becomes flat below 8 K, extrapolating to a residual re-
sistivity ρ0(0 T) ≈ 4.77 µΩ cm. The residual resistivity
ratio (RRR) ρ(300 K)/ρ0 is about 20. The MR ratio MR
= [ρab(B)-ρab(0)] is 234% at 2 K in a 9 T field. The MR
is gradually suppressed with temperature increase. The
resistivity is highly anisotropic. The hump below 300 K
in ρc(T ), could indicate a crossover from high-T incoher-
ent to low-T coherent conduction.32,33 As shown in inset
in Fig. 2(a), ρab is quadratic-in-temperature below about
5 K: ρ(T ) = ρ0 + AT 2 with A = 5.74 nΩ cm K−2. The
parameter A is inversely proportional to the Fermi tem-
perature, and is only one third of that of SrMnBi2.

17 This
indicates that the effective mass in YbMnBi2 is rather
small.

Specific-heat measurement on YbMnBi2 is shown in
Fig. 2(b). A peak is clearly observed at around 285 K,
which could be attributed to the magnetic transition.34

The fitting of the low temperature data using Cp = γnT
+ βT 3 + ηT 5 gives γn = 2.16 mJ mol−1 K−2, β = 2.36
mJ mol−1 K−4, and η = 0.00695 mJ mol−1 K−6. Thus,
Debye temperature of 149 K can be obtained.

Clear oscillations in longitudinal ρxx and transverse
ρxy resistivity are observed up to 35 Tesla [Fig.3(a-d)].
Whereas the oscillations ρxx are due to Shubnikov de
Haas effect, the changes of ρxy with magnetic field could
show also contribution from the quantum Hall effect sim-
ilar to Bi2Se3 due to layered crystal structure and quasi-
2D electronic transport.35 From the fast Fourier trans-
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FIG. 2. (Color online). (a) Temperature dependence of in-
plane resistivity (ρab) for YbMnBi2 single crystals at 0 and
9 T, and out-of-plane resistivity (ρc) at 0 T. Inset shows the
quadratic T dependence at low temperature of ρab at 0 T. (b)
Temperature dependence of the specific heat of YbMnBi2,
inset shows the fitting of the low-temperature part.

form (FFT) background-subtracted oscillating compo-
nent ∆ρxx features a single frequency F = 130 T at 2
K [Fig. 3(b)]. According to the classical expression for
the Hall coefficient when both electron- and hole-type
carriers are present,36

ρxy

µ0H
= RH = 1

e
(µ2

hnh−µ2

ene)+(µhµe)
2(µ0H)2(nh−ne)

(µenh+µhne)
2+(µhµe)

2(µ0H)2(nh−ne)
2

In the weak-field limit, the equation can be simplified
as RH = e−1(µ2

hnh−µ2
ene)/(µhnh+µene)

2, while RH =
1/(nh − ne)e in the high field limit. The positive slope
of ρxy(H) at high field gives nh > ne, and the negative
slope of ρxy(H) at weak field indicates (µ2

hnh−µ2
ene) < 0.

Therefore, µe > µh at low field, and the nonlinear behav-
ior is the result of the carrier density and mobility compe-
tition between hole- and electron-type carriers. Fitting
ρxy(2K) at high field using RH = 1/(nh − ne)e yields
nh − ne = 2.09 ×1021 cm−3, large carrier concentra-
tion when compared to other Weyl semimetals, such as
Cd3As2 and NbP.27,37

Theoretical calculations reveal that the Fermi sur-
face of YbMnBi2 constitutes of hole-like ”lenses” and
electron-like pockets near X-points.28 The main fre-
quency of longitudinal oscillation (130 T) is somewhat
smaller than the frequencies of SrMnBi2 (152 T) and
CaMnBi2 (185 T).16,17 From the Onsager relation F =
(Φ0/2π

2)AF , where Φ0 is the flux quantum and AF is
the orthogonal cross-sectional area of the Fermi surface,
we estimate AF = 1.56 nm−2. This is rather small, sim-
ilar to that in SrMnBi2 (1.45 nm−2) and is only a few
% of the total area of Brillouin zone in (001) plane.16,17

We can also approximate kF≈ 0.705 nm−1, assuming the
circular cross-section AF = πk2F .
Weyl points and the Fermi Arc connecting these points

have been directly observed by ARPES in YbMnBi2.
28
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FIG. 3. (Color online). Longitudinal and transverse in-plane
resistivity versus field at different temperatures (a-c). SdH
oscillatory component ∆ρxx. (b) is obtained after the back-
ground subtraction. (d) Field dependence of Hall conductiv-
ity σxy at 2 K. (e) Temperature dependence of the oscillating
amplitude of longitudinal osillations at 1/B = 0.33 T−1. The
solid line is the fitting curve. inset: Dingle plot for ∆ρxx (f)
LL index plots 1/Bn versus n. The inset shows the Fourier
transform spectrum of ∆ρxx

It is reported that the Fermi arcs, which participate in
unusual closed magnetic orbits by traversing the bulk
of the sample to connect opposite surfaces, can be de-
tected by quantum oscillation.38 In our experiment we
do not observe the frequency associated with the Fermi
arc, possibly due to macroscopic thickness of our sample
that exceeds the mean-free path.38,39

The cyclotron masses and quantum life time of carriers
can be extracted from the temperature and field depen-
dence of oscillation amplitude using the Lifshitz-Kosevich
formula.40

∆ρxx(T,B)

ρxx(0)
= e−αm∗TD/B αm∗T/B

sinh(αm∗T/B)

Where α = 2π2kB/e~ ≈ 14.69 T/K, m∗ = m/me is the
cyclotron mass ratio (me is the mass of free electron), and
TD = ~

2πkBτq
, with τq the quantum lifetime. By fitting

the thermal damping of the oscillation peak indicated by
the arrow in Fig. 3(b), we can extract the cyclotron mass
m∗ ≈ 0.27, similar to that in SrMnBi2 and CaMnBi2.

15,17
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FIG. 4. (Color online). (a) The SdH oscillatory component
as a function of 1/B at various angle, the cartoon shows the
geometry of the measurement setup. (b) FFT spectra of the
SdH oscillations in Fig. 4(a), (a) and (b) use the same legend.
(c) Angular dependence of the oscillation frequency, Sample
1 (S1) is the sample we used in this paper, Sample 2 is the
sample from same batch and measured on the same probe.
Cyan line is the fitting using 2D model with F (0)/cos(θ),

dark yellow line is the ellipse model F (0)/(ε2sin2θ + cos2θ)1/2

with an anisotropic factor ε = -0.67. The error bar is the peak
width at half height of the FFT peaks (d) Magnetoresistance
as a function of the titled angle from applied field. The red
line is the fitting using 2D model.

Then, a very large Fermi velocity νF = ~kF /m
∗ = 3.01

×105 m/s can be obtained. As shown in Fig. 3(e), TD

= 11.4 K can be obtained by fitting the field dependence
of the oscillation amplitude, and TD is larger than that
in SrMnBi2 and BaMnBi2.

17,41 As a result, τq = 1.05
×10−13 s. Within the standard Bloch-Boltzmann frame-
work, the geometric mean of the mobility can be deter-
mined by the reciprocal value of the peak field 1/Bmax.
As shown in the inset of Fig.3 (c), the geometric-mean
mobility µm = 3.48 ×103 cm2V−1s−1 can be inferred
from Bmax in σxy. Hence, τm = 5.3 ×10−13 s can be
obtained using µm = eτm/m∗. This is five times larger
than τq. This is because τm measures backscattering pro-
cesses that relax the current while τq is sensitive to all
processes that broaden the Landau levels.42,43

Using the effective mass obtained above, we can calcu-
late the electronic specific heat in quasi-two-dimensional
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approximation:44

γN =
∑

i

πNAk
2
Bab

3~2
m∗

where NA is Avogadro’s number, kB is Boltzmann’s con-
stant, a and b are the in-plane lattice parameters, m∗ is
the quasiparticle mass and ~ is Planck’s constant. From
the effective mass obtained by quantum oscillation, and
four bands observed by ARPES,28 γN = 2.16 mJ mol−1

K−2 can be obtained, in excellent agreement with the
γN derived from specific heat [Fig. 2(b)], consistent with
ARPES measurement28 and indicating that four bands
detected by SdH alone contribute to the electronic spe-
cific heat.
One of the key evidence for the existence of Dirac

Fermions is the non-trivial Berry’s phase.45 Figure 3(f)
presents the fan diagram of the Landau index. Accord-
ing to the Lifshitz-Onsager quantization rule, LL index
n is related to the cross section of FS SF by SF (~/eB)
= 2π(n + γ). As shown in Fig. 3(f), the peak and valley
positions of ρxx fall on a straight line, the fit gives γ =
0.21. γ should be zero for conventional metals but (±
1/2) for Dirac fermions due to the nonzero Berry’s phase
associated with their cyclotron motion. Berry phase de-
viations from the exact π value has also been observed in
NbP, Bi2Se3, and Bi2Te2Se.

27 One possible reason behind
the deviation is that significant spin-orbit coupling since
γ = (1/2) + gm∗/4m, where g is the g-factor, m∗ is the
cyclotron mass, and m the electron mass.46–48 Another
possibility is that parabolic bands at the Fermi surface
contribute to quantum oscillations and to the high carrier
concentration.28

The Bi square nets in SrMnBi2, and CaMnBi2 host
Dirac states with quasi-2D Fermi surface. We perform
the field dependence of longitudinal resistance up to 35
T at different angles to study the topological structure
of YbMnBi2. The geometry of the measurement setup
is shown in the inset of Fig. 4(a). Figure 4(a) presents
angle-dependent oscillation component after background
subtraction. The oscillation peaks shift systematically
with the angle increase. We perform FFT on the data
in Fig. 4(a), and the results is shown in Fig. 4(b). Two
peaks can be observed in the low angle data, we only
take the main peak into consideration. The positions of
main peak are summarized in Fig. 4(c); the frequency
increases with the angle tilt from zero. The angle de-
pendence of the FFT peaks can be roughly fitted assum-
ing dominant contribution of quasi-2D conducting states
(F (0)/cosθ) at the Fermi surface. However [Fig. 4(c)]
the ellipsoid function F (0)/(ε2sin2θ + cos2θ)1/2 offers an
alternative description. This makes it difficult to dis-
tinguish between the 2D cylinder Fermi surface and 3D
ellipsoid Fermi surface but nevertheless quasi-2D Fermi
surface can be inferred. In addition, a dip between -23o

to -31o also confirms non-trivial nature of the YbMnBi2
Fermi surface.
The MR of solids only responds to the extremal cross

section of the Fermi surface along the field direction. For

a 2D Fermi surface, the MR will only respond to the
perpendicular component of the magnetic field Bcos(θ).
Angle-dependent MR of YbMnBi2 single crystal at B =
9 T and T = 2 K is shown in Fig. 4(d). MR shows two
fold symmetry; when magnetic field parallels to the c axis
of the single crystal (θ = 0), the MR is maximized and
it gradually decreases with the field titling away from
c axis. MR is minimized when the field is applied in
the ab plane. The curve can be fitted by a function of
|cos(θ)|, indicating that quasi-2D fermi surface dominate
magnetotransport in YbMnBi2, consistent with angle de-
pendence of quantum oscillation results.
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squares), the red solid line is the fitting results using B∗ =
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MR linear coefficient A1.

Figure 5(a) presents the magnetic field dependence of
MR at different temperatures. MR is also plotted in
Fig. 5(b) on a log-log scale to emphasize the low field
behavior. From Fig. 5(b), we can observe that lin-
ear MR behavior is established above a crossover field
B∗. With increasing temperature, MR gradually de-
creases and B∗ increases. The normal MR of bands
with parabolic dispersion either saturates at high fields
or increases as H2. The unusual nonsaturating linear
magnetoresistance has been reported in Ag2−δ(Te/Se),
Bi2Te3, Cd3As2, BaFe2As2 and (Ca, Sr)MnBi2.

15,16 In
the quantum limit where all the carriers occupy only the
lowest LL, the observed B∗ corresponds to the quantum
limit of B∗ = (1/2e~υ2

F )(kBT+EF )
2.11 As shown in Fig.

5(c), the B∗ can be fitted quite well by the above equa-
tion, which confirms the the existence of Dirac states in
YbMnBi2. Furthermore, MR in YbMnBi2 conforms to
Kohler’s rule ∆ρ/ρ(0) = F [H/ρ(0)] (where F (H) usu-
ally follows a power law) in high magnetic fields [Fig.
5(c)]. This indicates that there is a single salient scatter-
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ing time in YbMnBi2, i.e. that even though the Fermi
surface contains contribution from multiple bands, highly
conducting (i.e. Dirac) states dominate MR.

V. CONCLUSIONS

We have demonstrated quantum transport in antifer-
romagnetically ordered YbMnBi2 single crystals. At 4 K
the saturated magnetic moment is 4.3(1)µB/Mn whereas
Mn magnetic moments are oriented along the c-axis.
High-magnetic-field magnetotransport is consistent with
the presence of Dirac fermions and significant spin-orbit
coupling of the Dirac-like carriers or with the presence
of parabolic bands. It would be of interest to study in
depth details of magnetic structure, Berry phase in ultra-
thin samples and putative ferromagnetic states in doped
crystals.
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