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We investigate through a new, atomistic method the effects of anharmonicity on the dispersion
of flexural modes of graphene. Using a calculation based on ensemble averages of correlations
among displacements and forces, we calculate the temperature-dependent frequencies for a semi-
empirical potential for graphene. We find that the dispersion relation of the flexural modes of
graphene is renormalized by anharmonic coupling to other modes. Our calculations confirm that
the anharmonic continuum results of Mariani and von Oppen1 hold in detail for small wavenumber
and at low temperatures. We examine the deviation from the continuum result outside of that
range.

PACS numbers: 63.22.Rc, 65.80.Ck, 02.70.Uu, 31.15.bu

I. INTRODUCTION

Graphene, like any membrane, is expected to
have long-wavelength, out-of-plane (so-called “flexural”)
modes. If the membrane is stress-free, the dispersion of
those modes should be quadratic in wavenumber (that is,
ω ∝ k2) when the harmonic approximation holds2–4. An-
harmonicity may modify the dispersion relation, which
would affect the transport of heat in the material. Some
authors suggest that the flexural modes may in fact dom-
inate the lattice thermal conductivity of graphene5,6.
Anharmonic coupling of the flexural modes to in-plane
modes have been shown to stabilize the sheet with re-
spect to rippling7–9. The coupling of the flexural modes
to electrons also has significant effect on the electrical
conductivity10.

The effect of anharmonicity on the dispersion relation
of the long-wavelength flexural modes was considered in
the continuum limit by Mariani and von Oppen1. Fol-
lowing Nelson and Peliti7, they began with the potential
energy of nearly flat graphene, including corrections to
the harmonic potential that are lowest-order in wavevec-
tor and amplitude, which then couple the flexural modes
to in-plane modes. Assuming classical dynamics, the in-
plane modes were integrated out, leaving an effective,
temperature-dependent interaction among the flexural
modes. They then applied a one-loop renormalization
group analysis to this effective hamiltonian to demon-
strate that the coupling of flexural modes to the in-plane
modes renormalizes the dispersion of the flexural modes.
They found that the frequency ω of a flexural mode with
wavevector k at temperature T is given by11

ω = α(T, k)k2 (1)

in which

α(T, k) = α0[1 +
k2c
k2

]1/4 (2)

where the temperature dependence is carried by wavevec-
tor scale kc, which varies as T 1/2. These results show that
ω ∼ k2 at low temperatures as expected, while ω ∼ k3/2

at high temperature. Their analysis is expected to hold
for low k and T , but they do not determine the range of
k and T for which the analysis is expected to hold.

As has been observed experimentally12–14 and ana-
lyzed theoretically9, free-standing graphene sheets are
unstable to rippling of characteristic length on the or-
der of 50-200 Å at room temperature. Atomistic sim-
ulations using bond order potentials15 have confirmed
rippling when the simulation cell sizes were sufficiently
large; for cells smaller than the Ginzburg length7 the rip-
ples are suppressed and the sheet remained relatively flat.
The analysis of MvO is based on perturbation around flat
graphene.

We apply here a newly developed, atomistic
method16–19 (which we call the “moments method”), im-
plemented here for inter-atomic potentials, for calculat-
ing the temperature-dependent frequency. Our simula-
tions are performed on cells smaller than the Ginzburg
length which would inhibit rippling, and therefore should
be compared directly to the results of MvO. Our results
confirm that the dispersion relations are renormalized
and that the form of Mariani-von Oppen holds in the
region of low k and T . We also note deviation from their
form outside of that region, determining then the range
of validity of their approach.

We begin by a brief recap of the moments method,
and then show our results for the renormalized dispersion
relation, ending with a discussion and summation.

II. METHOD

The moments method is an approximation based on
low-order moments of the Liouvillian operator16, which
is the time-evolution operator for a classical dynamical
system. Beginning with the harmonic force constant ma-
trix, the normal modes are found, indexed by wavevector
k and branch b. (The flexural modes are easily iden-
tified by their low frequency and out-of-plane polariza-
tion.) Using the harmonic modes as a basis is justified by
the weakly anharmonic character of this system. The sec-
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ond moment of the power spectrum of the displacement-
displacement autocorrelation (suppressing in the rest of
this paper the branch index for simpler presentation)

µ2(k) =
〈Ȧ2

k〉
〈A2

k〉
= −〈AkÄk〉

〈A2
k〉

(3)

(where the angle brackets indicate ensemble aver-
ages) give a simple measure of the quasi-harmonic,
temperature-dependent normal mode frequencies ω(k)

ω(k) =
√
µ2(k) (4)

All of the results we report here are for classical dynam-
ics, with canonical ensemble averages, as was assumed
in the approach of Mariani and von Oppen (following
Nelson and Peliti).

The classical ensemble averages are evaluated using
standard Monte Carlo techniques. The amplitude Akb

of each mode is determined by projection onto the har-
monic normal modes. The energy differences for the
Metropolis algorithm, as well as the accelerations in each
mode, are obtained in the present work by semi-empirical
inter-atomic interactions. We have done calculations
with the original Tersoff potential for carbon20, and also
with the modified Tersoff potential which is tailored for
graphene21. We will show here the results for the modi-
fied Tersoff potential. The results for the original Tersoff
potential are qualitatively very similar, though there is
some quantitative difference, and we will note the differ-
ences where they exist. Using an semi-empirical poten-
tial such as the Tersoff potential effects a compromise be-
tween speed and accuracy, though the anharmonic effects
are reasonably well captured by especially the modified
potential.21

The computational cell is a 1152-atom graphene sheet
about 60 Å along one edge with triclinic periodic bound-
ary conditions consistent with the six-fold rotational
symmetry of graphene. The Monte Carlo calculation
included 4.6 ∗ 107 steps. The periodic boundary con-
ditions limit the modes included in the calculation to
those whose wavevectors are commensurate with the su-
percell, and also inhibits rippling. The lattice parameter
of the cells is determined at each temperature by molecu-
lar dynamics with adjustable cell size at constant (zero)
pressure, thus incorporating thermal expansion or con-
traction. The statistical quality of the sampling is tested
and discussed in the following text. All of the modes
present in the cell are included in the calculation, but we
focus here only on the flexural modes.

III. RESULTS

Fig. 1 shows the dispersion relation of the flexural
modes calculated by this method at two different tem-
peratures. The points are the atomistic results and the
curves are simple power law fits to the points22. The
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FIG. 1: The dispersion of the flexural modes, calculated us-
ing the moments method at two temperatures (T = 0K and
1200K). The points are the results of our calculations, and
the lines are simple power-law fits. These results are for the
modified Tersoff potential. The dispersion curves for sev-
eral intermediate temperatures have been calculated and are
smooth intermediates to these curves, so they have been omit-
ted from this plot for the sake of presentation.

results shown here at T = 0K are actually from the har-
monic force constants determined from the current cell,
but they differ negligibly from what we obtain by the
moments method at very low temperature. At T = 0K,
the best power-law fit is to a quadratic dispersion. The

value of α0 is determined to be 62.8Å
2 − THz by this

quadratic fit, compared with the value of 62Å
2 − THz

obtained via first-principles calculations by Mingo and
Broido2,23. At the higher temperature (T = 1200K) the
best power-law fit is to k1.8 (for the original Tersoff, k1.7),
which is inside of the range of behavior of the continuum
calculations. We have calculated the dispersion at sev-
eral other temperatures between 0 and 1200 K, and the
dispersion curves fall in between those of the two extreme
temperatures.

As is obvious from Fig. 1, the change in dispersion rela-
tion with temperature is subtle. To make a precise com-
parison between the atomistic and continuum results, we
note that Eqs. 1-2 establish a peculiar relation between
ω, k, and T . In particular, a little rearrangement gives:

ω4

k6
= α4

0(k2c + k2) (5)

where all of the wavevector dependence on the right hand
side is in the k2 term and all of the temperature depen-
dence enters into k2c = βT , where β is a constant. Plot-
ting (ω4/k6) vs. k2 should then reveal a series of parallel
straight lines at low temperatures, shifted by tempera-
ture. The vertical intercepts are a measure of the anhar-
monicity and should scale linearly with temperature.

This replotting of the calculated, temperature-
dependent dispersion curves is done according to Eq. 5
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FIG. 2: Plot of (ω4/k6) vs. k2 at various temperatures.
Points are the results of the present calculation. The lines
are simple, one-parameter fits to the values for the lowest
five k-vectors. The single parameter for each temperature is
the vertical offset, the slope for all being determined by the
T=0K calculations. Error bars are statistical, as discussed in
the text.
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FIG. 3: Plot of (ω4−ω4
0)/k6 vs. k2 at low temperatures. This

is a replotting of the calculations from Fig. 2 to emphasize the
temperature dependence. Points are the results of the present
calculations, and the horizontal lines are simple fits to the
values of the lowest five k-vectors. Error bars are statistical,
as discussed in the text.

in Fig. 2, where now we include all of our calculated tem-
peratures. The points are atomistic results and the solid
lines simple linear fits to the points, such that the slope of
each is fixed by the harmonic (T=0K) calculations. This
leaves one parameter used for the fit at each temperature
above T=0K, which is the vertical offset. In this plot, we

do the fit only for modes with k below 0.4 Å
−1

, above
which there is some deviation.

By subtracting off the k-dependent part of Eq. 5 we
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FIG. 4: Plot of k2c vs. T , showing the linear behavior at low
temperatures predicted by Mariani and von Oppen1. The
points are our calculations, and the line is a one-parameter
linear fit to the lower temperature calculations.

can isolate the temperature-dependence:

ω4 − ω4
0

k6
= α0βT (6)

where ω0 is the frequency of the mode at T=0K. We
again replot the calculated results for T below 200K ac-
cording to this form in Fig. 3, where the lines are simple
horizontal fits (for the first 5 k-vectors), and they illus-
trate in a clearer way the quality of the the fits in Fig. 2
at low temperatures.

(A word about the error bars in Figs. 2 and 3 is in
order. The rotational symmetry of graphene determines
that there are sets of symmetry-equivalent k vectors. Be-
cause our Monte Carlo sampling does not enforce the ro-
tational symmetry of the graphene, the variation we find
among each set is a measure of the statistical quality of
the sampling in this calculation. The calculated results
plotted in these figures are determined by examining the
statistical variation among those symmetry-equivalent k-
vectors: the points are the averages, and the error bars
are the rms deviation.)

The intercepts in Fig. 2 give the values of k2c . We then
plot k2c vs. temperature in Fig. 4 to test the prediction
that k2c should be linear in T . The points are atomistic
results and the line is a linear fit to the low-temperature
calculations below 200 K, showing that the relation k2c ∝
T is followed at low temperatures, where the approach
of Mariani and von Oppen is expected to have the best
success.

In Fig. 5, we replot the calculations from Fig. 4, now in
log-log form, to demonstrate that the slope in Fig. 5 for
temperatures below T = 200K is close to 1, confirming
that k2c is linear in T at low T but deviates at higher T .

Finally, considering our results altogether, we are able
to get a good fit to all of our calculated points up to
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FIG. 5: Plot of ln(k2c) vs. ln(T ), along with a linear fit to
the lower temperature calculations. The continuum theory
predicts a slope of 1.1.

k=0.4 Å
−1

and T=200K to the form of Mariani and
von Oppen using just two parameters (α0 and β). The

value of β determined overall is 2.0∗10−4Å
−2

K−1, which
is a little higher than the value calculated from MvO

(6.1 ∗ 10−5Å
−2

K−1). For larger values of k or higher T ,
there is some deviation as noted.

The results shown here are for the modified Tersoff
potential. We have also performed the same calculations
using the original Tersoff potential, and find that the
agreement with the form predicted by Mariani and von
Oppen is the same for low T and k, and that the devia-
tion outside of that range is similar. The original Tersoff
matches the continuum results over a larger range of k,

agreeing out to k = 0.5 Å
−1

. The value of β is smaller
for the original Tersoff than the modified Tersoff by an

order of magnitude (3.3 ∗ 10−5Å
−2

K−1). This difference
in β is consistent with the stronger anharmonicity of the
original Tersoff. (The modified Tersoff potential was the
result of an attempt to tone down the anharmonicity, to

bring the calculated value of lattice thermal conductivity
closer to experiment21.)

IV. CONCLUSIONS

We have presented results obtained for the
temperature-dependent dispersion relation of flexu-
ral modes in graphene. These results have been obtained
using a new method based on Monte Carlo averages
of displacements and forces. In the present calculation
the energies and forces required for the MC calculation
were obtained using two versions of the semi-empirical
Tersoff potential — the original version for diamond and
another modified for graphene.

We then analyzed the dispersion relation to show that
our results confirm the non-linear continuum results of
Mariani and von Oppen. Mariani and von Oppen’s ap-
proach is based on a perturbative expansion of the po-
tential energy and is therefore expected to be good at
low T and k. Our results (based on a semi-empirical po-
tential) represent a more robust potential energy surface,
and should hold out to higher k and T . It is encouraging
to see that the two very different approaches (continuum
vs. atomistic) yield the same behavior in the low k and
low T region. Furthermore, the continuum calculations
did not establish the range of temperatures or wave vec-
tors for which the expansion is expected to hold. Our
calculation shows that their approximation works well
up to temperature and wavevector noted, and that even
outside of that range the form is not an unreasonable ap-
proximation to our results. The agreement also serves as
a test of the new, atomistic method, showing that it is
able to handle a rather subtle anharmonic feature of the
vibrational modes.
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