
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Kernel-corrected random-phase approximation for the
uniform electron gas and jellium surface energy

Adrienn Ruzsinszky, Lucian A. Constantin, and J. M. Pitarke
Phys. Rev. B 94, 165155 — Published 21 October 2016

DOI: 10.1103/PhysRevB.94.165155

http://dx.doi.org/10.1103/PhysRevB.94.165155


Kernel-Corrected Random-Phase Approximation for the Uniform Electron Gas and

Jellium Surface Energy

Adrienn Ruzsinszky,1 Lucian A. Constantin,2 and J. M. Pitarke3, 4

1Department of Physics, Temple University, Philadelphia, PA 19122, USA
2Center for Biomolecular Nanotechnologies @UNILE,

Istituto Italiano di Tecnologia, Via Barsanti, I-73010 Arnesano, Italy
3CIC nanoGUNE, Tolosa Hiribidea 76, E-20018 Donostia, Basque Country

4Materia Kondentsatuaren Fisika Saila, DIPC, and Centro F́ısica Materiales CSIC-UPV/EHU,
644 Posta kutxatila, E-48080 Bilbo, Basque Country

We introduce and test a nonlocal energy-optimized model kernel (NEO) within the adiabatic
connection fluctuation-dissipation (ACFD) density-functional theory for the jellium surface and
uniform electron gas, as benchmarks for simple metallic systems. Our model kernel is short- ranged
for the uniform electron gas paradigm system, and one-electron self-correlation free. One-electron
self-interaction freedom is provided by an iso-orbital indicator. We show how several versions of
the NEO kernel perform for the uniform electron gas and jellium surface energies, and in addition
we explain the underlying physics of self-interaction-free exchange- only kernels for exponentially
decaying surface densities.
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I. INTRODUCTION

Nonempirical density-functional theory (DFT) relies
on the knowledge of paradigms.1 One of these paradigms
is the uniform electron gas,2–4 which plays a key role
in the construction of many density-functional approxi-
mations.1 The uniform electron gas provides relevant in-
formation about correlation in materials and serves as
a model for metallic systems.5 The surface of a bounded

electron gas, which is different from the bulk, delivers ad-
ditional information about the ground-state correlation.
As the uniform electron gas has done in the past, the

jellium surface can also guide the construction of den-
sity functionals. In the jellium model of a simple metal
surface, the ions are replaced by a semi-infinite uniform
positive background of density n, which is neutralized by
a valence electron density n(z) allowed to leak out into
the vacuum side of the surface.
The accuracy of6–8 local and semilocal density func-

tionals is limited by the approximating form of the
exchange-correlation (xc) energy or its corresponding
potential9. Density-functional approximations are usu-
ally benchmarked against correlated wave-function based
methods10–15. Approximations that rely on the con-
cept of the slowly-varying limit of the perturbed uni-
form electron gas deliver accurate lattice properties16.
The simplest approximation, the local density approx-
imation (LDA)3, is reasonably accurate for periodic
solids17. Generalized gradient approximations (GGAs)
utilize information about slowly-varying densities18–22.
These GGAs have proven accurate for both bulk solids
and surfaces. Meta-GGAs beyond the GGA level add
the positive kinetic-energy density as a new ingredient
to the existing electron density and density gradient
in GGAs23–29. With all these ingredients, the meta-
GGA density functionals are the potentially most accu-
rate semilocal approximations, with the flexibility to de-

scribe bulk solids, surfaces, and molecules at the same
time29,30. Adiabatic-connection fluctuation-dissipation
(ACFD) approximations [the random-phase approxima-
tion (RPA) in particular] stand on the fifth and highest
rung of a ladder31 of density-functional approximations,
employing the unoccupied as well as the occupied Kohn-
Sham (KS) orbitals in a fully nonlocal way that can po-
tentially solve problems such as capturing weak van-der-
Waals interactions32 and static correlation for the H2

molecule in a spin-restricted formalism33.
Jellium surface energies were thoroughly investigated

within an ACFD approach34–37, and these results were
compared to Fermi-hypernetted chain (FHNC)13 and
Diffusion-Monte- Carlo (DMC) surface energies14,15.
Later, Yan et al. made an assessment of several
density-functional approximations to the jellium surface
energy38. Many refinements of DFT (including ACFD),
as summarized in Ref. 39, produced jellium surface en-
ergies close to those obtained in the LDA and thus much
lower than those of FHNC and early DMC14. A more
recent DMC calculation40 agrees well with the DFT val-
ues.
By combining an adiabatic-connection (AC) formula

with the fluctuation-dissipation (FD) theorem, one ob-
tains an exact expression for the xc energy of an arbitrary
many-electron system (unless stated otherwise, atomic
units are used throughout):41
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where v = 1/|r− r
′| is the bare Coulomb interaction and

χλ represents the interacting density-response function
of a fictitious many-electron system with the electron-
electron interaction strength λe2. In the framework of
time-dependent DFT (TDDFT), the interacting density-
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response function χλ obeys a Dyson-like integral equa-
tion:42

χλ = [1− χ0(λ v + fλ
xc)]

−1χ0, (2)

where χ0 is the density-response function of non-
interacting KS electrons. The RPA sets the xc kernel
fλ
xc(r, r

′, ω) to zero. In much of this work, we will need
only the exchange-only (λ = 0) kernel, but we will leave
λ general in the notation. In the RPA, Eqs. (1) and
(2) are combined, bootstrapping a crude approximation
for χλ to a more sophisticated one for Exc.

43 For the
uniform electron gas, it was shown44 that an adiabatic
(static) local kernel overshoots the correlation energy by
about as much (∼0.5 eV) as the RPA undershoots it; a
static nonlocal kernel45,46 was found to reduce the error
to ∼0.1 eV, and a dynamic nonlocal kernel47 was found
to reduce the error down to ∼0.02 eV.
There are other routes to correct for the missing

short-range correlation. The quantum chemistry com-
munity often uses the second-order screened exchange
(SOSEX) contribution (coming from the wave-function
anti-symmetry)48. The SOSEX correction was found to
perform somewhat controversially in quantum chemistry.
The first implementation of the ACFD scheme for a

non-uniform system was reported in Ref. 34 for the jel-
lium surface. Although RPA delivers too deep correlation
energy for the short- range, jellium surface energies are
surprisingly accurate. The better performance of RPA
for the jellium surface energy was explained by the rel-
evance of the long-range correlation for surfaces. Even
if RPA does not provide an accurate short-range corre-
lation, the error tends to cancel out the surface energy.
Therefore exchange-correlation kernels, which can cor-
rect the deep RPA correlation for short-range in bulks
or inhomogeneous systems, do not give much contribu-
tion for the jellium surface energy. The same conclu-
sion can be drawn when the correction to the RPA called
RPA+ is applied to the jellium surface. For energy differ-
ences in processes that conserve the electron number, it
was argued38 that the correction from RPA+, although
large for the total energy (about +0.5 eV per electron),
tends to cancel out almost completely. Beyond the jel-
lium model, recent calculations showed a remarkably ac-
curacy of the RPA for various properties (including the
surface energy) of real materials49–55.
To account for this missing short-range part of the

RPA correlation energy in the uniform electron gas
and inhomogeneous systems, we rely on (for the jel-
lium surface) a nonlocal energy- optimized (NEO)
model kernel56,57 which has been introduced and tested
recently58. This kernel is designed to satisfy exact con-
straints utilizing the iso-orbital Z indicator, a meta-GGA
ingredient. The original construction of NEO was de-
signed to produce a correctly long-ranged (∼ 1/u) ex-
change kernel for one- and two-electron systems, where
Z = 1. A problem arises that it also produces a long-
ranged exchange kernel in the tail of the density of a
jellium surface, since Z → 1 and kF → 0 there. (Here

kF = (3π2n)1/3 is the Fermi wave vector.) In this work
we present the NEO kernel and test it for the jellium sur-
face. Along with the original NEO kernel, we also intro-
duce a modification of the original expression to restore
the correct decay of the density tail for the jellium sur-
face. With this construction the NEO-kernel- corrected
RPA should be correct at long range, as pointed out by
Ref. 34.

II. COMPUTATIONAL FRAMEWORK

Consider a many-electron system that is neutralized
by a uniform positive background (jellium) of density n̄
cut off sharply at a planar surface (at z = z0). The xc
surface energy is obtained as follows35

σxc =
N

A

{

εxc[n]− εunifxc (n̄)
}

, (3)

where εxc[n] and εunifxc (n̄) represent, respectively, the
xc energy per particle of the actual semi-infinite many-
electron system [of density n(z)] and a uniform elec-
tron gas (of density n̄) cut off sharply at z = z0; here,
n̄ = k3F /(3π

2), kF being the magnitude of the bulk Fermi
wavevector. Using Eq. (1), one finds:

εxc[n] =

∫

∞

0

d(q/kF ) εxc,q[n], (4)

where
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′; q, iω)− δ(z − z′)]. (5)

Here, q represents the magnitude of a two-dimensional
(2D) wavevector parallel to the surface, vq(|z−z′|) is the
2D Fourier transform of the bare Coulomb interaction
v, and χλ(z, z

′; q, iω) is the 2D Fourier transform of the
interacting density-response function χλ of Eq. (2). If
the interacting density-response function χλ is replaced
for all λ by the non-interacting density response function
χ0, then Eq. (5) reduces to the exact exchange energy
per particle εx,q[n]. We define the correlation energy per
particle εc,q[n] = εxc,q[n]− εx,q[n].
For εunifxc (n̄), one simply needs to replace (i) the inter-

acting density-response function χλ(z, z
′; q, iω) entering

Eq. (5) by that of a uniform electron gas and (ii) the
electron density n(z) [also entering Eq. (5)] by the step
function n̄ θ(z0 − z). This yields a 2D wavevector anal-
ysis [Eq. (4)] of the uniform-gas xc energy per particle
εunifxc (n̄), which will be needed below for a 2D wavevec-
tor analysis of the xc surface energy. Alternatively, one
can use Eq. (1) to reach the following three-dimensional

(3D) wavevector analysis:

εunifxc (n̄) =

∫

∞

0

d(Q/kF ) ε
unif
xc,Q(n̄), (6)
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where

εunifxc,Q(n̄) =
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.

(7)
Here, Q represents the magnitude of a 3D wavevector,
vQ is the 3D Fourier transform of the bare Coulomb in-
teraction v, and χλ(Q, iω) is the 3D Fourier transform of
the interacting density-response function χλ [see Eq. (2)]
of a uniform electron gas of density n̄.
For the numerical calculations reported here, we start

with a jellium slab of finite width along the z direction,
and we then take the limit of large thickness. In this work
we used the code described in Refs.34,35,59, that com-
putes numerically Eqs. (3)-(5) using accurate (occupied
and unoccupied) LDA orbitals35. Instead of considering
the double-cosine Fourier representation of the density-
response function (as done in Ref.35), we worked directly
in the z-space. This approach simplifies considerably the
computational implementation of the kernels, but needs
a large number of grid points in the z-direction, in or-
der to obtain converged results (up to 1100 z-points on
a Gaussian grid).

III. METHODOLOGY

A. The NEO-I kernel

Here we invoke NEO: a nonlocal energy-optimized
model kernel56,57 which has been introduced and tested
recently for the uniform electron gas.58 This kernel
(which can be applied to an arbitrary non-uniform sys-
tem) is based on exact constraints and on the concept
of the uniform electron gas;44 the most widely-applicable
approximations of DFT and TDDFT are well known to
rely on this paradigm. The NEO kernel, as introduced
in Ref. 58 (NEO-I), is:

fλ,NEO
xc ([n], r, r′) = −λv(r, r′)

∑

σ

(nσ

n

)2

×erfc(aNEO−I |r− r
′|), (8)

where

aNEO−I =
√

c̃(1− Z2
σ) kFσ, (9)

Zσ = τWσ /τσ being a meta-GGA ingredient,24,25 τσ being
the KS kinetic-energy density

τσ =
1

2

occup
∑

α

|∇φασ|, (10)

and τWσ = |∇nσ|
2/(8nσ) being the von Weizsäcker

kinetic-energy density60 (which equals τσ for one- and
two-electron ground states). The decaying function erfc
is the complementary error function, nσ and n are the
σ spin and the total electron density, respectively, and

kFσ = (6π2nσ)
1/3. These quantities are all evaluated at

(r+ r
′)/2.

For one-electron densities, one finds the expected re-
sult fλ,NEO

xc = −λv. For two electrons in a spin singlet,
one finds the exact-exchange form fλ,NEO

xc = −λv/2,
which is exact in the high-density limit. In the short-
range limit, the NEO-I kernel becomes −λv

∑

σ(nσ/n)
2

as does the PGG kernel;61 in the spin-polarized case, this
further simplifies to −λv, while in the spin-unpolarized
case it becomes −λv/2. In the long-range limit, fλ,NEO

xc

vanishes rapidly, except in the one- and two-electron re-
gions. The exact xc kernel of the uniform electron gas is
known to be nonlocal but short-ranged, and the NEO-I
kernel has these features.
The c̃ parameter entering Eq. (9) is taken to fit the ex-

act second-order exchange contribution to the uniform-
gas correlation energy, which can be evaluated from ex-
plicit expressions given by Langreth and Perdew41 and
by von Barth and Hedin62; one finds c̃ = 0.264, which
makes a large improvement over the RPA (c̃ → ∞).

B. NEO-II kernel

The NEO-I kernel of Eqs. (8)-(9) is simply the bare
Coulomb interaction λv multiplied by a decaying func-
tion of the variable aNEO−I|r − r

′|. This is designed in
order to (i) produce a correctly long-ranged exchange ker-
nel for one- and two-electron systems, where Zσ = 1, and
(ii) produce no second-order gradient correction to the
RPA correlation energy in a slowly-varying high electron
density, where Zσ → 0+O(∇2). The problem is that this
kernel (as introduced in Ref. 58) produces an unwanted
long-ranged exchange kernel in the tail of the electron
density of a jellium surface (Zσ → 1 and kFσ → 0) where
the RPA should be recovered as discussed in Ref. 35.
Hence, here we replace Eq. (9) by

aNEO−II =
√

c̃(3ασ − 3α2
σ + α3

σ) kFσ, (11)

where ασ = (τσ − τWσ )/τunifσ , τunifσ being the Thomas-
Fermi kinetic-energy density:63,64

τunifσ = (1/2)(3/10)(3π2)2/3(2nσ)
5/3. (12)

This new approach (NEO-II) represents a clear im-
provement, as it leaves unchanged the correct behavior
of the NEO-I kernel for one- and two-electron densities
(at ασ = 0) and also for slowly-varying densities [at
ασ = 1 + O(∇2)] and kills, at the same time, the un-
wanted kernel in the tail of the electron density far away
from the surface (at ασ → ∞). As one moves from NEO-I
to NEO-II, the parameter c̃ does not need to be refitted.
By construction, for α values that are close to 1

(slowly-varying densities) the coefficient 3ασ − 3α2
σ +α3

σ

entering Eq. (11) deviates little from unity, so the range
of our NEO-II kernel is of the order of k−1

F . Hence, over
this range of α values the kernel correction to RPA is
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FIG. 1. The coefficients aNEO−I and aNEO−II defining the
kernels NEO-I and NEO-II, for a jellium surface with the
electron-density parameter rs = 6. The surface is at z = 0,
the bulk is at z < 0, and the vacuum is at z > 0.

nearly local, as in the semilocal correction to RPA of
Yan, Kurth, and Perdew.38

In Fig. 1, we show a comparison between the coeffi-
cients aNEO−I and aNEO−II defining the kernels NEO-
I and NEO-II, for a jellium surface with the electron-
density parameter rs = 6. By construction, these
functions agree well in the bulk and even at the sur-
face, while in the vacuum side far from the surface one
finds: aNEO−I → 0 and aNEO−II → ∞, as expected.
The quantity α we are introducing here represents a
kinetic-energy dependent ingredient that plays a key role
in the construction of meta-GGA functionals27,28,65–68

and is also relevant for a correct asymptotic descrip-
tion of the electron density.69,70 Note, for example, that
1/

[

1 + α(r)2
]

is the electron-localization function often

used in the characterization of chemical bonds.71,72

C. NEO-III kernel

One of the ingredients of the NEO-I kernel [the pa-
rameter c̃ entering Eq. (9)] is constructed to fit the exact
second-order exchange contribution to the uniform-gas
correlation energy. Now we construct NEO-III by re-
placing the coefficient aNEO−I by the new coefficient

aNEO−III =

√

c̃

1 + brcs
(1− Z2

σ)kFσ, (13)

where the energy-optimization coefficient c̃ entering
Eq. (9) has been replaced by the new electron-density
dependent coefficient c̃/(1 + brcs), with the parameters
b = 1.1 and c = 1.35 taken to fit the PW9273 correla-
tion energy for electron densities down to rs = 1000.
We do not tried to construct the analog of Equation

(13) using α instead of Z. Z and α in NEO-I, and NEO-
II present different physics in the density tail, while the

TABLE I. Correlation energy of the uniform electron gas (in
mHa), as obtained from Eq. (1) with the use of the NEO-I and
NEO-III kernels, for various values of the electron-density pa-
rameter rs. For the uniform electron gas, the kernels NEO-I
and NEO-II coincide. The PW92 correlation energy73 is given
for comparison. The values in parenthesis are relative devia-
tions from the exact (PW92) values. The last line reports the
root mean square (RMS).

rs NEO-I NEO-III exact (PW92)

1 -65.12 (-0.0895) -60.29 (-0.0087) -59.77

2 -50.56 (-0.1296) -44.08 (0.0152) -44.76

3 -42.92 (-0.1619) -36.34 (0.0162) -36.94

4 -37.93 (-0.1901) -31.76 (0.0035) -31.87

5 -34.33 (-0.2165) -28.65 (-0.0152) -28.22

6 -31.55 (-0.2407) -26.37 (-0.0369) -25.43

10 -24.60 (-0.3247) -20.90 (-0.1255) -18.57

100 -6.50 (-1.0376) -6.12 (-0.9185) -3.19

1000 -1.31 (-2.3590) -1.29 (-2.3077) -0.39

RMS 5.351 1.374

replacement of c̃ by
√

c̃
1+brc

s

in NEO-III was designed

to test the applicability of the kernel for density regions
which are different from high-densities.

In Table I, the uniform-gas correlation energy is given
for various values of rs, as obtained with the use of the
NEO-I (or NEO-II) and NEO-III kernels. NEO-III corre-
lation energy shows reduced deviations for each rs com-
pared to NEO-I. This fact indicates that NEO-III is per-
forming better for the integrated correlation energies of
individual rs values. This is not surprising since the pa-
rameters in NEO-III were obtained by fitting to the uni-
form electron gas over a wide range of densities. Notice
that the better correlation energies in NEO-III show up
in the wavevector analysis of Fig. 2 only in the correla-
tion energy, as an integrated area under the curve.

IV. RESULTS AND DISCUSSION

Figure 2 exhibits the Q-dependent correlation energy

per particle εunifc,Q (n̄) (3D wavevector analysis) of a uni-
form electron gas with rs = 2 and rs = 5, as ob-
tained from Eq. (7). In the long-wavelength (Q → 0)
limit, where the RPA is exact, all calculations converge,
as expected. At moderate values of Q, NEO-I agrees
very well with the Perdew-Wang parametrization74 in
a region where RPA starts to deviate significantly. At
the shortest wavelengths, all kernel-corrected calcula-
tions improve considerably over the RPA, although they
give Q-dependent correlation energies that are still below
the exact calculation.

Since both NEO-I and NEO-II kernels were fitted
against the second-order exchange energy, they both have
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FIG. 2. 3D wavevector analysis of the correlation energy
per particle εunif

c,Q (n̄) of a uniform electron gas with rs = 2
and rs = 5, as obtained from Eq. (7) in the RPA and with
the use of the NEO-I and NEO-III kernels. The same quan-
tity, as obtained from the Perdew-Wang parametrization of
the uniform-gas correlation-hole density74 (exact) is given for
comparison. For the uniform electron gas, the kernels NEO-I
and NEO-II coincide.

the same physics built in for the high-density limit. In
Ref. 58 one of the authors has shown that for rs between
1 and 20, the fitted parameter produces a distribution
of errors compared to PW92 between approximately 3
and 5 mHa. Small displacement below and above this
fitted parameter delivers a balance of small absolute er-
rors and small distribution of error over a large range
of densities. Therefore this particular fitting provides
some flexibility for the kernel to be accurate in both high-
density and lower density regions as well. The balance
of good absolute errors and error distribution transfers
to the wavevector analysis by tuning the agreement for
small to intermediate Q without changing c̃. NEO-III is
worst than NEO-I for intermediate wavevectors, but its
integrated correlation energies are better.

Figure 3 shows the q-dependent correlation energy per
particle εc,q[n] (2D wavevector analysis) of a jellium slab
of width a = 2.23λF (λF = 2π/kF is the Femi wave-
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FIG. 3. 2D wavevector analysis of the correlation energy per
particle εc,q[n] of a jellium slab of width a = 2.23λF and
rs = 2.07, as obtained from Eq. (5) in the RPA and with
the use of the NEO-I, NEO-II, and NEO-III kernels. ISTLS
calculations (see Ref. 39) are given for comparison.

length) and rs = 2.07 (the electron-density parameter
corresponding to valence electrons in Al), as obtained
from Eq. (5). Here we compare our RPA and beyond-
RPA calculations to the inhomogeneous Singwi-Tosi-
Land-Sjölander (ISTLS) calculations reported in Ref. 39.
As in the case of the uniform electron gas, all calculations
converge, as expected, in the long-wavelength (q → 0)
limit. At moderate values of q, both NEO-I and NEO-
II agree well with our reference calculation (ISTLS) in a
region where RPA starts to deviate significantly. At the
shortest wavelengths, all kernel-corrected calculations are
slightly below our reference calculation (ISTLS), as oc-
curs in the case of the uniform electron gas. The best
results here (compared to the ISTLS reference) are ob-
tained by using the NEO-I and NEO-II kernels.
In Fig. 4, we show (for rs = 2.07) our wavevector anal-

ysis of the jellium surface energy

γc,q = (N/A)
{

εc,q[n]− εunifc,q (n̄)
}

, (14)

whereN is the total number of electrons and A represents
a normalization area. The area under each curve repre-
sents the correlation surface energy σc, which we give in
Table II. All NEO kernels yield accurate jellium surface
energies, which are (i) close to the ISTLS calculation and
(ii) within the error bar of DMC calculations.
Figure 4 shows that in the long-wavelength (q → 0)

limit all calculations coincide with the RPA calcula-
tion, which is exact in this limit. In the large-q limit,
where the RPA fails badly, all kernel-corrected calcula-
tions agree with each other and with our reference calcu-
lation (ISTLS); this is an expected result, since all calcu-
lations yielding accurate uniform-gas correlation energies
are expected to also yield an accurate γq in this region.36

Differences among our kernel-corrected calculations and
between these calculations and our reference calculation
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FIG. 4. 2D wave-vector analysis γc,q of the correlation sur-
face energy of a jellium slab of width a = 2.23λF and
rs = 2.07. The area under each curve represents the cor-
responding correlation surface energy σc. Units are erg/cm2

(1 hartee/bohr2 = 1.557 × 106 erg/cm2).

TABLE II. NEO-I, NEO-II, and NEO-III correlation sur-
face energies σc of a jellium surface with rs = 2.07. LDA,
PBEsol, ISTLS,39 and DMC40 correlation energies are given
for comparison. NEO and ISTLS calculations represent the
surface energy of a semi-infinite jellium, which has been ob-
tained from finite-slab calculations by following the extrap-
olation procedure described in Ref. 35. Units are erg/cm2

(1 hartee/bohr2 = 1.557 × 106 erg/cm2).

rs LDA PBEsol NEO-I NEO-II NEO-III ISTLS DMC

2.07 287 645 702 692 714 730 697± 45

(ISTLS) arise at intermediate values of q. The NEO-II
kernel yields correlation energies γq that are very close
to our reference calculation (ISTLS) for wavevectors up
to q ≈ 0.4. This is an expected result, since this is the
only kernel that is free from an unrealistic long-ranged
behavior in the tail of the electron density into the vac-
uum side of the surface. At larger values of q the NEO-II
kernel yields correlation energies that are slightly below
the ISTLS result, thus leading to a total NEO-II surface
energy that is slightly smaller than the ISTLS surface
energy.
We close this paper by looking at the position-

dependent xc energy per particle εxc([n], z), which for a
many-electron system that is invariant in two directions
we define as follows59

Exc = A

∫

dz n(z) εxc([n], z), (15)

Exc being the xc energy of Eq. (1). Equation (15) itself
does not define εxc([n], z) uniquely

75–77, but here we use
the choice made in Equation (1).
Figure 5 exhibits the correlation energy per particle

εc([n], z). Only the NEO-II kernel is found to capture
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-0.01

 0
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ε c
(z
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RPA
NEO-I
NEO-II
NEO-III

FIG. 5. Correlation energy per particle (εc versus z, for a
jellium slab of width a = 2.23λF and rs = 2.07. The surface
is at z = 0, the bulk is at z < 0, and the vacuum is at z > 0.

both the correct εc([n], z) in the bulk (which in the case
of the RPA is too negative) and the correct image-like
εc([n], z) far away from the surface (where the RPA is
exact59 and NEO-I and NEO-III are all wrong). This is
an expected result, since the NEO-I and NEO-III kernels
produce an unwanted long-ranged behavior in the tail of
the electron density due to the inability of the Z ingre-
dient entering Eq. (9) to distinguish between the surface
tail and one- or two-electron regions. The relevance of
the α parameter versus Z was mentioned in the context
of orbital overlap in closed-shell species .27,29,78

V. CONCLUSIONS

We have constructed a nonlocal energy-optimized
model kernel56,57 with various inhomogeneity parame-
ters, which we have tested for the jellium-surface prob-
lem. Our work reveals the role and significance of α, a
dimensionless deviation from the single orbital shape, as
an ingredient for exponentially decaying surface densi-
ties.
A kernel-corrected RPA calculation of the xc jellium

surface energy was reported in Ref. 36. In Ref. 36, the xc
kernel fλ

xc(r, r
′, ω) was taken to be (by assuming that the

electron density variation is small within the short range
of the kernel) equal to the xc kernel of a uniform electron
gas of density [n(r) + n(r′)] /2. Krotscheck and Kohn,13

however, had argued that this local-density approxima-
tion for the particle-hole interaction might be inadequate
to calculate the surface energy of simple metals. The
present work brings us to the conclusion that the use of
an appropriate kernel (like NEO-II), which does not only
depend on the electron density at (r + r

′)/2 but also on
its gradient as well as the kinetic energy density, does not
change the jellium surface energy significantly compared
to the RPA value, and leaves it close to our reference
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ISTLS and DMC calculations.
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