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Symmetry protected topological (SPT) phases in free fermion and interacting bosonic systems
have been classified, but the physical phenomena of interacting fermionic SPT phases have not been
fully explored. Here, employing large-scale quantum Monte Carlo simulation, we investigate the
edge physics of a bilayer Kane-Mele-Hubbard model with zigzag ribbon geometry. Our unbiased
numerical results show that the fermion edge modes are gapped out by interaction, while the bosonic
edge modes remain gapless at the (1+1)d boundary, before the bulk quantum phase transition to a
topologically trivial phase. Therefore, finite fermion gaps both in the bulk and on the edge, together
with the robust gapless bosonic edge modes, prove that our system becomes an emergent bosonic
SPT phase at low energy, which is, for the first time, directly observed in an interacting fermion
lattice model.

PACS numbers: 71.10.Fd, 71.27.+a, 73.43.-f

Introduction. Symmetry protected topological (SPT)
phases are bulk gapped states with either gapless or de-
generate edge excitations protected by symmetries. The
SPT phases in free fermion systems, like topological
insulators [1–5], acquire metallic edge states and have
been fully classified [6, 7]. On the other hand, although
bosonic SPT phases have been formally classified and
constructed as well from group cohomology [8, 9] and
field theories [10–13], there has been little study about
realization of bosonic SPT states in condensed matter
systems, except for the well-known 1dHaldane phase that
is realized in a spin-1 Heisenberg model [14, 15] and some
proposals of realizing a 2d bosonic SPT state in cold atom
systems [16]. Using the same “flux-attachment” picture
as Ref. 16, lattice models of bosonic integer quantum Hall
states have been studied [17–21].
Recently it was proposed that instead of directly study-

ing bosonic systems, the physics of bosonic SPT states
can be mimicked by interacting fermionic systems, in the
sense that its low energy physics is completely identical
to bosonic SPT states [22]. For example, in an interact-
ing fermion model on the AA-stacked bilayer Kane-Mele-
Hubbard model, a bona fide interaction-driven topolog-
ical phase transition has been studied in our previous
papers [23–25]. A direct continuous quantum phase
transition between a quantum spin Hall (QSH) phase
and a topologically trivial Mott insulator was found via
large-scale quantum Monte Carlo (QMC) simulations.
At the critical point, only the bosonic spin and charge
gaps are closed, while the bulk single-particle excita-
tions remain open. This transition can be described by
a (2 + 1)d O(4) nonlinear sigma model with a topologi-
cal Θ-term [23, 24, 26]. However, as for the physics on
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FIG. 1. (Color online) (a) Illustration of AA-stacked hon-
eycomb ribbon (La1

= 3, La2
= 3) with periodic (open)

boundary condition along a1 (a2) direction. a1 = (1, 0)
and a2 = (1/2,

√

3/2) are the primitive translation vectors.
A1, B1, A2 and B2 are the four sublattices within one unit
cell. (b) J-Jz phase diagram of bilayer Kane-Mele-Hubbard
model. The bosonic SPT (BSPT, red) and dimer Mott insu-
lator (DMI, blue) phases are separated by a bulk transition.
The dashed lines inside BSPT denote the J values, above
which one can clearly see the exponential decay of the single-
particle Green’s function at the boundary from our finite-size
calculations. The relative range of such region becomes wider
as Jz increases.

the edge, although the field theory and renormalization
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group analysis [27] provide us with analytical evidence of
gapless bosonic edge, which is supported by an extended
version of dynamical mean-field theory calculation at fi-
nite temperatures[28], unbiased numerical evidence that
can prove the conclusion is still demanded, and it is the
task of this paper.
Here, we employ large-scale QMC simulation to the

zigzag ribbon geometry, i.e., the bilayer Kane-Mele-
Hubbard model with periodic boundary condition along
a1 direction and open boundary along a2 direction (see
Fig. 1 (a)). On finite-size ribbon, our unbiased results
unveil a substantial region (∼ t) of bosonic SPT phase
from the exponential decay of the single-particle Green’s
function along the boundary before the bulk quantum
phase transition, while the gapless O(4) bosonic modes
prevail on the edge with power-law correlation functions.
Model and Method. The Hamiltonian [24, 27] of the

AA-stacked bilayer Kane-Mele-Hubbard model is given
by

Ĥ = −t
∑

ξ〈i,j〉α

(ĉ†ξiαĉξjα + ĉ†ξjαĉξiα)

+ iλ
∑

ξ〈〈i,j〉〉αβ

νij(ĉ
†
ξiασ

z
αβ ĉξjβ − ĉ†ξjβσ

z
βαĉξiα)

− J

8

∑

i

[

(D̂1i,2i + D̂†
1i,2i)

2 − (D̂1i,2i − D̂†
1i,2i)

2
]

− Jz
4

∑

i

[(n̂1i↑ − n̂1i↓)− (n̂2i↑ − n̂2i↓)]
2
,

(1)

with D̂1i,2i =
∑

σ ĉ
†
1iσ ĉ2iσ. Here α, β denote the spin

species and ξ = 1, 2 stand for the layer index. The first
term in Eq. (1) describes the nearest-neighbor hopping
(green lines in Fig. 1 (a)) and the second term represents
spin-orbital coupling λ/t = 0.2 (blue lines with arrows in
Fig. 1 (a)). The third term J is the interlayer antifer-
romagnetic Heisenberg (approximated) interaction [24],
and the last term Jz denotes the interlayer antiferro-
magnetic Ising (approximated) interaction [27]. When
J/t > 0 and Jz/t > 0, we can prove that there is no
fermion sign problem in the QMC calculations [27].
This Hamiltonian possesses a high symmetry, SO(4)×

SO(3) [24, 27]. When Jz/t = 0, in the bulk, J drives
a continuous quantum phase transition from a quantum
spin Hall (QSH) phase to an interlayer dimer phase at
Jc/t ≈ 3.73, and since there is no spontaneous symmetry
breaking at both sides of this transition, it is dubbed as
a bona fide interaction-driven topological phase transi-
tion [24]. On the other hand, when J/t = 0, it is perceiv-
able that Jz will eventually drive the system into a spin-
density-wave phase with magnetization along z direction
(SDW-Z) which spontaneously breaks the SO(3) sym-
metry and time-reversal symmetry. Our numerical data
shows that the SDW-Z order establishes when Jz/t > 2.
More information about the J−Jz phase diagram is given
in Supplemental Material [29].
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FIG. 2. (Color online) The log-log plot of single-particle
Green’s function at the boundary as a function of interlayer
antiferromagnetic interaction J/t when (a) Jz/t = 0 and (b)
Jz/t = 1. In both cases, results show the exponential decay
before the bulk topological phase transition Jc/t.

The QSH phase still survives when the interlayer in-
teractions are not sufficiently strong. However, we will
show that the gapless edge modes in the interacting QSH
phase are carried by bosons emerging from interacting
fermionic degrees of freedoms, hence the system is actu-
ally in a bosonic SPT state before the bulk phase transi-
tion (the BSPT phase in Fig. 1 (b)). This conclusion is
drawn upon the numerical observation of exponential de-
cay of single-particle Green’s function on the edge before
the bulk quantum phase transition, while at the same
time bosonic O(4) correlation functions present a clear
power-law decay.

The QMC method employed here is the projective
auxiliary-field quantum Monte Carlo approach [30, 31].
It is a zero-temperature version of the determinantal
QMC algorithm. The specific implementation of the
QMC method on the model in Eq. (1) is presented in
Ref. [24]. The projection parameter is chosen at Θ = 50/t
and the Trotter slice ∆τ = 0.05/t. Since the gapless edge
modes are hallmarks of SPTs, we perform the simulation
with periodic (open) boundary condition along a1 (a2)
direction (see Fig. 1 (a)). The main results in this pa-
per are obtained from a ribbon with La1

= 27, La2
= 9

which is large enough to obtain controlled representa-
tion of thermodynamic limit behaviors of BSPT phase in
Fig. 1 (b).
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Edge analysis. In the non-interacting limit, the bilayer
Kane-Mele model supports four fermionic edge modes:
two left-moving up-spin modes and two right-moving
down-spin modes from both layers, respectively. They
are denoted by the boundary fermion fields cξα (ξ = 1, 2,
α =↑, ↓). Following the standard Abelian bosonization
procedure, we can rewrite cξα = κξαe

iφξα/
√
2πa, where

a is a short distance cut-off and κξα is the Klein factor
that ensures the anticommutation of the fermion oper-
ators. As we turn on the interaction, in terms of the
bosonized degrees of freedom φ = (φ1↑, φ2↑, φ1↓, φ2↓), the
effective action for the interacting edge modes reads

S =

∫

dτdx
1

4π
(∂xφ

⊺K∂τφ+ ∂xφ
⊺V ∂xφ)− λ cos(l⊺0φ),

K =

(

1
1
−1

−1

)

, V = v0

(

1 u −g g
u 1 g −g
−g g 1 u
g −g u 1

)

,

(2)

where g = Jz/(4πv0 −Jz), u = (Jz +J)/(4πv0 − Jz) and
v0 is the bare velocity of the edge modes. λ ∝ J is the
backscattering term induced by the interlayer Heisenberg
interaction with the corresponding charge vector l0 =
(1,−1,−1, 1)⊺. The scaling dimension of cos(l⊺0φ) is

∆0 =
2(1− u− 2g)
√

(1− u)2 − 4g2
. (3)

Without the Ising interaction Jz (i.e. g → 0), the op-
erator cos(l⊺0φ) is marginal from the scaling dimension
∆0 = 2. Further renormalization group (RG) analysis[27]
shows that the term λ cos(l⊺0φ) is marginally relevant,
meaning that the fermionic edge modes of the non-
interacting QSH state are unstable to the interaction J .
As long as J is turned on, the boundary fermions will
be gapped out by the interaction, leaving only bosonic
edge modes described by the spin c†

1↑c1↓ − c†
2↑c2↓ and

charge c1↑c2↓ − c1↓c2↑ fluctuations. However, due to the
marginal nature of RG flow, the boundary fermion gap
could be very small for small J , which is hard to re-
solve in our finite-size numerical study. The positive Jz
interaction (i.e. g > 0) helps to boost the RG flow by
reducing the scaling dimension ∆0 according to Eq. (3),
such that J becomes relevant and the gap in the single-
particle (fermionic) spectrum can be observed in numer-
ics for smaller J as well. In the following, we will show
that with moderate interaction J , the QSH edge modes
indeed become bosonic at low energy, resembling the key
feature of BSPT states. The interaction Jz will help to
enhance the fermion gap and make the BSPT edge modes
more prominent in a finite-size system.
Numerical results. Figures 2 (a) and (b)

show the single-particle Green’s function Gσ
ij =

〈Ψ| ĉ†iσ ĉjσ |Ψ〉 / 〈Ψ|Ψ〉 along the edge as a function of

J/t, at Jz/t = 0 and 1, respectively. |Ψ〉 ∝ e−ΘĤ/2 |ΨT 〉
is the ground state wave function projected from a trial
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FIG. 3. Illustration of finite-size effects in the single-particle
Green’s function along edge for different La1

and La2
. (a)

at J/t = 2.5, Jz/t = 0, the exponential decay of the single-
particle Green’s function accquires strong finite-size effect.
(b) at J/t = 2.75, Jz/t = 0, the finite size effect is absent
and exponential decay is seen for the chosen La1

and La2
.

wave function |ΨT 〉 [24]. We see a clear exponential
decay before the bulk transition at Jc/t ≈ 3.73 (for
Jz/t = 0) and Jc/t ≈ 2.7 (for Jz/t = 1). The exponential
decay of edge single-particle Green’s function at J < Jc
indicates that fermions are no longer gapless at the
boundary between our model system and a topologically
trivial one (such as vacuum).

To rule out the possible finite-size effect, we employ
several different ribbon geometries in the QMC calcula-
tions. From Fig. 3 (a), it is hard to determine whether
the edge single-particle Green’s function will exponen-
tially decay in the thermodynamic limit when J/t =
2.5, Jz/t = 0 because of the strong finite-size effect. How-
ever, when J/t = 2.75, Jz/t = 0, we see a clear exponen-
tial decay no matter if La1

and La2
are even or odd, large

or small, and the single-particle Green’s function has a
clear trend to truly exponential decay in the thermody-
namic limit.

The exponential decay of single-particle Green’s func-
tion at the boundary in the thermodynamic limit indi-
cates that the gapless fermion edge mode in the non-
interacting case is gapped out by the interlayer exchange
interaction. Hence the fermion excitations have a gap
both in the bulk and on the edge [24]. However, as shown
in our edge analysis, the system can still be non-trivial in
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FIG. 4. (Color online) The log-log plot of equal-time two-
particle O(4) vector correlation function at the boundary for
(a) Jz/t = 0 and (b) Jz/t = 1. Both panels show the power-
law decay behaviors before the bulk topological phase transi-
tion at Jc/t.

the bosonic sector [27]. To see this, we calculate the XY
spin (SDW-XY) correlation function and superconduct-
ing pairing (SC) correlation function at the boundary.
According to the analysis in Ref. [27], we define them as

N+−
AA (rj − ri) =

1

2
[S±

A1A1
(rj − ri)− S±

A1A2
(rj − ri)

− S±
A2A1

(rj − ri) + S±
A2A2

(rj − ri)]

∆AA(rj − ri) = 〈Ψ| ∆̂†
iA1A2

∆̂jA1A2
|Ψ〉 / 〈Ψ|Ψ〉 (4)

where S±
mn(rj − ri) = 〈Ψ| 1

2
(Ŝ+

i Ŝ−
j + Ŝ−

i Ŝ+
j ) |Ψ〉 / 〈Ψ|Ψ〉,

m,n = A1, A2 denote the A sublattice sites in the first
and second layer. i and j label the unit cells. Ŝ+

i is

the spin flip operator and ∆̂†
iA1A2

is the interlayer singlet
creation operator. Fig. 4 (a) and (b) show the SDW-
XY correlation function at the boundary as a function of
J/t. Before the bulk quantum phase transition, they all
show the power-law decay at J < Jc. Due to the SO(4)
symmetry, the SDW-XY and SC correlation function is
exactly the same because they rotate into each other [24,
27]. So the physical bosonic boundary modes are simply
the SDW-XY and SC fluctuations on the boundary.
Turning on an extra on-site Hubbard interaction

U
∑

i(n̂i↑ + n̂i↓ − 1)2 (see Sec. VII in Supplemental Ma-
terial [29] for the U/t path chosen in the bulk phase di-
agram) to our original model Eq. (1) would break the
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FIG. 5. (Color online) Edge spin N+−

AA
(r) and pairing

∆A1A2
(r) correlation functions for increasing U/t, at J/t =

2.75 and Jz/t = 0. Inset shows the extracted Luttinger pa-
rameters as a function of U/t.

O(4) symmetry, and change the scaling dimension of
the spin and Cooper pair operators. According to the
bosonization analysis in Ref. [27], the spin and pairing
O(4) bosonic modes always have power-law correlation,
with N+−

AA (r) ∝ |r|−α and ∆AA(r) ∝ |r|−β . α and β
depend on the Luttinger parameters, but their product
remains a universal constant: αβ = 1. This is due to the
fact that, spin and charge are a pair of conjugate variables
at the boundary, which is a physical consequence of the
SPT state in the bulk. This prediction is confirmed in our
simulation. In Fig. 5, at J/t = 2.75 Jz/t = 0 and gradu-
ally increasing U/t, N+−

AA (r) and ∆AA(r) have the same
power law α = β ∼ 1 at U/t = 0, but as U/t increases,
α and β start to deviate, but their product αβ remains
close to 1, as shown in the inset of Fig. 5, till the bulk
transition to a SDW-XY phase at Uc/t ∼ 1.3 [24, 29].
Discussion. In this Letter, we have performed QMC

simulation for a proposed interacting lattice fermion
model, and explicitly demonstrated that this system
shows a bosonic SPT state, in the sense that the bound-
ary has gapless bosonic modes, but no gapless fermionic
modes under interaction. Recently it was also proposed
that the same physics can be realized in an AB stacking
bilayer graphene under a strong out-of-plane magnetic
field and Coulomb interaction [32]. Our model, though
technically different, should belong to the same topologi-
cal class, and it has the advantage of being sign problem
free for QMC simulation. Unbiased information of such
strongly correlated system, including transport and spec-
tral properties, can be obtained from QMC simulation,
and quantitative comparison with the up-coming exper-
iments are hence made possible.
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