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Abstract

Organic semiconductors tend to self-assemble into highly ordered and oriented morphologies with
anisotropic optical properties. Studying these optical anisotropies provides insight into processing-
dependent structural properties and informs the photonic design of organic photovoltaic and light-
emitting devices. Here, we measure the anisotropic optical properties of spin-cast films of the n-
type polymer P(NDI20D-T2) using momentum-resolved absorption and emission spectroscopies.
We quantify differences in the optical anisotropies of films deposited with distinct face-on and
edge-on morphologies. In particular, we infer a substantially larger out-of-plane tilt angle of the
optical transition dipole moment in high temperature annealed, edge-on films. Measurements of
spectral differences between in-plane and out-of-plane dipoles, further indicate regions of disordered
polymers in low temperature annealed face-on films that are otherwise obscured in traditional X-ray
and optical characterization techniques. The methods and analysis developed in this work provide
a way to identify and quantify subtle optical and structural anisotropies in organic semiconductors

that are important for understanding and designing highly efficient thin film devices.



Organic semiconductors hold great promise in optoelectronic applications such as organic
photovoltaics (OPVs)! and organic light emitting diodes (OLEDSs)? due to their ease of pro-
cessing (potentially leading to high-throughput and low-cost manufacture) and molecular
tunability. Organic semiconductors typically self-assemble into highly ordered and oriented
morphologies. As such, great strides have been made in characterizing and optimizing
morphologies® 7, with a particular focus on the electrical®® and optical'®*? properties rel-
evant to devices. As most morphologies are highly oriented, it is important to study the
variation of these properties along different directions. For instance, anisotropic electrical
properties of organic semiconductors directly impact charge transport'®® and must be ac-

6

counted for in device design'®. 17,18

Optical spectroscopies such as ellipsometry-*°, polarized

21,22

absorption!®, polarized photoluminescence?®, and Raman?\'??, similarly reveal anisotropic

optical properties related to the refractive index, absorption, emission, and vibrational modes

23,24 25,26

that significantly impact the design and efficiency of light-emitting and photovoltaic

devices.

Recently, momentum-resolved photoluminescence (mPL) measurements have provided
new insight into magnetic dipoles in atomic systems?”, intra- and inter-molecular excitons in
H-aggregates®, and waveguide exciton polariton modes?’. Here, we extend these techniques
to study absorption as well as emission properties in highly ordered polymer films. We
study the molecule P(NDI20D-T2) which adopts distinct ’edge-on’ or 'face-on’ orientations
depending on processing conditions. By characterizing the optical anisotropies of both
morphologies, we determine the average orientation of the transition dipoles, and resolve
subtle differences in morphology (in both crystalline and non-crystalline regions). These
results reveal structural features previously invisible to diffraction techniques and suggest
ways to increase device performance through film morphology optimization.

P(NDI20D-T2), sold by Polyera as N2200, is an n-type polymer. See Fig. 1(a) for its
structural formula and Fig. 1(b,c) for geometry. As n-type semiconducting polymers are rare,
P(NDI20D-T2) has been the subject of extensive morphology3®3¢ and charge transport37 4!
studies.

P(NDI20D-T2) is a particularly interesting system for studies of structure-function re-
lations because its molecular orientation can be controlled through processing. Annealing
films at a low temperature (150°C) results in a face-on morphology where the pi-stacking

direction is perpendicular to the substrate (see GIWAXS, Supplemental Material, Fig. S1).42
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FIG. 1: a)The chemical structure of P(NDI20D-T2). b) Geometry and transition dipole
moment of a P(NDI20D-T2) molecule, determined with DFT calculations. The transition
dipole moment (yellow arrow) lies in the plane of the NDI unit and is angled slightly with

respect to the backbone. The alkyl side-chains have been truncated for visibility. ¢) A
view down the backbone showing the relative twist of thiophene units with respect to the

NDI20OD unit. While the subunits are twisted for both isolated and crystalline polymer,
the exact angle in the solid state is dependent on morphology. d) When annealed at 150°C

or 305°C P(NDI20D-T2) takes on a face-on or edge-on morphology, respectively. The
planes shown refer to the orientation of the NDI20OD planes.

In contrast, a high temperature anneal (305°C) results in an edge-on morphology with both
the pi-stacking direction and polymer backbone parallel to the substrate.**4* These two
alternate morphologies are illustrated schematically in Fig. 1(d). Elucidating the effects

various morphologies have on film function and device performance is on-going.

There have been a number of experiments linking processing conditions to optical prop-
erties. The excitations that lead to absorption and emission are thought to arise primar-
ily from the Sy — S ground state to first excited state transition on individual polymer
chains.?® Previous optical studies of P(NDI20D-T?2) in various solvents as well as in thin
films reveal subtle differences in absorption and photoluminescence (PL) spectra depending
on the degree of aggregation.® 4" However, the dipole orientation seems largely insensitive
to long-range or pi-pi interactions* and is expected to largely match the transition dipole

moment of a single molecule. In this case the TDM is tilted 8 degrees within the NDI
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FIG. 2: Schematic showing the measurement geometry. In mPLE light is incident on the
sample with a specific value of the in-plane momentum, k. In mPL light is emitted from
the sample and measured as a function of k). The in-plane momentum is related to the
angle of propagation as, k|| = neykosin 6. Both p-polarized and s-polarized light are

independently measured for both techniques.

plane (Fig. 1b) and we thus expect a purely in-plane TDM for face-on films and a TDM
partially angled out-of-plane (8 deg) for edge-on films. Using rubbing, directional epitaxial
crystallization, or epitaxy on oriented substrates researchers have defined a preferential in-
plane alignment of the polymer chains.!%3% Polarized absorbance measurements then reveal
in-plane optical anisotropies: the films primarily absorb light with electric fields primarily
polarized along the chain axis.!?3% These studies demonstrate significant optical structure-
function relationships. However, these measurements of optical anisotropies require special-
ized processing techniques to achieve in-plane alignment and are insensitive to out-of-plane
oriented optical properties. In this paper we use momentum-resolved spectroscopies to mea-
sure the anisotropic optical properties parallel vs. perpendicular to the substrate in films of
P(NDI20D-T2) deposited with standard processing conditions and exhibiting no preferred

in-plane alignment over optical length scales.

I. RESULTS AND DISCUSSION

A. Momentum-resolved spectroscopy

Momentum-resolved spectroscopies are a suite of techniques particularly well-suited to

measuring the orientation of emitters, absorbers, and scatterers. In these techniques, vari-
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FIG. 3: (a) False color back focal plane image of y-polarized photoluminescence
(750-1050nm integrated) from a P(NDI20D-T2) film. Vertical (horizontal) linecuts
through the center correspond to p-polarized (s-polarized) traces. (b) False color back
focal plane image of reflected laser light, demonstrating momentum-resolved excitation at
ky = —0.02ko, k, = 0.96ky. By moving the output laser fiber within this plane we control
the incidence momentum vector of our excitation source. The inset is a magnified image of

the laser spot.

ations in, e.g., PL, absorption, reflection, or scattered light intensity are measured as a
function of the photon’s momentum vector (E) These techniques utilize imaging in the
back focal plane (Fourier plane) of a microscope objective (see Appendix A). Every point

in the back focal plane corresponds to an angle of light incident on or emitted from the
sample (# = arcsin nk—,l‘o, o = arctan],:—i where k) = Vk.2 +k,?); see Fig. 2 for the mea-
surement geometry. For example, in Fig. 3(a) we plot the p-polarized mPL from a thin
film of P(NDI20D-T2). Following previously established procedures,?® we decompose mPL
measurements like these into contributions from in-plane and out-of-plane oriented emission
dipoles. Similarly, we also extend this basic technique to measure the orientation of absorp-
tion dipoles. Incident light is focused to a point in the back focal plane, Fig. 3(b), such that
it impinges the sample at a specific angle. By moving this focused light source within the
back focal plane, we have complete control of the incident photon momentum vector and

can measure momentum-resolved absorption. Both PL and absorption measurements are

analyzed with simple electromagnetic models, detailed below.
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FIG. 4: (a) Calculated momentum-dependent p-polarized luminescence expected from
equal magnitude in-plane (blue, solid) and out-of-plane (red, dashed) emitting dipoles. (b)
P-polarized photoluminescence at 865nm of P(NDI20D-T2) annealed at 150°C

decomposed into counts due to in-plane and out-of-plane dipoles.

Because the emission (and absorption) distribution of a dipole is anisotropic (o< sin®#),
dipoles that are oriented in the plane of the sample (in-plane for the rest of the article)
emit light into (or absorb light from) different angles than dipoles oriented perpendicular
to the sample plane (out-of-plane). These differences are further amplified by reflections
and interference in multi-layered geometries. Using a three-layer optical model, we calculate
the p-polarized momentum-dependent PL intensity from purely in-plane (blue, solid) or
out-of-plane (red, dashed) dipoles in a P(NDI20OD-T2) film, Fig. 4(a). The distributions
are particularly different at normal incidence, where only in-plane (IP) dipoles emit, and at
the critical angle, where only out-of-plane dipoles (OP) emit. We use these calculations to
decompose measured momentum-resolved PL into contributions from IP and OP dipoles,
Fig. 4(b). The 2D back focal plane PL image is focused to the entrance slit of an imaging
spectrograph where it is separated spectrally. At each wavelength we measure the PL
intensity as a function of in-plane momentum (black circles). The measured counts are
decomposed into contributions from IP (blue, solid) and OP (red, dashed) dipoles. In this

case, b percent of the total PL counts originate from OP dipoles.



B. Emission and absorption anisotropy

Measured (solid, dot-dashed) and calculated (dashed) p-polarized (yellow, solid) and s-
polarized (cyan, dot-dash) 865 nm PL traces for face-on and edge-on films are shown in
Figs. 5(a,b). The s-polarized calculations contain no free fit parameters and show excellent
agreement with measured PL up to approximately &k = £1.15%ky. This value of |k| defines
the range over which we perform fits of p-pol data—at larger momentum values the col-
lection efficiency of the microscope objective begins to drop. The p-polarized experimental
traces are fit according to the calculations described above, providing a measure of the rela-
tive contribution of in-plane and out-of-plane dipoles. As expected for excitations oriented
primarily along the polymer chain, the emission in both morphologies is dominated by an
in-plane dipole moment. However, fits of the p-polarized PL traces reveal a significant dif-
ference between the two morphologies. The ratio of out-of-plane to in-plane dipole moments
is more than twice as large for edge-on (0.29) than face-on (0.13) morphologies. mPL al-
lows us to resolve differences in the optical anisotropies that are not evident in ellipsometry

(Supplemental Material, Fig. S2).42

From mPL we derive the orientation of the transition dipole moment (TDM) with respect
to the substrate. The ratio of OP to IP dipole moments translate into differences of the
average inclination angle of the TDM with respect to the substrate. The inferred angle is
arctan(0.13) = 7° for face-on films compared to arctan(0.29) = 16° for edge-on orientations.
This increase in angle is consistent with the orientation of NDI planes in face-on versus edge-
on films. DFT calculations indicate a TDM is oriented mostly, but not completely, parallel
to the polymer backbone. The TDM is tilted (8°) in the NDI plane, see Fig. 1(b).333738 In
the edge-on morphology, the TDM is thus partially aligned perpendicular to the substrate.
There may also be a tilting of the polymer backbone with respect to the substrate.*® and
we cannot unambiguously identify the cause of differences in TDM orientation between the
two morphologies. It is worth noting that the optical technique used here averages both
crystalline and amorphous regions and therefore provides different information than can be

found from X-ray diffraction alone.

From Lorentz reciprocity®, momentum-resolved light absorption is formally equivalent
to momentum-resolved emission. Using the same principles described above, we provide

the first demonstrations of momentum-resolved photoluminescence excitation (mPLE), a
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FIG. 5: Examples of mPL measurements: 865nm photoluminescence intensity is recorded
(solid, dot-dashed lines) vs. emission momentum for (a) face-on and (b) edge-on
P(NDI20D-T?2). P-polarized traces (yellow, solid) are fit (dashed lines) to determine the
relative contribution of IP and OP dipoles as illustrated in figure 4. From these fits we
determine a predicted shape of the s-pol data (cyan, dot-dashed) with no free
fit-parameters. The ratio of OP to IP dipole moments is 0.13 and 0.29 for face-on and
edge-on films respectively. Examples of mPLE measurements: total photoluminescence
intensity is recorded vs. incident momentum of 700nm excitation laser for (c) face-on and
(d) edge-on P(NDI20D-T2). The curves exhibit visible differences from mPL due to
different values of the experimental apodization factor and values of the refractive index at
700nm vs. 865nm (see Appendix A). Regardless, the fit results of mPLE (0.16 and 0.30)

show excellent a%reement with mPL.
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FIG. 6: In-plane and out-of-plane normalized emission dipole moments for (a) face-on and
(b) edge-on P(NDI20D-T?2), determined by performing mPL decompositions across the

entire 780-1050 nm emission band.

proxy for absorption (assuming photoluminescence intensity is linearly proportional to the
amount of light absorbed). We collect the total emitted PL (integrated over wavelength
and momentum) as a function of the position of our momentum-resolved laser excitation
source, Fig. 2(b). Face-on and edge-on mPLE measurements are plotted in Figs. 5(c) and
(d) at an excitation wavelength of 700 nm. Fitting these traces to the appropriate in-
plane and out-of-plane basis functions at 700 nm (see Appendix C), we find out-of-plane
to in-plane ratios of 0.16 and 0.30 for face-on and edge-on morphologies respectively. This
excellent agreement with momentum-resolved emission (0.13 and 0.29) further validates our
observation of larger TDM tilt-angles for edge-on polymer films. This also indicates minimal
reorientation of the transition dipole between absorption and emission processes as can occur

50-52

in other systems which is consistent with the sub-nanosecond lifetimes of excitons in

P(NDI20D-T?2).45:53-55

C. Spectral differences

The wavelength dependence of these momentum-resolved measurements provides addi-

tional insight into the differences in optical properties for the two film morphologies. We



only determine mPLE (i.e., absorption) at an excitation wavelength of 700 nm. The emit-
ted light, on the other hand, is separated by momentum and wavelength simultaneously.
Performing decompositions similar to Fig. 4(b), we observe an average OP/IP ratio of 0.12
with a standard deviation of 0.1 across the PL band (750-1050nm) for face-on films. Al-
though the ratio is mostly constant across the PL spectrum, deviations from these values
are observed primarily at wavelengths to the right of the PL peak. This deviation is most
easily visualized by plotting the normalized IP and OP spectra inferred from our fits at
each wavelength. For face-on films, Fig. 6(a), the s-polarized spectrum (light green), which
arises from only IP dipoles, is in close agreement with the IP spectrum determined from
fits of p-polarized data (blue, solid). In particular, both spectra reveal a shoulder feature
at 950 nm that is absent from the OP spectrum (red, dashed) determined from our fits. In
comparison, edge-on films, Fig. 6(b) show much closer agreement between all three spec-
tra (the out-of-plane artifact past 1000nm is due to low PL counts throwing off the fitting
procedure). Evidently, the spectral dependence of these optical anisotropies reveals subtle

differences in the morphology-dependent optical properties that are otherwise obscured.

In previous studies, this 950nm shoulder peak was only seen in aggregated P(NDI20D-
T2).%5. A likely explanation for the missing face-on shoulder peak is that out-of-plane
oriented dipoles are preferentially found in amorphous regions of the sample. When the
polymer is initially spin-cast onto the substrate most of the molecules aggregate and align
in the plane of the substrate. Some molecules, however, will exist in amorphous regions
where there is a more random orientation of the molecules. The low temperature anneal
provides only a small amount of energy for the molecules to rearrange and very little of the
amorphous regions will crystallize. In this scenario out-of-plane dipoles are preferentially
found in these randomly oriented amorphous regions. In contrast, a high temperature anneal,
which gives rise to the edge-on morphology, has much more energy for the molecules to
adjust and crystallize. A large portion of the amorphous polymers will crystallize while
mostly retaining their original orientation. This simple model likely explains why the 950nm
shoulder peak corresponding to aggregation is found in the out-of-plane spectra for edge-on,
but not face-on, morphologies. To summarize, we expect that the out-of-plane oriented
dipole emission in face-on films is coming from amorphous regions. The in-plane dipole
emission comes both from amorphous and crystalline regions, but is dominated by the much

larger crystalline regions. In edge-on films both out-of-plane and in-plane dipole emission
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comes from the same crystalline polymers, with a transition dipole moment that is partially

oriented perpendicular to the substrate surface.

II. CONCLUSION

In conclusion we use momentum-resolved spectroscopies to measure in-plane and out-of-
plane effective dipole moments for face-on and edge-on morphologies of P(NDI20D-T2). Fits
of momentum-resolved emission measurements (mPL) show close agreement with first-ever
analogous absorption measurements using a momentum-resolved photoluminescence excita-
tion (mPLE) technique. We find that edge-on films exhibit a larger out-of-plane tilt angle
(~ 16°) of the transition dipole moment relative to face-on films (~ 7°). These results are
consistent with the orientation of the transition dipole moment within NDI planes, but may
alternatively be indicative of a difference in average orientation of the polymer backbones.
We also observe a missing shoulder peak, characteristic of aggregated P(NDI20D-T2), in the
out-of-plane emission spectrum of face-on films. This suggests that the out-of-plane emission
in face-on films arises largely from amorphous regions. As typical optical techniques only
measure in-plane oriented dipoles and X-ray diffraction only measures crystalline regions
of the film, these out-of-plane amorphous regions have likely been unexplored in previous
studies. Finding annealing techniques that maintain face-on orientation while crystallizing
these previously hidden regions will likely lead to better charge transport and, therefore,
device performance in organic photovoltaics and light-emitting diodes. In addition to these
insights on P(NDI20D-T2)’s morphology, the momentum-resolved techniques developed in
this paper can be used to accurately characterize anisotropic optical properties in other
materials. These techniques can therefore enable new optimizations of optical device design
and reveal subtle differences in morphology that are obscured in other X-ray and optical

characterization techniques.
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Appendix A: Experimental setup

By placing a detector in the back focal plane of a microscope objective, Fig. 7,*? we
separate light based on the angle, or momentum, at which it leaves the sample. A spectrom-
eter (Princeton Instruments IsoPlane SCT320) coupled to a 2D CCD camera (Princeton
Instruments PIXIS 1024BRX) separates light by wavelength along one axis of the camera
and momentum along the other axis. This allows measurements of momentum-dependent

photoluminescence intensity at many wavelengths simultaneously. From this data, we sepa-
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rate emission spectra from dipoles oriented in-plane and out-of-plane. For mPL experiments
we used a collimated LED source (ThorLabs M735L3-C5) to excite the sample across all
momenta uniformly.

Similarly to how placing a detector in a conjugate back focal plane to the objective allowed
us to study emission of different momenta of light, we placed our excitation source in another
conjugate back focal plane to study absorption as a function of light momenta. We studied
absorption properties by measuring the integrated intensity of photoluminescence emitted
from the sample versus the input excitation momentum (similar to how photoluminescence
excitation, or PLE, measures PL versus input wavelength of light). The end of a single
mode optical fiber (coming from a fiber-coupled supercontinuum source (SuperK Extreme
EXR-15)) was mounted on a translation stage. By moving the end of the fiber within the
conjugate back focal plane, we control the incident momentum vector of the light exciting

the sample.

Appendix B: Sample fabrication

P(NDI20D-T2) (Polyera Activink N2200) was spin-cast from 1,2-dichlorobenzene solu-
tion (10pg/mL). Samples were then annealed at 150°C for one hour to produce face-on
samples or at 305°C for one hour to produce edge-on samples. The samples were then al-
lowed to slowly cool to room temperature. Film thickness was measured using atomic force
microscopy (AFM) to be 50nm. Glass, 200nm silicon dioxide on silicon, and quartz coverslip

substrates were used for AFM, ellipsometry, and PL measurements respectively.

Appendix C: Data analysis

Raw camera images were analyzed using Python. In mPL we obtain a rectangular im-
age with wavelength varying along the x-axis and momentum varying along the y-axis. To
obtain in-plane and out-of-plane emission dipole moments we analyzed each wavelength in-
dependently. For a given wavelength column in the p-polarized image, we first converted
the pixels of the camera into units of kg by setting the edges of PL to the 1.3 NA (41.3k)
of our microscope objective. After converting to units of momentum we used a three layer

model (following the treatment in Schuller et al.?®) to solve for the linear combination of in-
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plane and out-of-plane effective emission dipole moments that summed to the intensity vs.
momentum shape measured at each wavelength. The model’s input parameters—refractive
index and film thickness—were determined from ellipsometry and AFM measurements re-
spectively. After fitting p-polarized data, we determine the expected s-polarized PL intensity
vs. momentum and compare to actual s-polarized measurements.

Data analysis for mPLE was similar, but had many separate images that needed to be
aggregated. For each PL image the exciting laser y-position was determined by taking the
image of the reflected laser spot without the PL filter. Each PL image was background
subtracted using a "window frame” of dark pixels that surrounded the pixels receiving PL
in the center of the image. This allowed us to correct for background drift over time. The
background subtracted PL image was then summed across all pixels to determine a single PL
value for each image. From the PL image we were able to convert pixels to kg as above. We
then found the linear combination of in-plane and out-of-plane effective absorption dipole
moments that summed to the counts vs. momentum shape observed. Again, we determine
the expected s-polarized PL intensity vs. incident momentum and compare to actual s-
polarized measurements. It is important to note that while the mPL model includes an
apodization factor, given the setup geometry the mPLE model does not. In mPL, each pixel
of fixed width in the back-focal-plane correspond to a different magnitude of solid-angle over
which the PL is collected. Thus, an isotropic emitter would still exhibit intensity variations
across the back focal plane image. In mPLE, the solid-angle magnitude also changes, but
the input power is fixed and no correction is needed.

Dipole moments found via mPL and mPLE are highly sensitive to the film refractive in-
dices input in the three-layer model (especially in the out-of-plane direction). For this reason
it is essential to have accurate optical constants. We used atomic force microscopy, UV-Vis
transmission, and ellipsometry to get accurate thickness, in-plane extinction coefficient, and

refractive indices respectively.
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