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Electron spins in quantum dots can interact with impurity spins located in an adjacent region.
This interaction may be controllable using external electric fields and it can involve an appreciable
spin-orbit interaction (SOI) part affecting the expected operation of the dot spins. In this work we
propose a method to quantify the interaction between a dot spin and a nearby spin by calculating
the electrical current through the dot. We demonstrate some interesting regimes where the SOI can
be detected, and find regimes of negative differential conductance which are sensitive to the strength
of the SOI. The present study could be useful for spin-orbit qubits formed in quantum dot devices.

PACS numbers: 85.35.-p,73.63.Kv,73.23.Hk

I. INTRODUCTION

Quantum dots are ideal to host and manipulate single electron spins, therefore they have been used as the basis to
engineer quantum gates and to explore fundamental few-spin correlations, including the Pauli principle1–3. However,
in various quantum dot systems, spins located in the vicinity of the dot interact with the host spins, leading to an
operation that can be very different from that produced by the host spins. One very well-known case is the presence
of many nuclear spins, e.g., on the order of 104−105, causing the host spins to decohere due to the Overhauser field1,3.
However, experiments have demonstrated that even a single spin can affect the device operation4,5. For example,

electrical transport measurements in a carbon nanotube double dot have revealed that an impurity spin attached to
the nanotube modifies the expected leakage current in the spin blockade regime4. The current confirms the presence
of appreciable spin orbit interaction (SOI) whose strength is controlled by the applied voltage to a gate electrode.
Similar magneto-conductance measurements through a double dot formed in the channel of a silicon transistor device
have demonstrated the appearance of extra peaks in the leakage current as a result of an unwanted spin interacting
with the double dot in the presence of spin orbit coupling5. An impurity tunnel-coupled to a single quantum dot in
a silicon-germanium heterostructure has also been reported6, and this situation may also be relevant to other silicon
devices which make use of dopants to confine spins7,8. In these dot systems the spin is unintentionally coupled to
the dot, but fullerene and in general molecular spins intentionally coupled to dot systems can be fabricated in the
laboratory and have shown exceptionally long coherence times9.
The importance of the SOI has been identified in various systems ranging from optical10 to semiconductor nanos-

tructures4,5,11–13. In double quantum dots the SOI has been employed for spin manipulation, e.g., in electrically-driven
coherent spin rotations of a pair of qubits12,13. In the presence of SOI, spin resonance effects can be induced with an
oscillating electric field12,13. This is relatively easy to engineer by applying an ac-voltage to surface electrostatic gates.
In contrast, without SOI, an oscillating magnetic field is required, which is usually more difficult to engineer and con-
trol in quantum dot devices14. In this case a Zeeman splitting asymmetry is also needed. Theoretical investigations
of spin-orbit interactions in quantum dots have focused on spin manipulation and spin blockade effects15–17.
In this work we demonstrate a method to probe the SOI between a spin and a dot by measuring the electrical

current through the dot (Fig. 1). Over the transport cycle, the spin occupies a site with a single orbital level. This
‘spin site’ interacts with the dot through a finite tunnel coupling. The presence of SOI induces a non spin-conserving
tunneling leading to hybridization of singlet and triplet states. The current is large when the impurity spin and a
spin on the dot form a triplet state, whereas when the two spins form a singlet state with high double occupation
on the spin site the induced current under the appropriate choice of magnetic field could decrease. This change in
the current can lead to a negative differential conductance. We demonstrate that by measuring the current we can
extract the SOI strength.
In the special limit where the various physical parameters are chosen to justify a Heisenberg or an Ising type

interaction between the spin and the dot, it has been suggested that an estimation of the spin relaxation time is
possible18,19. Furthermore, electrical control of spin resonance can be achieved when the dot is coupled to noncollinear
ferromagnets20. Some of these ideas are also applicable to double quantum dots driven by external fields21,22. The
model we adopt here is motivated by experiments that have probed the SOI in few-spin systems4,5,11–13. Thus, it
is mostly concerned with the role of the SOI in the interaction between the spin and the dot. The model is general
enough allowing high double occupation on the spin site as well as on the dot via a combination of tunnel coupling,
Coulomb energy, and energy detuning.
In the next section we describe the basic model, and in Sec. III we present the rate equations that we employ to
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FIG. 1: A quantum dot is tunnel-coupled to leads with a coupling constant Γ. A single spin interacts with the quantum dot
via a spin-conserving tunnel coupling tc, as well as a non spin-conserving tunnel coupling tso due to the spin-orbit interaction.
A back and/or top gate (not shown) controls the number of electrons on the dot. Under the application of a bias voltage single
electron transport through the dot reveals information about the interaction between the spin and the dot. The plot shows
the energies of the relevant two-electron states as a function of magnetic field. The spin-orbit interaction couples singlet with
triplet states, thus the resulting energy levels anticross at B ≃ 0.35 T with a gap ∆so that is proportional to tso.

compute the electrical current. In Sec. IV we present the energy levels of the system, and in Sec. V we examine the
electrical transport characteristics. Finally in Sec. VI we present the basic conclusions of this work.

II. PHYSICAL MODEL AND HAMILTONIAN

We consider a single quantum dot tunnel-coupled to a spin site and to metallic leads. This system can be described
by the following Hamiltonian

H = HDS +HI +HL +HT. (1)

Specifically, for the dot (i = 1) and the spin site (i = 2) we consider the Hamiltonian

HDS =

2
∑

i=1

(

ǫini + Uini↑ni↓ +
1

2
gµBBσz

i

)

, (2)

where ni =
∑

σ niσ = c†i↑ci↑+ c†i↓ci↓ is the number operator, while the operator c†iσ (ciσ) creates (destroys) an electron

on site i = 1, 2 with spin σ = {↑, ↓}. Here, ǫi is the orbital energy, Ui is the charging energy, gµBB is the Zeeman

splitting due to a constant magnetic field B, and the Pauli operator is σz
i = c†i↑ci↑ − c†i↓ci↓. For the orbital energies

we choose

ǫ1 = −(Vg − Vp) + ε+ U2 − V, ǫ2 = −(Vg − Vp), (3)

and assume that Vg takes into account the effect of a gate voltage on the orbital energies of the dot and spin site,
with Vp = 20 meV being a constant gate potential. For simplicity, this effect is taken to be the same for both orbitals.
The energy detuning is ε = E(1, 1)− E(0, 2), with E(n,m) being the energy of the charge state (n,m) that contains
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n (m) electrons on the dot (spin site). Depending on the choice of detuning, the Hamiltonian HDS allows significant
double occupation on the spin site.
The interaction between the dot and the spin site is described by the Hamiltonian

HI = Hc +Hso +Hv, (4)

and specifically for each term we have

Hc = −tc(c
†
1↑c2↑ + c†1↓c2↓) + H.c.,

Hso = −tso(c
†
1↑c2↓ − c†1↓c2↑) + H.c.,

Hv = V n1n2.

(5)

The first term describes the spin-conserving tunneling between the dot and the spin site with coupling tc, the second
term describes the non spin-conserving tunneling with coupling tso as a result of the SOI, and finally the third term
accounts for Coulomb repulsion with strength V . The coupling tso is determined by the spin-orbit length lso (∝ 1/tso)
which depends on the details of the dot structure, such as material parameters, confinement length, and geometry23.
Various theoretical works have employed the SOI Hamiltonian Hso to examine spin-orbit related effects in double
quantum dots24–27. Hso introduces in a simple way the necessary spin-flip tunneling process between the two sites,
and as a result it couples the polarized triplet states to singlet states. A more rigorous spin-orbit Hamiltonian was
used in Ref.16 and considered explicitly the direction of the spin-orbit field. Even though Hso is simpler compared to
that in Ref.16, it can give good agreement with the basic trends observed in the experiments4,12,28.
The Hamiltonian of the leads describes non interacting electrons and is given by

HL =
∑

ℓkσ

ǫℓkd
†
ℓkσdℓkσ, (6)

and the interaction Hamiltonian between the quantum dot and the leads is

HT =
∑

ℓkσ

tℓc
†
1σdℓkσ +H.c.. (7)

Here d†ℓkσ (dℓkσ) creates (destroys) an electron in lead ℓ = {l, r} with momentum k, spin σ, and energy ǫℓk. Finally,
tℓ is the tunnel coupling between the dot and the lead ℓ, which is taken as energy independent, and for simplicity we
choose tl = tr.
For the calculations we choose fixed values for tc = 0.1 meV, U1 = 10 meV, U2 = 20 meV, V = 1 meV, and

tso . tc. The results presented in this work are insensitive to the exact values of tc, Ui, and V . The choice tso . tc
is consistent with experimental findings4,5. The regime Ui ≫ tc, ε and the orbital energies in Eq. (3) are chosen so
that an electron occupies the spin site with almost unity probability. Consequently, to a very good approximation the

relevant one-electron states are |y↓〉 = c†2↓|0〉 = |0, ↓〉 and |y↑〉 = c†2↑|0〉 = |0, ↑〉, and the corresponding approximate

energies are E↓,↑ = ǫ2 ± gµBB/2. We ignore the effect of SOI because (ǫ1 − ǫ2)/tc ≫ 0. The two-electron states are
examined in Sec. IV.

III. RATE EQUATIONS AND ELECTRICAL CURRENT

The coupling of the quantum dot to the two leads gives rise to mixed states which have to be described by a density
matrix (operator). Therefore, to calculate the electrical current through the dot we employ an equation of motion
for the reduced density matrix ρ(t) of the system of interest, e.g., the dot and spin. Within the Born and Markov
approximations, the equation of motion can be written in the form29

dρ(t)

dt
=− i

~
[HDS +HI, ρ(t)] + Lρ(t), (8)

where the incoherent term Lρ(t) treats the interaction HT to second order in the tunnel coupling tℓ. We assume that
in the steady state the off-diagonal elements of ρ(t) are vanishingly small, therefore we calculate only the diagonal
elements for which we use the notation ρnn(t) = ρn(t). These obey the following rate equations29

dρn(t)

dt
= −ρn(t)

∑

m

Rnm +
∑

m

ρm(t)Rmn, (9)
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and the normalization condition
∑

n ρn(t) = 1. Numerical calculations of the dynamics of the full density matrix
confirm the validity of this assumption provided tℓ is small. The coupled equations Eq. (9) describe the time evolution
of the populations of the eigenstates of HDS+HI toward the steady state, which satisfies the condition dρn(t)/dt = 0.
The transition rate Rnm from an eigenstate |n〉 to |m〉 is

Rnm =
∑

ℓ

(Rℓ+
nm +Rℓ−

nm), (10)

with the rates being equal to

Rℓ+
nm = Γ

∑

σ

|〈n|c1σ|m〉|2fℓ(Emn),

Rℓ−
nm = Γ

∑

σ

|〈m|c1σ|n〉|2[1− fℓ(Enm)].
(11)

These rates can be non-zero only when the number of electrons in the states |n〉 and |m〉 differs by one. Tunneling
from the leads to the dot is described by the rate Rℓ+, while the opposite process is described by the rate Rℓ−. The
Fermi-Dirac distribution for the lead electrons is fℓ(Enm), defined at the chemical potential µℓ, with Enm = En−Em.
We consider low temperatures (kBT ∼ 0) so that the tail of fℓ is negligible to a good approximation. The coupling
constant is Γ = 2π|tℓ|2Dℓ/~, where Dℓ is the constant density of states for the lead electrons.
The steady state current is calculated in the sequential tunneling regime for a bias voltage Vb = µl − µr > 0, and

for the numerical calculations we take µl = 39.38 meV, µr = 22.1 meV unless stated otherwise. Starting from the

definition of the electrical current, for example, through the right lead I = −ei[HT, Nr]/~, with Nr =
∑

kσ d†rkσdrkσ
being the electron number operator for the right lead, and using the rates Rnm it can be shown that the average
current is

I = e
∑

n,m

ρn(R
r−
nm −Rr+

nm). (12)

In Sec. V we investigate the system for different values of Vg, Vb, ε, B and give some simple analytical expressions
for the current. An interesting electrical transport regime occurs when only the three lowest two-electron states of
the Hamiltonian HDS + HI participate in the transport cycle, which means that only the corresponding transport
channels Enσ n = 1, 2, 3 lie in the bias window (range) Vb. This regime is the focus of this work and can be arranged
with the proper choices of Vg and Vb. As discussed in Sec. V a more general two-electron regime, i.e., when all states
participate in the transport cycle, is not necessary to demonstrate the spin-orbit effects we address here.

IV. ENERGY LEVELS AND SPIN-ORBIT INDUCED GAP

The dependence of the energy levels of the Hamiltonian HDS + HI on both magnetic field and detuning is of
particular importance because it provides insight into the structure of the non Coulomb-blockaded regions. For
tso = 0 an eigenstate can be either a triplet |T±,0〉 or a singlet |S〉 = α|S11〉 + β|S02〉, where |Snm〉 is a singlet state
with n (m) electrons on the dot (spin site)30. The lowest triplet and singlet energy levels are

ET
−

= ǫ1 + ǫ2 + V − gµBB,

ES = ǫ1 + ǫ2 + V − 1

2
(
√

ε2 + 8t2c + ε).
(13)

For tso 6= 0, the spin-orbit Hamiltonian Hso contains terms of the form tso|S02〉〈T±|, indicating that singlet and triplet
states are coupled (hybridized). For this reason the corresponding energy levels anticross (Fig. 1) with a characteristic
gap ∆so that is proportional to tso. To a very good approximation we neglect the component |S20〉, and write the
hybridized states that form the anticrossing point in the approximate form

|yi〉 ≈ αi|S11〉+ βi|S02〉+ γi|T−〉+ δi|T+〉, i = 1, 2 (14)

Here all the amplitudes depend on tso, B and ε, and when tso is very small and ε ≪ 0 δi can be ignored. The third
state relevant to the transport is the unpolarized triplet |y3〉 = |T0〉. When the SOI is zero we adopt for convenience
the notation |y1〉 = |S〉, |y2〉 = |T−〉, and |y3〉 = |T0〉.
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FIG. 2: (Color online) Spin-orbit induced gap ∆so as a function of energy detuning ε for tso = 0.1tc and tso = 0.8tc. The dotted
line corresponds to

√
2tso, with ∆so =

√
2tso for ε = 0.

A rough estimation of the energy levels Ei which correspond to the hybridized states |yi〉 can be made by examining
the two-level system formed by ET

−

and ES. This approximate approach gives for the hybridized energy levels

Ei ≈
1

2
(ET

−

+ ES)±
1

2

√

(ET
−

− ES)2 +∆2
so, (15)

with ∆so = ∆so(ε) being the gap due to the spin-orbit coupling. The value of the gap can be extracted from the
exact energy levels of HDS +HI and it is shown in Fig. 2. As expected, the gap increases with tso. Further, the gap
is ∆so =

√
2tso for ε = 0 and decreases for negative values of ε, which we are mostly interested in. This decrease

is due to the fact that the amplitude βi in Eq. (14) becomes smaller. The approximate energy levels given by the
semi-analytical expression Eq. (15) are more accurate when ∆so is small. For instance, comparison of the approximate
levels to the exact levels gives at the anticrossing point an error about 5×10−4 meV for tso = 0.1tc, and about 9×10−3

meV for tso = 0.8tc.

V. ELECTRICAL TRANSPORT CHARACTERISTICS

In this work we explore the regime in which a single spin is coupled to the dot and the maximum number of electrons
in the system is two. Therefore, over the transport cycle the electron occupation on the spin site fluctuates between
one and two, whereas the dot occupation fluctuates between zero and one. In the Coulomb blockade regime and with
a fixed bias Vb, no current flows unless a transport channel lies in the bias window. By tuning the gate voltage Vg

this condition is satisfied, the Coulomb blockade is lifted, and current flows through the dot. In this case an electron
from the left lead tunnels to the dot, and then it tunnels to the spin site and/or to the right lead producing a current.
The current is proportional to the average electron occupation on the dot, thus it is high when tunneling from the

dot to the spin site is negligible. Tunneling to the spin site depends on the character of the states which are involved
in the transport cycle, therefore the physics is more interesting when states with different character lie in the bias
window. Without SOI tunneling from the dot to the spin site is only allowed for singlet states, due to the Pauli
principle, and the degree of tunneling is appreciable when the |S02〉 component is large. In contrast, for triplet states
tunneling to the spin site is forbidden. The presence of SOI couples singlet with triplet states modifying drastically
the transport characteristics.
To understand the basic transport characteristics we first need to examine the magnetic field B dependence of

the transport channels Enσ = En − Eσ which is shown in Fig. 3. Here the energies Eσ, σ = {↑, ↓} correspond to
one-electron states and En, n = 1, 2, 3 correspond to two-electron states. When Vg > Enσ the channel Enσ lies in the
bias window Vb and the corresponding two-electron state |yn〉 can contribute to the current provided the one-electron
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T. The right frame shows the electrical current I as a function of magnetic field B for different SOI tunnel couplings tso when
ε = −0.46 meV and Vg = 0.14 meV.
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state |yσ〉 is populated (ρσ 6= 0). When Vg = 0 the system is Coulomb blockaded; the channels Enσ lie outside the
bias window and no current flows.
Figure 3 shows that as Vg increases the various channels eventually enter the bias window31. As expected the first

channel that enters the bias window is E1↑, though the Coulomb blockade is not lifted because from the rate equations
Eq. (9) it can be shown that in the one-electron regime ρ↑ = 0 and ρ↓ = 1. Therefore, the mechanism behind this
particular Coulomb blockade regime is the polarization of the impurity spin. This regime has also been found when
the spin is coupled to the dot via a Heisenberg interaction18. The blockade is lifted only when the channel E1↓ enters
the bias window. As seen in Fig. 3 there is a common range of Vg in which both E1↓ and E2↑ lie in the bias window.
Only in this range the channel E2↑ is relevant to the transport cycle, resulting in ρ2 6= 0 when tso 6= 0 even when the
channel E2↓ lies outside the bias window. Similar arguments are also applicable to E3↑ and ρ3. When the blockade is
lifted and current flows the minimum gate voltage increase for the channel E2↓ to become active is equal to ∆so, and
it occurs at the anticrossing point B = B0 ≃ 0.35 T.
Figure 3 shows the current I as a function of magnetic field B for different spin-orbit tunnel couplings tso. Here,

the anticrossing point occurs at B0 ≃ 0.35 T and as a general remark the current for B > B0 is higher than that
for B < B0, especially when tso is small. Specifically, when tso is small and B < B0 the singlet character |S02〉 of
|y1〉 dominates, i.e., β1 is large leading to high double occupation on the spin site and suppression of the current32.
However, for B > B0 the triplet character of |y1〉 dominates, i.e., γ1 is large and double occupation on the spin site
is negligible, inducing a high current. For large tso the variation of β1 (γ1) is small near B0, thus in this region the
corresponding variation of the current is small. The effect on the current of the channel E2↑ entering the bias window
can be observed for B ≈ 0.12 T, and it becomes stronger as tso increases. For the special case tso = 0 the channel
E2↑ has no effect. Moreover, for tso = 0 double occupation on the spin site is prohibited due to the Pauli principle,
maximizing the current for a pure triplet state when B > B0, and suppressing the current for a pure singlet state
when B < B0. As quantified below the suppression of the current is proportional to the factor 1/2− α2

1/3, thus it is
large for large positive detuning. It has been demonstrated that depending on the energy level alignment either triplet
or singlet states can suppress the current in serially-coupled double quantum dots giving rise to the spin blockade
regime2,33. When the spin blockade is due to triplet states the presence of SOI lifts the blockade, and when it is not
too strong the leakage current versus magnetic field displays a peak at the anticrossing point27.
To generalize the above findings, we show in Fig. 4 the current I as a function of gate voltage Vg and magnetic

field B for both positive and negative detuning. For the chosen parameters and ranges of Vg and B only the states
|y1,2,3〉 can contribute to the current. Along the Vg axis the number of plateaus (steps) for each B is determined
by the number of transport channels Enσ in the bias window, and the non-vanishing matrix elements involved in
the transition rates Eq. (11). The magnetic field dependence of the transport channels presented in Fig. 3 provides
valuable insight into the boundary and internal structure of the non Coulomb-blockaded region: when the channel
E1↓ enters the bias window for a gate voltage Vg the Coulomb blockade is lifted and current flows. Then an increase
of this gate voltage by ∆E = E2↓ −E1↓ = E2 −E1 puts the channel E2↓ in the bias window resulting in a noticeable
change in the current. For intermediate gate voltages the channels E2↑ and E3↑ enter the bias window. For tso = 0
the energy increase ∆E at the field B0 is ∆E = E2 − E1 = ET

−

− ES = 0. Thus, knowledge of the detuning ε and
B0 allows the estimation of the tunnel coupling tc. Moreover, the singlet-triplet splitting can be directly estimated
from the width of the first plateau at B = 0. For tso 6= 0 the energy increase at B0 is ∆E = E2 −E1 = ∆so, allowing
the value of the SOI gap ∆so to be determined.
To summarize, from the current plot I = I(Vg, B) and when tso = 0 we can determine the singlet-triplet crossing

field B0 (at this field the regions W1 and W2 coincide), and the g-factor g, e.g., from the slope of the lower boundary
of region W1. Then using Eq. (13) the tunnel coupling tc can be determined. When tso 6= 0 the parameters tc and
g can be extracted in the same way as when tso = 0, while the anticrossing gap ∆so can be extracted directly from
the width of the current plateau. Finally, the tunnel coupling tso can be determined by diagonalizing the system
Hamiltonian34 HDS +HI and finding the energies that satisfy E2 −E1 = ∆so. In case the detuning can be accurately
adjusted to zero ε = 0 then tso = ∆so/

√
2. The couplings tc, tso are the most important parameters that quantify the

dot-spin interaction.
For the range of parameters presented in this work the current given in Eq. (12) can be more conveniently expressed

in terms of the average occupation on the dot 〈n1〉 = 〈c†1↑c1↑ + c†1↓c1↓〉 as follows

I

eΓ
=

2
∑

i=1

ρi(α
2
i + γ2

i + δ2i ) + ρ3. (16)

This expression can be used to compute the current in the regions W1,2,3 indicated in Fig. 4. The lower boundary of
region W1 is defined for tso = 0 and B < B0 when the channel E1↓ enters the bias window. It is easy to show that in
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the steady state the rate equations Eq. (9) in region W1 reduce to

0 = −ρ↓R↓1 + ρ1R1↓,

0 = −ρ↑R↑1 + ρ1R1↑,

0 = −ρ1(R1↓ +R1↑) + ρ↓R↓1 + ρ↑R↑1.

(17)

The solution is ρ↓ = ρ↑ = ρ1 = 1/3, and consequently the current is I = eΓα2
1/3. This solution is valid independent

of the position of E2↑ because ρ2 = 0 for tso = 0. The lower boundary of region W2 is defined for tso = 0 and B > B0

when the channels E2↓, E3↑ enter the bias window. The rate equations Eq. (9) in the steady state reduce to

0 = −ρ↓R↓2 + ρ1R1↓ + ρ2R2↓ + ρ3R3↓,

0 = −ρ↑(R↑1 +R↑3) + ρ1R1↑ + ρ3R3↑,

0 = −ρ2R2↓ + ρ↓R↓2,

0 = −ρ1(R1↓ +R1↑) + ρ↑R↑1,

0 = −ρ3(R3↓ +R3↑) + ρ↑R↑3.

(18)

These are satisfied for ρ↓ = ρ2 = 1/2, giving for the current I = eΓ/2. Similarly the lower boundary of region W3

is defined for B < B0 when the channels E2↓, E3↑ enter the bias window, and for B > B0 when the channel E1↓

enters the bias window. The steady state occupations can be derived from the rate equations Eq. (9), however, they
do not have a simple analytical expression and are not given here explicitly. It can be shown that ρ1 6= 0, ρ2 = ρ↓,
and ρ3 = ρ↑/3, giving for the current in region W3 the general expression

I

eΓ
= ρ1α

2
1 + ρ2 + ρ3, (19)

which is valid for tso = 0.
Inside regions W1 and W2 additional plateaus appear for tso 6= 0 due to the formation of the SOI gap, that modifies

the transport channels Enσ, and the fact that the matrix elements 〈yσ|c1↑|y2〉 and 〈y↑|c1↓|y2〉 are non zero. For
example, the channels E3↑ and E2↓ do not enter the bias window at the same gate voltage as happens for tso = 0.
Moreover, in region W1 when E2↑ enters the bias window the transition rate R↑2 ∝ |〈y↑|c1↑|y2〉|2 + |〈y↑|c1↓|y2〉|2 is
non zero, and from the rate equations Eq. (9) it can be found that ρ2 6= 0. Also, when E3↑ enters the bias window
for tso 6= 0 then ρ3 6= 0 in regions W1,2.
Figure 4 demonstrates that as Vg increases and additional channels enter the bias window the induced current can

exhibit different behaviours. For example, for tso = 0 the current in region W3 is larger than that in region W2 for
the detuning ε = −0.46 meV, but the opposite situation occurs for ε = 0.095 meV. This is a consequence of the
fact that hopping to the spin site and the induced dot occupation depend on the character of |yi〉. This character
is sensitive to the choice of detuning ε as well as to the coupling tso. In Fig. 5 we plot the current I in region W3

and the relevant population terms as given in Eq. (19), versus the energy detuning ε. As ε increases the change in
the triplet populations ρ2 + ρ3 is small, but the change in the singlet term ρ1α

2
1 is significant and it comes mainly

from the coefficient α2
1. These trends are expected because the triplet states are detuning independent in contrast to

the singlet state. When I/eΓ < 0.5 the current in region W3 is smaller than that in region W2 leading to a negative
differential conductance.
To investigate this regime further we focus on ε = 0.095 meV and plot in Fig. 6 the current I and differential

conductance dI/dVb as a function of the bias voltage Vb. First consider tso = 0. For Vb . 17.392 meV only the
triplet state |y2〉 is relevant to the transport (ρ2 = 1/2, ρ1,3 = 0) producing a plateau of ‘maximum’ current. The
average dot occupation is maximum because hopping to the spin site is not allowed. As Vb increases, the singlet |y1〉
and triplet |y3〉 states enter the bias window and the current starts to decrease, since hopping to the spin site is now
allowed for |y1〉 and the average dot occupation decreases. Eventually, for Vb & 17.394 meV all |y1,2,3〉 states lie in
the bias window (ρ1,2,3 6= 0) producing a plateau of lower current. The difference between the two plateaus is large
for positive values of detuning when the |S02〉 character dominates and as a result |y1〉 and |y2〉 have very different
charge distributions. For tso 6= 0 the situation can be very different. As seen in Fig. 6 the occurrence of dI/dVb < 0
is sensitive to the SOI tunel coupling tso. When tso is large, and B is chosen close to B0, both hybridized states |yi〉
have significant double occupation on the spin site, and as a result a distinction between singlet and triplet states is
no longer possible. Therefore, as tso increases the dip displayed by dI/dVb gradually disappears and transforms to a
peak. To observe the dI/dVb < 0 regime described here, the triplet state has to be the lowest state, thus B > B0.
Current suppression marked by a region of negative differential conductance dI/dVb < 0 is characteristic of the

spin blockade regime in serially-coupled double dots that is induced when either triplet or singlet states enter the
bias window2,33. For the present system a singlet state is responsible for the suppression of the current, though
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the comparison with the double dot system is rather loose because the geometry of the two systems is different.
This results in very different populations. In the spin blockade regime in a double dot the one-electron states have
vanishingly small populations27,35.
In Fig. 6 we can identify two current plateaus. The current on the two plateaus differs by an amount equal to

∆I

eΓ
= ∆ρ1c

2
1 +∆ρ2c

2
2 +∆ρ3, (20)

and here ∆I is defined so that for tso = 0 we have ∆I < 0 which indicates negative differential conductance. The
corresponding difference of ρi is ∆ρi and c2i = α2

i + γ2
i + δ2i . In Fig. 7 we plot ∆I and the three terms in Eq. (20) as a

function of tso. The key observation is that not all the terms have the same sign. The reason is that only for the second
plateau the channel E2↓ lies in the bias window, and from the rate equations it can be derived that the population
of ρ1 (ρ2, ρ3) decreases (increase) relative to that on the first plateau. As tso increases, |∆ρ1c

2
1| decreases and ∆ρ2c

2
2

increases following the change of c2i , though ∆ρi change as well, as can be seen directly from ∆ρ3. Eventually there
is a value of tso for which ∆I changes sign (∆I > 0) and the differential conductance becomes positive.
As emphasized above the various amplitudes in |yi〉 ≈ αi|S11〉 + βi|S02〉 + γi|T−〉 + δi|T+〉 depend on the choice

of the energy detuning ε, consequently the current is tunable with ε. This is usually under experimental control
by adjusting the applied voltage to the gate electrodes1–4,8. In Fig. 8 we plot the current as a function of B and
ε. The gate voltage Vg is chosen so that at the anticrossing point B = B0 the channel E1↓ is below the left lead
chemical potential by ∆so/2 (see Fig. 3)36. Thus, only the two regions W1,2 are relevant. When tso is small we can
practically identify for each ε two regions of low and high current respectively, as B increases. When the field is less
than the critical field B0 the state responsible for the current is singlet-like and has relatively large β1 amplitude.
This configuration results in low (high) occupation on the dot (spin site) and low current. When the field exceeds
the critical field B0 a triplet-like state is responsible for the current. This state has small β1 amplitude and leads to
high occupation on the dot and high current. The boundary between the two regions can be derived from the B and
ε dependence of the energy level E1 of the state |y1〉. Specifically, the high-current B-ε regions which arise due to
triplet-like states satisfy the condition gµBB > E1. The hybridization of singlet and triplet states increases with tso,
and consequently the current inside the high-current region decreases (Fig. 8 right frame). Further, as tso increases an
additional ‘structure’ appears inside the low-current region. The origin of this structure is the presence of the channel
E2↑ in this bias window which only affects the transport for a non zero SOI.
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FIG. 8: (Color online) Electrical current I as a function of energy detuning ε and magnetic field B. The spin-orbit tunnel
coupling is tso = 0.1tc for the left frame, and tso = 0.5tc for the right frame.

VI. DISCUSSION AND CONCLUSIONS

Experimental studies have probed the interaction of a single spin with quantum dot systems by measuring the
electrical current through the dots in a constant magnetic field4,5. The spin is unintentionally coupled to the dot,
thus it acts as an impurity, and gives rise to additional peaks in the current. These peaks are sensitive to the spin-
orbit interaction which can be tuned using electrostatic gate electrodes4. Similar studies have performed transport
measurements through an impurity state tunnel-coupled to a quantum dot in a silicon-germanium heterostructure6.
Motivated by these studies we considered a quantum dot coupled to a single spin via SOI and examined the current
flowing through the dot. In our model the spin occupies, during the transport cycle, a single site with one orbital
level. In this respect the model is general enough and can be relevant to electrical transport studies in parallel-coupled
quantum dots37,38.
The singlet-triplet mixing due to the SOI forms an anticrossing point in the energy spectrum. The characteristic

gap depends on the energy detuning and it is large when double occupation on the spin site is appreciable. As
suggested by the experiments, we ignored a possible interaction of the spin with electrons in the leads and calculated
the current in the sequential tunneling regime. Cotunneling effects are expected to be weaker and thus not addressed
here. Decoherence sources, such as hyperfine interaction and charge noise, play a significant role in the leakage current
flowing through a double dot in the spin blockade regime1–4,11,16,27. They lift the spin blockade and give rise to a
small leakage current. The present system is very different from a double dot and it is not concerned with any kind of
leakage current. As we showed high current flows without any source of decoherence. Adding decoherence should not
affect the main conclusions of this work. The decoherence-induced current should be much smaller than the current
calculated here, provided the various decoherence rates are smaller than the dot-lead rate which is usually the most
common experimental situation. Nevertheless, an interesting regime of study when decoherence is included is the
Coulomb blockade regime in which the impurity spin is polarized.
We showed that an interesting configuration occurs when the magnetic field is tuned close to the anticrossing point.

Then the current as a function of gate voltage forms plateaus whose width give directly the size of the anticrossing
gap. The structure of the plateaus can be inferred from the energy spectra of the states involved in the transport cycle
enabling the determination of the tunnel couplings between the spin and the dot. In this way the dot-spin interaction
can be quantified. The current on the plateaus depends on the character of the hybridized states in the bias window.
In general the current produced by a singlet-like state is lower than that produced by a triplet-like state, because
for the former state hopping to the spin site is significant, reducing the average dot occupation and consequently the
current. For this reason when current flows due to a triplet-like state and a singlet-like state enters the bias window
then under the appropriate choice of detuning and magnetic field the resulting current can be suppressed. This effect
leads to a regime of negative differential conductance versus the applied bias voltage. This regime gradually disappears
in the presence of SOI, and eventually vanishes for strong enough SOI.
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