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Understanding the behavior of light in non-equilibrium scenarios underpins much of quantum
optics and optical physics. While lasers provide a severe example of a non-equilibrium problem,
recent interests in the near-equilibrium physics of photon ‘gases’, such as in Bose condensation
of light or in attempts to make photonic quantum simulators, suggest one reexamine some near-
equilibrium cases. Here we consider how a sinusoidal parametric coupling between two semi-infinite
photonic transmission lines leads to the creation and flow of photons between the two lines. Our
approach provides a photonic analogue to the Landauer transport formula, and using non-equilbrium
Green’s functions, we can extend it to the case of an interacting region between two photonic ‘leads’
where the sinusoid frequency plays the role of a voltage bias. Crucially, we identify both the
mathematical framework and the physical regime in which photonic transport is directly analogous
to electronic transport, and regimes in which other new behavior such as two-mode squeezing can
emerge.

I. INTRODUCTION

Quantum systems have dynamics that appear to be
beyond the capacity of classical computers to simulate
as the size of the system increases. However, a controlled
quantum simulator may enable an understanding of such
systems that eludes classical description, as the emula-
tion of one system by another can take full advantage
of the underlying quantum evolution1,2. One promising
avenue for quantum simulation uses massless bosons –
typical photons – as the constituent particles and exam-
ines the new phases of matter that can arise with the
inclusion of interactions between these particles3–6. Per-
haps the most dramatic possibilities arise in circuit quan-
tum electrodynamics (QED)7, where the Josephson effect
provides a strong microwave nonlinearity, though simi-
lar improvements are now becoming available in semi-
conductor, molecular, or atomic nonlinearities in small
optical domain cavities8–10. These photonic systems
are particularly interesting given our ability to control
the dispersion relation of the particles, including, e.g.,
the creation of effective mass11,12 or synthetic gauge
fields13–15 as well as the character of their interaction.
As a starting point, Bose-Einstein Condensation of pho-
tons has been observed in recent experiments using cavity
polaritons11,16–18 or with dye microcavities12 using these
ideas.

Unfortunately, the vacuum is the typical ground state
for such systems, and thus efforts for quantum simu-
lation with light have focused on driving systems far
from equilibrium to provide sufficient numbers of pho-
tons. This makes predicting the dynamics and steady
state behavior an outstanding challenge19,20. On the
other hand, electronic transport theory, pioneered in the
works of Landauer21–23, Büttiker24, and Imry23, has suc-
cessfully dealt with a different problem: what is the quan-
tum version of Ohm’s law, i.e., the relationship between

chemical potential difference (voltage) and particle flux
(current) for describing the motion of electrons in meso-
scopic systems21–27? Of particular use have been math-
ematical tools such as non-equilibirum Green’s function
methods26–29, which enable predictions for systems even
at large voltage bias and with strong interactions.

In this article we consider whether a photonic ver-
sion of the Landauer-type transport exists, and find that
for parametrically coupled semi-infinite leads (transmis-
sion lines), a natural photonic voltage arises with an as-
sociated Ohm’s law-type behavior for the photon flux.
Our results rely upon the most recent of several ap-
proaches for developing a photonic equivalent to this
voltage-bias30–33, including equilibriation of light coupled
to electrons flowing in a diode33–35 and, more recently,
parametrically coupled photonic systems36. Specifically,
we derive the non-equilibrium transport of light under
the parametric coupling scheme using non-equilibrium
Green’s function (NEGF) formalism. We study the
photon flux as the equivalent of a current through a
parametrically-driven mesoscopic region, and show that
the photon flux formula can be understood in Landauer
sense, as a transport from a chemical potential imbal-
ance from the parametric coupling, with the addition of
an anomalous particle-nonconserving squeezing term. In-
tuitively, our result connects the photon flow between
a low frequency bath and an optical bath as mediated
by a mesoscopic, interacting region. Thus we provide
a rigorous framework for studying such near-equilibrium
photonic systems without resorting to ad hoc tools for
steady-state dynamics. Furthermore, our result pre-
dicts a quantitative link between the photon flux and
the Green’s function, which provides a possible testing
ground for photonic quantum simulations even without
particle number conservation.
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FIG. 1. (a) Our conceptually simplest system of two semi-
infinite leads, with a time-dependent coupling between them
and a photodetector connecting to the right lead. (b) A po-
tential physical implementation with a Josephson parametric
coupler, driven with a flux bias line, between two transmission
lines.

II. PHOTON TRANSPORT THROUGH A
TRIVIAL SCATTERER

We start by developing our photonic analogue to volt-
age bias. Consider a photonic (optical or microwave) sys-
tem coupled to two baths: one associated with the typical
decay of excitations into other modes via, e.g., imper-
fect mirrors, while the other is associated with a second
bath coupled time-dependently with fast sinusoidal vari-
ation of the coupling constant at angular frequency ωp.
In particular, in Ref.36, one of us showed that a time-
dependent bath coupling can lead to the equilibriation
of a small system best described by a grand canonical
ensemble distribution, i.e., a system of photons with a
chemical potential. However, in that work crucial ques-
tions – such as what happens when coupled to two baths
– were largely detailed heuristically. Here we focus on
building a formalism, analogous to the finite-bias Green’s
function approach for electronic transport. In particular,
we describe the two baths as semi-infinite transmission
lines for our purposes, with the parametrically coupled
bath the ‘left’ lead, and the natural bath correspond-
ing to photon loss the ‘right’ lead, which could corre-
spond to an outgoing optical signal to be measured with
a photodetector (Fig. 1). This is now analogous to elec-
tronic transport at finite voltage bias, where the voltage
is equivalent to the chemical potential ~ωp.

As a toy model, and to help develop the formalism,
we start with the simplest setup in which the scatterer is
trivial –a section of transmission line– and the problem
now reduces to the case with left and right semi-infinite
leads coupled parametrically (see Fig. 1). The Hamilto-
nian of the the system is H = HL +HR +HT (t), with

HL =
∑
α

εαa
†
αaα, HR =

∑
β

εβb
†
βbβ ,

HT (t) = cos(ωpt)
∑
α,β

λαβuαuβ . (1)

Here HL and HR are Hamiltonians of left and right
transmission lines respectively, and HT (t) is the time-
dependent tunneling coupling between the two subsys-
tems. The summation indice α labels the states in
the left transmission line with energies ~ωα = εα, pho-
ton annihilation operators aα, displacement operators

uα =
√

~
2ωα

(
a†α + aα

)
and momentum operators pα =

i
√

~ωα
2

(
a†α − aα

)
, while β, ~ωβ = εβ , bβ , uβ , pβ repre-

sent states in the right. λα,β are the coupling constants.
We may organize the Hamiltonian in a matrix form

H =
1

2
~pT~p+

1

2
~uTK~u (2)

by introducing displacement and momentum vectors

~u =

(
~uL
~uR

)
, ~p =

(
~pL
~pR

)
, (3)

with elements (uL(R))α(β) ≡ uα(β), (pL(R))α(β) ≡ pα(β).
~u and ~p follow the equal time commutation relation[

~u(t), ~pT(t)
]

= i~I. (4)

Here I is the identity matrix, and T denotes the matrix
transpose. K is a symmetric spring’s constant matrix and
can be further separated into diagonal and off-diagonal
parts K = D + V(t) = D + V cos(ωpt), where

D =

(
DL 0
0 DR

)
,V(t) =

(
0 VLR(t)

VRL(t) 0

)
. (5)

Here DL
αα′ = ω2

αδαα′ , DR
ββ′ = ω2

βδββ′ , V LRαβ (t) =

V RLβα (t) = cos(ωpt)λαβ .
Assume the two subsystems were initially decoupled

and in their own thermal equilibrium, and the paramet-
ric coupling is adiabatically turned on at t = −∞ and
turned off at t = ∞. Our goal is to find the photonic
current transported between the two ends and express it
in a Landauer-like formula in order to predict the cur-
rent based on an effective chemical potential difference
analgous to a voltage bias.

The current on the right at some later time t is defined
as the temporal change of the total number of photons

in the right transmission line NR =
∑
β b
†
βbβ , which cor-

responds to an expected photodetector signal. We have

JR(t) ≡
〈
ṄR(t)

〉
=

〈
d
∑
β b
†
βbβ(t)

dt

〉
. (6)

The angular bracket denotes ensemble average over the
initial equilibrium density of states, while the operators
are in the Heisenberg picture. According to the Heisen-
berg equation of motion,

ṄR(t) = −1

~

(
∂

∂t′

[
~uTR(t′)ṼRL(t)~uL(t)

])∣∣∣∣
t′=t

, (7)

here Ṽ RLβα (t) ≡ V RLβα (t)/ωβ = cos(ωpt)λαβ/ωβ .
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One can connect the current expression with Keldysh
Green’s functions28 by introducing the non-equilibrium
lesser Green’s function defined as

G<(t, t′) ≡ − i
~
〈
~u(t′)~uT(t)

〉T
, (8)

which can also be split into four blocks associated with
left and right transmission lines. We can write the cur-
rent using the lesser Green’s function as

JR(t) = −i
(
∂

∂t′
Tr
[
G<
LR(t, t′)ṼRL(t)

])∣∣∣∣
t′=t

. (9)

The trace here means tracing over photon states α.

We now follow the standard Keldysh formalism (NEGF
formalism)28 to study the transport formula25–27,37.
Since we define our Green’s functions on displacement
operators u instead of photon creation operators a†, our
problem structurally resembles more the thermal trans-
port cases37 than electronic ones. We remind the reader
here that since the parametric coupling varies with time
and allows pair production and annihilation mechanisms,
many identities and tricks in previous works involving
steady state or particle-conserving assumptions cannnot
be applied here.

The equation of motion of the contour ordered Green’s
function defined on the Keldysh contour C follows

∂2

∂τ2
Gc(τ, τ ′) + KGc(τ, τ ′) = −δ(τ, τ ′)I, (10)

while the noninteracting equilibrium Green’s function
gc(τ, τ ′) follows the equation of motion

∂2

∂τ2
gc(τ, τ ′) + Dgc(τ, τ ′) = −δ(τ, τ ′)I. (11)

One can easily verify that Gc(τ, τ ′) follows the Dyson
equation

Gc(τ, τ ′) = gc(τ, τ ′) +

∫
C

dτ ′′gc(τ, τ ′′)V(τ ′′)Gc(τ ′′, τ ′).

(12)

Using the Langreth theorem of analytic continuation29,
the lesser Green’s function can be expressed as an integral
form on the real axis

G<
LR(t, t′) ≈

∫ ∞
−∞

dt1
{
grL(t, t1)VLR(t1)g<R(t1, t

′)

+ g<L (t, t1)VLR(t1)gaR(t1, t
′)
}

+O(λ2). (13)

Here the r and a superscripts stand for retarded and
advanced Green’s functions, and we treat λ as a pertur-
bation. The equilibrium Green’s functions used in the
G<
LR(t, t′) expression are given by

(grL)α(t, t1) =
−i

2ωα
θ(t− t1)

(
e−iωα(t−t1) − eiωα(t−t1)

)
,

(g<R)β(t1, t
′) =

−i
2ωβ

(
nR(εβ)e−iωβ(t1−t

′) + (1 + nR(εβ))eiωβ(t1−t
′)
)
,

(g<L )α(t, t1) =
−i

2ωα

(
nL(εα)e−iωα(t−t1) + (1 + nL(εα))eiωα(t−t1)

)
,

(gaR)β(t1, t
′) =

−i
2ωβ

θ(t′ − t1)
(
eiωβ(t1−t

′) − e−iωβ(t1−t
′)
)
.

(14)

Here nL(R)(εα(β)) = (e(εα(β)−µL(R))/kBT − 1)−1 are the
bosonic occupation number in left and right transmis-
sion lines. The chemical potentials µL = µR = 0 for
photons, kB is the Boltzmann constant, and T is the ini-
tial temperature of the system.

Inserting the expression for G<
LR(t, t′), the current is

now

JR(t) =− i
(

∂

∂t′
Tr

[∫ ∞
−∞

dt1
{
grL(t, t1)VLR(t1)g<R(t1, t

′) + g<L (t, t1)VLR(t1)gaR(t1, t
′)
}

ṼRL(t)

])∣∣∣∣
t′=t

=− i

 ∂

∂t′
∑
α,β

∫ ∞
−∞

dt1
λ2αβ
ω̃β

cos(ωpt1) cos(ωpt)
{

(grL)α(t, t1)(g<R)β(t1, t
′) + (g<L )α(t, t1)(gaR)β(t1, t

′)
}∣∣∣∣∣∣

t′=t

=
∑
α,β

λ2αβ
4ωαω̃β

∫ ∞
0

dτ {[cos(ωpτ) + cos(ωp(2t− τ))] cos((ωβ − ωα)τ) (nL(εα)− nR(εβ))

+ [cos(ωpτ) + cos(ωp(2t− τ))] cos((ωβ + ωα)τ) (nL(εα) + nR(εβ) + 1)} . (15)

In the last equality we have used the identity
cos(ωpt1) cos(ωpt) = [cos(ωpτ) + cos(ωp(2t− τ))] /2, and
changed the integral variable to τ = t− t1. The only ex-
plicit t dependence arises in the cos(ωp(2t − τ)) factor.

Averaging over one pump cycle 2π/ωp takes this factor
to zero. We thus neglect those terms with cos(ωp(2t−τ))
in the spirit of the rotating wave approximation.

We assume the coupling constant only depends
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on the mode energy, λαβ = λ(εα, εβ), and take
the continuum limit of energy so that

∑
α,β =∫∞

0
dεαρL(εα)

∫∞
0
dεβρR(εβ). Here ρL and ρR are the

energy density of states in the left and right transmission
lines. Note that

∫∞
0

cos((ω − ω1)τ)dτ = πδ(ω − ω1). We
now arrive at a current formula with three terms:

J̄R =

∫ ∞
~ωp

dεT (ε, ε− ~ωp) [nL(ε)− nR(ε− ~ωp)]

+

∫ ∞
~ωp

dεT (ε− ~ωp, ε) [nL(ε− ~ωp)− nR(ε)]

+

∫ ~ωp

0

dεT (ε, ~ωp − ε) [nL(ε) + nR(~ωp − ε) + 1]

(16)

Here J̄R represents the time-averaged current un-
der the rotating wave approximation, and T (ε1, ε2)
is the transmission function defined as T (ε1, ε2) =
~3π
8ε1ε2

λ2(ε1, ε2)ρL(ε1)ρR(ε2). J̄L can be calculated with
similar formulations.

Note that the 1/ε factor in the transmission function
and the bosonic occupation numbers nL(R)(ε) go to in-
finity as the photon energy approaches zero. One can
ensure the convergence of our model by the choice of
a three-dimensional reservoir on the low-frequency side.
The presence of the nonlinear interaction in the case of an
interacting mesoscopic region can regulate the problem
as well36. The power from the pump that generates the
parametric coupling should be finite, and as the IR di-
vergence is approached for lower dimensional systems, an
appropriate inclusion of pump depletion will be necessary
to develop a complete understanding of the problem.

The first line of eq. (16) can be interpreted as a
Landauer-like transport with an effective chemical po-
tential ~ωp on the right transmission line, and the second
line represents a Landauer-like transport with an effec-
tive chemical potential ~ωp on the left. The third line is
a particle-nonconserving term due to pair creation and
annihilation mechanisms allowed by the oscillating u−u
type coupling. Two-mode squeezed states of light38 are
generated through this mechanism with the photon pairs
entangled. One will expect a thermal state when tracing
over the output modes on one side of such photon pairs.

Note that the current formula is consistent with
Fermi’s golden rule: the parametric coupling cos(ωpt)
only allows transition with Ef −Ei = ∆E = ±~ωp, here
Ef and Ei are the energies of the final and initial states.
For ωp = 0, the current equation reduces to the usual
Landauer form proportional to nL(ε) − nR(ε), which is
essentially zero when the two transmission lines are at
the same temperature.

The particle-nonconserving nature of the prob-
lem is manifested by identifying the anomalous cur-

rent J̄A ≡ (J̄R + J̄L)/2 =
∫ ~ωp
0

dεT (ε, ~ωp − ε)
[nL(ε) + nR(~ωp − ε) + 1], which is only zero when
T (ε, ~ωp − ε) = 0 throughout the range, as is the case in
Fig. 2(b). This term can also be understood in Fermi’s

golden rule point of view considering the harmonic per-
turbation HT (t). According to Fermi’s golden rule, the
pair creation (annihilation) rates Rc (Ra) are:

Rc =

∫ ~ωp

0

dεT (ε, ~ωp − ε) [nL(ε) + 1] [nR(~ωp − ε) + 1] ,

Ra =

∫ ~ωp

0

dεT (ε, ~ωp − ε)nL(ε)nR(~ωp − ε). (17)

The net creation rate is thus Rc −Ra = J̄A.

One can find the non-equilibrium transport part of
the current by subtracting the anomalous squeezing
(particle-nonconversing) term J̄A, and we are left with
the normal current J̄N ≡ (J̄R− J̄L)/2, the first two lines
of eq. (16). We note here that the asymmetry between
right and left is necessary for the transport to occur; the
first two lines of eq. (16) will cancel each other otherwise.

To focus on the transport mechanism only, we con-
sider an energy gap on the right transmission line (see
Fig. 2(b)) such that ∀α, β, εβ > ~ωp, εβ > εα. This
gap setup prevents the pair creation and annihilation
mechanisms, leaves us with a conserved current and
permits a direct photonic analogue to electronic trans-
port. The system follows the transport formula J̄R =∫ εα,max+~ωp
εβ,min

dεT (ε − ~ωp, ε) [nL(ε− ~ωp)− nR(ε)], which

is equivalent to a non-equilibirum transport current un-
der a chemical potential imbalance µL = ~ωp, µR = 0.

One can see the resemblance between our gapped
transport equation and the I-V characteristic of an ideal
light emitting diode (LED)33 by relating the chemical
potential ~ωp to qV , gap energy εβ,min to the pho-
ton energy threshold eg, and working under the region
εα,max + ~ωp � kBT . However, we cannot yet make
a direct connection mathematically with the somewhat
different problem of electron transport through a diode
combined with emission of photon into an interacting re-
gion.

III. PHOTON TRANSPORT THROUGH A
MESOSCOPIC CENTRAL REGION

Now we consider a more generic case with a center
mesoscopic region placed between the transmission lines,
with parametric coupling between the center region and
the left transmission line (see Fig. 2). We replace the
time-dependent barrier HT (t) with HC +HCL(t)+HCR,
and the Hamiltonian becomes

H = HL +HC +HR +HCL(t) +HCR, (18)



5

vacuum vacuum
mesoscopic 

region

Z(!)

E

RL
0

(a)

(b)

L RC

FIG. 2. (a) The generic mesoscopic scenario, with two semi-
infinite leads coupled parametrically to an intermediate meso-
scopic region C provides a photonic equivalent to a voltage
bias and a (nonlinear) impedance provided by the region C.
(b) A schematic diagram of the parametric coupling mecha-
nism, in which a low energy photonic mode on the left side
is up-converted via the pump photon with energy ~ωp to a
higher energy mode on the right. The case where L and R
leads have a high (left) and low (right) frequency cutoff is
shown, to prevent anomalous squeezing terms.

HL =
∑
α

εαa
†
αaα, HR =

∑
β

εβb
†
βbβ ,

HC =
∑
γ,γ′

tγγ′c†γcγ′ +Hint,

HCL(t) = cos(ωpt)
∑
α,γ

λαγuαuγ ,

HCR =
∑
β,γ

λ̆βγuβuγ . (19)

The summation indice γ labels the states in the center
with energies ~ωγ = εγ and photon annihilation opera-
tors cγ . Note that we place all time-dependence in the
center to left coupling HCL(t). The central region can
contain some nonlinear interacting term Hint as well as
non-trivial single-particle potential effects from tγγ′ . We
again assume the subsystems were initially in their own
thermal equilibrium before the parametric coupling adi-

abatically turned on at t = −∞.
The current on the right can be expressed as

JR(t) = −i
(

∂

∂t′
Tr
[
G<
CR(t, t′)ṼRC

])∣∣∣∣
t′=t

. (20)

Here Ṽ RCβγ = V RCβγ /ωβ = λ̆βγ/ωβ .

Accordingly to the Dyson equation, Gc
CR(τ, τ ′) =∫

C
Gc
CC(τ, τ ′′)VCRgcR(τ ′′, τ ′). Using the Langreth the-

orem of analytic continuation and defining Σ̃R(t1, t
′) =

VCRgR(t1, t
′)ṼRC , we have

JR(t) = −i
∫ ∞
−∞

dt1

( ∂

∂t′
Tr
[
Gr
CC(t, t1)Σ̃<

R(t1, t
′)+

G<
CC(t, t1)Σ̃a

R(t1, t
′)
])∣∣∣

t′=t
.

(21)

This is our generic current expression analogous to
the Meir-Wingreen equation in the electronic transport
theory26.

One can reformulate the current through Fourier trans-
form

JR(t) =

∫ ∞
−∞

ωdω

2π
Tr
[
Gr
CC(t, ω)Σ̃<

R(ω) + G<
CC(t, ω)Σ̃a

R(ω)
]
.

(22)

Here GCC(t, t′) ≡
∫∞
−∞

dω
2π e
−iω(t−t′)GCC(t, ω),

GCC(t, ω) ≡
∫∞
−∞ dt′eiω(t−t

′)GCC(t, t′). We note
here that due to the time-dependent coupling, the center
Green’s function is not in a steady state, and its Fourier
transform function therefore depends on the initial (or
ending) time index.

We now examine the simplified case of non-interacting
center, and the main result of this work follows through.
Non-interacting mesoscopic transport theory provides in-
teresting phenomena such as weak localization, ballistic-
to-diffusive transitions, and weak-antilocalization39–41.
For Hint = 0, the center Green’s function follows the
Dyson equation

Gc
CC(τ, τ ′) = gcC(τ, τ ′) +

∫
C

gcC(τ, τ1)Σc
tot(τ1, τ2)Gc

CC(τ2, τ
′).

(23)

Here Σc
tot(τ1, τ2) is the total self energy of the center,

Σc
tot(τ1, τ2) = Σc

L(τ1, τ2) + Σc
R(τ1, τ2),

Σc
L(τ1, τ2) ≡ VCL cos(ωpτ1)gcL(τ1, τ2) cos(ωpτ2)VLC ,

Σc
R(τ1, τ2) ≡ VCRgcR(τ1, τ2)VRC . (24)

Note that for the case of interacting center, there will be
additional contribution to the self energy depending on
the details of Hint.

Specifically, the center greater and lesser Green’s func-
tion follows

G
>
<
CC(t, t′) =

∫
dt1dt2G

r
CC(t, t1)Σ

>
<
tot(t1, t2)Ga

CC(t2, t
′),

(25)
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which allows us to further simplify the current expres-
sion.

The center Green’s function under parametric cou-
pling can be expanded with the harmonics of the
coupling frequency ωp. Specifically, GCC(t, ω) =∑
n GCC,n(ω)e2niωpt, n ∈ Z. Under rotating wave ap-

proximation, we neglect fast oscillating terms with n 6= 0
and keep only the n = 0 steady part of the current. The
time averaged current is now

J̄R =

∫ ∞
−∞

dω

2π
ωTr

[
Gr
CC,0(ω)Σ̃<

R(ω) + G<
CC,0(ω)Σ̃a

R(ω)
]
.

(26)

Since the current is real, J̄R = (J̄R + J̄∗R)/2. Using the
general identity G> − G< = Gr − Ga and identities for
steady state Green’s functions in the frequency domain
[Gr(ω)]† = Ga(ω), [G<(ω)]† = −G<(ω),

J̄R =

∫ ∞
−∞

dω

4π
ωTr

[
(G>

CC,0(ω)−G<
CC,0(ω))Σ̃<

R(ω)

−G<
CC,0(ω)(Σ̃r

R(ω)− Σ̃a
R(ω))

]
.

(27)

Expanding the non-interacting center greater/lesser
Green’s functions to the leading order term yields:

G
>
<
CC(t, t′) ≈

∫
dt1dt2g

r
CC(t, t1)Σ

>
<
tot(t1, t2)gaCC(t2, t

′) +O(λ3),

G
>
<
CC,0(ω) ≈ grC(ω)Σ

>
<
tot,0(ω)gaC(ω) = grC(ω)

(
VCRg

>
<
R(ω)VRC

+
1

4
VCLg

>
<
L (ω + ωp)V

LC +
1

4
VCLg

>
<
L (ω − ωp)VLC

)
gaC(ω).

(28)

Inserting the equilibrium Green’s function for left and
right transmission lines gL and gR, we arrive at a formula

similar to the trivial scatterer problem

J̄R =

∫ ∞
~ωp

dεTC(ε, ε− ~ωp) [nL(ε)− nR(ε− ~ωp)]

+

∫ ∞
~ωp

dεTC(ε− ~ωp, ε) [nL(ε− ~ωp)− nR(ε)]

+

∫ ~ωp

0

dεTC(ε, ~ωp − ε) [nL(ε) + nR(~ωp − ε) + 1] .

(29)

where the center transmission function is

TC(εα, εβ) =
π~3

8
Tr [grc(εβ)ΛR(εβ)gac (εβ)ΛL(εα)] ,

(ΛL(εα))γ1,γ2 = ρL(εα)λγ1(εα)λγ2(εα)/εα,

(ΛR(εβ))γ1,γ2 = ρR(εβ)λ̆γ1(εβ)λ̆γ2(εβ)/εβ . (30)

We again have the first two lines of eq. (29) as the
Landauer-like transport terms, and the last line is the
particle-nonconserving part due to the oscillating u − u
type coupling. The system will undergo non-equilibirum
transport with an effective chemical potential imbalance
~ωp under specific gap setups, and the current expression
resembles the I-V characteristic of an ideal light-emitting
diode.

IV. CONCLUSIONS

We have derived the photonic flux between different
baths parametrically-coupled to an intermediate system
and found a Landauer-like transport formula for non-
interacting centers. However, we also have a new regime,
with a particle-nonconserving term, which we can inter-
pret as a two-mode squeezing output. The consequences
of this latter regime for observation and even application
remain to be explored, and are beyond the scope of the
present work. We have also shown a potential extension
of these techniques at the formal level to the interact-
ing case, but suggest that applying these results, e.g., to
photon-blockaded systems to see the non-classical light
output would be an intriguing next step.
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