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Abstract 

In a two-dimensional electron gas, the electron-electron interaction generally becomes 
stronger at lower carrier densities and renormalizes the Fermi liquid parameters such as the 
effective mass of carriers. We combine experiment and theory to study the effective masses of 
electrons and holes m*

e and m*
h in bilayer graphene in the low carrier density regime of order 1 × 

1011 cm-2. Measurements use temperature-dependent low-field Shubnikov-de Haas (SdH) 
oscillations are made on high-mobility hexagonal boron nitride (h-BN) supported samples. We 
find that while m*

e follows a tight-binding description in the whole density range, m*
h starts to 

drop rapidly below the tight-binding description at carrier density n  = 6  × 1011 cm-2 and exhibits 
a strong suppression of 30% when n reaches 2 × 1011 cm-2. Contributions from electron-electron 
interaction alone, evaluated using several different approximations, cannot explain the 
experimental trend. Instead, the effect of potential fluctuation and the resulting electron-hole 
puddles play a crucial role. Calculations including both electron-electron interaction and disorder 
effects explain the experimental data qualitatively and quantitatively. This study reveals an 
unusual disorder effect unique to two-dimensional semi-metallic systems.    
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Bilayer graphene is a unique two-dimensional electron gas (2DEG) system with unusual 
electronic properties [1]. At high carrier densities, its hyperbolic bands are well described by a 
four-band Hamiltonian [2, 3] given by the tight-binding (TB) description [4], where the hopping 
parameters are determined by experiments or first-principles calculations [5-10]. Close to the 
charge neutrality point (CNP), bilayer graphene exhibits fascinating electron-electron (e-e) 
interaction driven ground states [11-15]. A natural question arises: How does the density of 
states of bilayer graphene near the Fermi energy evolve as carrier density n decreases 
continuously? The study of the effective carrier mass m* is a powerful tool to probe this 
evolution. Indeed, in conventional 2DEGs, increasing e-e interaction leads to substantial increase 
of m* at low carrier densities, long before predicated many-body instabilities [16-21]. Such 
studies provide valuable inputs to advance many-body calculations [22]. In monolayer and 
bilayer graphene, the proximity of the conduction and valence bands and their pseudospin 
characters, play a significant role in the screening of the Coulomb interaction. This has 
consequences for the dispersions of the elementary excitations and the transport properties of 
these systems [23-26]. In monolayer graphene, both calculations[27], and measurements of m* 

[28] [29] report strong enhancement of the Fermi velocity vF at low carrier densities. In 
comparison, the situation in bilayer graphene is much less clear. Existing theoretical predictions 
vary greatly on the sign and magnitude of the interaction correction to m* [30-35] while 
measurements have been lacking.    

In our earlier work [10], we reported on the measurements of m* of bilayer graphene in the 
density regime of order 1 × 1012 cm-2. A TB description was found to work well, the hopping 
parameters of which were accurately extracted from data. As the previous samples rested on 
oxides, disorder (field effect mobility μFE ~ a few thousand cm2V-1s-1 and disorder energy δE of a 
few tens of meV [36, 37]) prevented measurements at lower densities. In our current h-BN 
supported samples, μFE reaches 30,000 cm2V-1s-1, which allows for precise determination of m* 
down to n = 2 × 1011 cm-2 for both electrons and holes. Following the conventional definition of 
the interaction parameter ⁄ , where U is the Coulomb interaction energy √ 4⁄  and EF is the Fermi energy, we estimate rs to be 7.5 in unit of 10 cm-2   

using m* = 0.033 me, which is the average value of the measured electron and hole masses near 1 
× 1012 cm-2 in Ref. [10]. In our present studied carrier density regime (2 – 12 × 1011 cm-2), rs 
ranges from 2.2 to 5.3, which is quite large compared to GaAs 2DEG, where the renormalized m* 
exceeds the band mass by 40% at rs ~ 5 due to e-e interaction [18]. Here, we find that m*

e and 
m*

h behave very differently as n decreases. While m*
e continues to follow the high-density TB 

extrapolation, m*
h sharply dives in value below n = 6 × 1011 cm-2, reaching about 70% of the TB 

band mass at n = 2 × 1011 cm-2. A thorough theoretical investigation evaluating the effect of e-e 
interaction in different approximations, together with the effect of Coulomb potential disorder, 
identifies density inhomogeneity to be a key factor in explaining the experimental observations. 
This unusual effect of disorder is unique to 2D semi-metallic systems. 
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 Bilayer Hall bar-like devices are made by exfoliating, transferring, stacking and patterning 
of multi-layer-graphene bottom gate electrode, 15 – 30nm thick h-BN gate dielectric 
(Momentive, Polartherm grade PT110 and NIMS) and bilayer graphene sheet (Kish Graphite) 
using a PMMA/PVA based transfer method [38] and standard e-beam lithography. Transport 
experiments are carried out in a variable-temperature, pumped He4 cryostat with a 9 T magnet 
using standard low-frequency lock-in technique (47 Hz) with current excitation 50 nA. Figure 1 
plots the sheet resistance vs carrier density Rsheet (n) of samples A and B, together with sample C 
reported in Zou et al [10] for comparison. The field effect mobility μFE is 30,000 cm2V-1s-1 and 
22,000 cm2V-1s-1 respectively in samples A and B, in comparison to μFE = 4,000 cm2V-1s-1 in 
sample C, which is supported on SiO2 substrate. The unintentional doping for both devices are 
moderate, and the effect of the displacement (D) field on the bare band mass is modeled in S4 of 
the supplementary material for both devices [39]. We find that the presence of a small D-field 
does not change the conclusions of the paper.  

The effective mass m* as measured in quantum oscillations is given by  

 (1) 

where A(E) is the k-space area enclosed by the contour of constant energy E in the quasi-particle 
band structure. To accurately determine m*, we measure the temperature-dependent magneto-
resistance Rxx(B) at a fixed carrier density (Fig. 2(a)), extract the low-field Shubnikov de Haas 
(SdH) oscillation amplitude δRxx (T, B) and perform simultaneous fitting of the temperature and 
magnetic field dependence to the Lifshitz-Kosevich formula[40],  4 exp , ⁄ ⁄  (2) 

where ωc =  is the cyclotron frequency.  The effective mass m* and the quantum scattering time 
τq are the two fitting parameters. 

This global fitting procedure is illustrated in Figs. 2(b) and (c) for two carrier densities nh = 
4.7 and 3.0 × 1011 cm-2 as examples (see S1 and S2 of the supplementary material [39]). 
Compared to common practice of approximating δRxx at a fixed B-field by linearly interpolating 
adjacent peak heights and analyze its T-dependence to obtain m*, fits to Eq. (2) better represent 
the oscillation amplitude δRxx, especially at low carrier densities when only a few oscillations are 
available (See Fig. 2(c) for example). It also enables us to discern and avoid using the T-
dependent oscillations of nascent quantum Hall states, the analysis of which can lead to error in 
m* (see caption in Fig. 2(b)). The effective mass m* obtained using the global fitting procedure is 
B-independent and best extrapolates to the density-of-states mass of the bilayer graphene at B = 0, 
which is expected to be modified by e-e interactions [30-35]. 
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The above analysis enables us to accurately determine both the electron and hole effective 
mass m*

h and m*
e for the approximate carrier density range of 1 - 10 × 1011cm-2. The uncertainty 

of m* varies from ± 0.0002 me to ± 0.004 me from high to low densities. The high accuracy of the 
measurements facilitates comparison to theory as interaction corrections to m* are expected to be 
typically in the few to tens of percent range [16, 18]. Also plotted in Fig. 2(d) is the quantum 
scattering time τq in both samples. τq is between 100 and 140 fs for both electrons and holes. 
Compared to ~ 40 fs in sample C [10], the high τq values of samples A and B attest to the 
improvement of sample quality. Below n =1 × 1011 cm-2, the SdH oscillations become 
increasingly more non-sinusoidal due to density inhomogeneity and global fits cannot be 
obtained reliably.  

Figure 3 plots m*
h and m*

e obtained in samples A and B, together with data from sample C in 
Ref. [10]. In the overlapping density regime, current and previous results agree very well and are 
well described by the TB model with hopping parameters γ0 = 3.43 eV, γ1 = 0.40 eV γ3 = 0 and v4 

= γ4/γ0 = 0.063, Δ = 0.018 eV, which are determined in Ref. [10]. The calculated m* are plotted as 
dashed lines in Fig. 3. The electron and hole branches use the same set of parameters, with their 
mass differences captured by v4. On the electron side, the TB parameters continue to describe all 
the m*

e data very well down to the lowest density measured. On the hole side, however, m*
h 

exhibits a sharp drop from the TB model as nh is decreased to less than 5 × 1011 cm-2, reaching a 
large suppression of 30% at nh = 2 × 1011 cm-2. These densities are still sufficiently high that the 
effect of trigonal warping [1] can be safely neglected. (Fig. S6 of the supplementary material 
[39]) 

In existing theoretical studies of bilayer electronic dispersions, the effect of e-e interaction 
manifests in two ways, i. e. by renormalizing the hopping parameters within the TB model at 
high carrier densities [33] and by causing deviations of m* from the TB description at low carrier 
densities, with different trends of m* predicted [30-32, 34, 35]. We begin our calculations with a 
four-band TB Hamiltonian with non-interacting hopping parameters and explicitly include e-e 
interaction with the random phase approximation (RPA) of the screened exchange self-energy  Σ ∑ ,  (3) 

using a dielectric function , that includes contributions from both the 
bilayer graphene and the h-BN substrate and overlayer. Here 3.0 is determined from the 
gating efficiency of the backgate, and  is the pseudospin overlap factor [30, 31]. Eq. (3) 
provides the RPA correction to the bare energy bands  obtained from TB calculation to 
yield the quasiparticle band structure  + Σ k . The effective mass is then computed 
using Eq. (1).  

      The calculated m*
e and m*

h are plotted in Fig. 4 in olive dotted lines. Interaction leads to a 
slightly faster decrease of m*

e and m*
h at low carrier densities, in contrast to the sudden drop 
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observed in the measured m*
h for nh < 5 × 1011 cm-2. Examining the problem from a different 

angle, we note that in the RPA model, the dielectric function is well described by the Thomas-
Fermi (TF) screening  in the small q limit [34]. Fitting the TF description to 

our data yields a ten-fold reduction of the TF screening wavevector  from its expected value 
of / . This would imply extremely weak screening of the e-e interaction in our 
devices, which cannot be justified. (see Fig. S7 of the supplementary material [39]). Thus, e-e 
interaction effect, at least at the RPA level, appears to be too weak to account for the 
experimental observations. In comparison, in monolayer graphene, a large suppression of m* is 
also observed at low carrier densities and well described by RPA calculations [28].      

Can Coulomb potential fluctuation and the resulting density inhomogeneity[36, 37, 41] play 
a role? The answer is not so intuitive at the first glance. In a conventional semiconducting 2DEG, 
density inhomogeneity results in the smearing of m*(n). This effect does not alter the trend of 
m*(n) and is typically non-consequential in the carrier density regime where the SdH oscillations 
are well-behaved. In Fig. 2(c)), the SdH oscillations at nh = 3 × 1011 cm-2 appear to be well-
behaved, yet the measured m*

h is already 14% below the TB band mass. Here, the gapless nature 
of the bilayer bands makes a crucial difference between bilayer graphene and a conventional 
2DEG. As the inset of Fig. 4 illustrates, as the Fermi energy EF approaches the disorder energy 
scale δE, instead of depletion, carriers of the opposite sign start to appear in parts of the sample. 
The SdH oscillations of a minority carrier type have the opposite sign in dA/dE; their presence in 
some regions of the sample therefore contributing negatively to the average of m*, resulting in a 
decrease in its value. Such cancellation effect does not occur in a conventional semiconductor 
2DEG.  

This situation can be modeling by defining the overall carrier density and effective mass as 
ensemble averages of their local counterparts  and  respectively:     (4)    (5) 

 Here, the fluctuation of energy is assumed to have a Gaussian profile f (μ) with standard 
deviation δE.  

      Effective masses calculated using the RPA model and including disorder characterized by a 
broadening energy  = 5.4 meV are plotted as solid lines in Fig. 4. Evidently, the combination 
of e-e interaction and Coulomb potential fluctuations can now quantitatively reproduce the 
observed behavior of m*

e and m*
h over the entire range of measurement and for both samples. 

Remarkably, the same value for  simultaneously captures the sharp decrease of m*
h at nh < 5 × 

1011 cm-2 and the absence of such decrease on the electron side. Our calculations predict that m*
e 

should also substantially decrease from the TB values at yet lower carrier densities, just below 
the range probed in our measurements. The difference arises from a smaller electron density 
inhomogeneity due to a smaller m*

e. The quantum scattering time τq ~ 120 fs found in both 
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samples (Fig. 2(d)) yields ~ /2 ~ 2.7 meV, in good agreement with the theoretical fit. In 
addition, we can estimate the density fluctuation δn by locating the onset density n* at which the 
conductance sharply increases with density [11-15]. n* is approximately 2 × 1010 cm-2 in sample 
A and 4 × 1010 cm-2 in sample B (Fig. S4). These values are also consistent with estimates 
obtained by locating the crossover density n(h/e)c ~ 5 × 1010 cm-2, where the temperature 
dependence of R(n) changes from that of a metal, i. e. dR/dT > 0 to that of an insulator, i. e. 
dR/dT < 0 [42] in a bilayer sample of similar quality. A δn of 5 × 1010 cm-2 corresponds to  = 2 
meV using m* = 0.03 me. These consistent estimates of disorder energy scales support the fitting 
value of  used for both samples. Furthermore, our calculations also show that interaction 
renormalizes the inter-band transition energy γ1 from the “bare” value of 0.36 eV (Fig. 4) to 0.38 
eV, in excellent agreement with infra-red absorption measurements [6, 7, 9].  

In Ref. [10], we have shown that a set of renormalized TB hopping parameters can capture 
m* in the high-density regime very well, without explicitly including e-e interactions (See dashed 
lines in Fig. 3). In Fig. S8 of the supplementary material [39], we show that adding disorder 
broadening  to this set of parameters can also capture the main trend of data, with the diving 
of m*

h at low densities slightly too abrupt compared to experiment.  

 The above studies highlight a few remarkable differences between bilayer graphene, a 
gapless Dirac Fermi liquid and conventional semiconductor 2DEGs. Firstly, both our 
calculations and measurements suggest that the effect of e-e interaction on m* in bilayer 
graphene remains weak down to n ~ 2 × 1011 cm-2 (rs = 5.3) while past studies on GaAs electrons 
showed an enhancement of more than 40% at this interaction parameter [18]. Secondly, the 
effect of disorder appears quite different in these two systems. In conventional semiconducting 
2DEGs, disorder leads to localization and therefore the increase, rather than the decrease of m* at 
low carrier densities [18]. Here in gapless bilayer graphene, disorder leads to coexisting electrons 
and holes and consequently a partial cancellation effect on m*. In comparison to the well-
recognized Klein tunneling effect in p-n junctions [43, 44], this study exposed a more elusive 
effect of electron-hole puddle. Studies of low-carrier-density regimes in Dirac materials thus 
require a great deal of caution. For now, samples of yet higher qualities are necessary to 
elucidate the intrinsic behavior of m* near the charge neutral point of bilayer graphene.  

      In conclusion, we have performed careful measurements of the effective mass m* in high-
quality h-BN supported bilayer graphene samples down to the carrier density regime of 1 × 1011 
cm-2 and observed sharp decrease of the hole mass at low carrier densities. Our calculations show 
that while the inclusion of electron-electron interaction is necessary to reach excellent 
quantitative agreement with data at all carrier densities, Coulomb potential fluctuations, which 
result in the co-existence of electron and hole regions and a partial cancellation of m*, is chiefly 
responsible for the observed sharp drop in m*

h at low densities. This mechanism, which is absent 
in finite-gap semiconductor two-dimensional systems, is another manifestation of the unusual 
consequences of gapless Dirac bands.  
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FIG. 1. Sheet resistance vs carrier density Rsheet (n) for samples A (solid red), B (solid blue) and C 
(dashed blue). Samples A and B are supported on h-BN, sample C on SiO2. The field effect 
mobility μFE is 30,000 cm2V-1s-1, 22,000 cm2V-1s-1, and 4000 cm2V-1s-1 respectively for samples A 
to C. T = 1.6 K. The large resistance sample A exhibits at the CNP results from a finite band gap 
caused by unintentional doping. We discuss the effect of a band gap on the band mass in S4 of the 
supplementary material [39]. Inset: An optical micrograph for sample A.  
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FIG. 2. (a) T-dependent magnetoresistance Rxx(B) for nh = 4.7 × 1011 cm-2 at selected temperatures 
as indicated in the plot. (b) Oscillation amplitude δRxx(B) of data in (a) after background 
subtraction. The solid red curve plots Eq.(1) with fitting parameters mh

* = 0.0347 me and τq = 140 
fs. T = 2.3 K. δRxx(B) starts deviating from the fit above B = 3 T. Conventional method used to 
extract δRxx is illustrated by the blue dashed lines and produces m* = 0.0311(2) me. This is 10% 
smaller than mh

* = 0.0347 me obtained from the global fitting. (c) δRxx(B) for nh = 3.0 × 1011 cm-2 at 
T = 2.3 K and T = 15 K. Dashed curves are fits to Eq.(2) with mh

* = 0.0285 me and τq = 107 fs. 
Data in (a)-(c) are from sample B. (d) The quantum scattering time τq as a function of carrier 
density in sample A (red symbols) and sample B (blue symbols). Electrons are shown in filled 
symbols and holes in open symbols. τq is about 40 fs (dashed grey line) in sample C (Ref. [10]). 
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FIG. 3. The effective carrier mass mh
* and me

* as a function of the carrier density (red for 
electrons, blue for holes) in samples A (squares), B (stars), and C (triangles). Data on C is 
from Ref. [10]. Together, the measurement covers the density range of approximately 1.4 - 
41 × 1011 cm-2.  The dashed curves plot m* calculated using a 4 × 4 tight-binding 
Hamiltonian with hopping parameters γ0 = 3.43 eV, γ1 = 0.40 eV, γ3 = 0, and v4 = 0.063. 
These values are obtained in Ref.[10] by fitting the data in sample C at high densities.  
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FIG. 4. Comparison of calculations and experiment at low carrier density (0.2 – 1.3 × 1012 cm-2). 
Experimental data follow the symbols used in Fig. 3. The olive dashed lines plot the calculated m* 
including e-e interaction in a random phase approximation. The black and gray lines are 
calculations that further include the effect of potential disorder using δE = 5.4 meV obtained from 
τq and the temperature dependence of the conductance. In both calculations, γ0 = 3.08 eV and γ1 = 
0.36 eV are chosen to fit the experimental data in the high-density regime. Their values differ from 
those obtained in Ref. [10] since e-e interaction is explicitly calculated here whereas in Ref.[10] its 
effect is represented by renormalizing the hopping parameters. γ3 = 0 and v4 = 0.063 are taken from 
Ref. [10]. Inset: A schematic illustration of the electron-hole coexistence at low carrier densities 
due to disorder and its effect on the cyclotron motion.  


