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Smearing of the quantum anomalous Hall effect due to statistical fluctuations of
magnetic dopants

Z. Yue and M. E. Raikh
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Quantum anomalous Hall effect (QAH) is induced by substitution of a certain portion, x, of Bi
atoms in a BiTe-based insulating parent compound by magnetic ions (Cr or V). We find the density
of in-gap states, N(E), emerging as a result of statistical fluctuations of the composition, x, in the
vicinity of the transition point, where the average gap, Eg, passes through zero. Local gap follows
the fluctuations of x. Using the instanton approach, we show that, near the gap edges, the tails
are exponential, lnN(E) ∝ −

(
Eg − |E|

)
, and the tail states are due to small local gap reduction.

Our main finding is that, even when the smearing magnitude exceeds the gap-width, there exists a

semi-hard gap around zero energy, where lnN(E) ∝ −Eg

|E| ln
(

Eg

|E|

)
. The states responsible for N(E)

originate from local gap reversals within narrow rings. The consequence of semi-hard gap is the
Arrhenius, rather than variable-range hopping, temperature dependence of the diagonal conductivity
at low temperatures.

PACS numbers: 75.50.Pp, 75.47.-m, 73.43.-f

I. INTRODUCTION

Pairs of spin-degenerate chiral edge modes are implicit
for insulators with inverted bandstructure.1,2 The mini-
mal model2 which captures these modes is 4 × 4 matrix
Hamiltonian acting in the basis of two spin and two or-
bital states.

The origin of the quantum anomalous Hall effect4

(QAH) is breaking of the time-reversal symmetry induced
by magnetic order. As a result, the symmetry between
the two counterpropagating modes at the sample edges is
lifted. With a single chiral mode per edge, the Hall con-
ductance of the sample becomes nonzero, and the trans-
port resembles the conventional quantum Hall effect. Ex-
perimental studies5–21, on Cr-doped and V-doped layers
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FIG. 1: (Color online) (a) Fluctuation states near the gap
edges are due to local reductions of the width of the gap
caused by the the composition disorder. (b) To create an in-
gap state with energy, E, much smaller than the gap width in
1d two local gap reversals are required.(c) In 2d, the angular
motion tends to shift the fluctuation levels away from the gap
center. Thus, the fluctuation, responsible for the state, E,
represents a narrow ring of gap reversals with radius ∝ Eg/E.

of BiTe-based insulating compounds confirm both the
quantization of the Hall resistance and the edge trans-
port which accompany the buildup of the magnetic or-
der. Remarkably, resistance jumps observed in Ref. 21
allow to monitor the switching of magnetization. The
common feature of the data reported so far is that the
resistance exhibits Arrhenius behavior down to very low
temperatures.

For QAH effect to be pronounced, the bulk of the sam-
ple should be strongly insulating. On the other hand, the
crossover between a trivial and “topological” bandstruc-
tures takes place as the gap passes through zero. Obvi-
ously, the smaller is the gap the easier it is washed out
by the disorder. More precisely, the disorder gives rise
to in-gap states. However, in QAH, the disorder is of a
special type: randomness in positions of magnetic ions
causes the local fluctuations of the gap width. For such
fluctuations the energies near the gap center remain un-
affected. This is probably the reason why robust QAH is
observed in experiments of several groups.

In the present paper we study quantitatively the
smearing of the gap due to statistical, and thus unavoid-
able, magnetic disorder. We find that the states near
the gap center are due to the local reversals of the gap
sign within narrow rings. By employing the instanton
approach22,23 we specify the shape of these fluctuations
and the likelihood of their occurrence, which determines
the density of the in-gap states. This density of states
exhibits a semi-hard gap near zero energy.

II. INSTANTON APPROACH

Due to the composition disorder, the local value of x,
which is the portion of magnetic ions, differs from average

x(r) = x+ δx(r). (1)
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Fluctuations δx(r) are gaussian with a zero correlation
radius

〈δx(r)δx(r′)〉 =
x(1− x)

N0
δ(r− r′), (2)

where N0 is the concentration of Bi lattice sites in which
the substitution magnetic ions reside. It is natural to
assume that the local gap fluctuations, ∆(r), are propor-
tional to δx, i.e.

∆(r) = Eg(r)− Eg = αδx(r), α =
dEg
dx

. (3)

It follows from Eq. (3) that the probability to find the
fluctuation ∆(r) is given by

P
{

∆(r)
}
∝ exp

[
− 1

2γ

∫
dr∆2(r)

]
. (4)

where γ = α2

N0
x(1− x).

According to the instanton approach22,23, the density
of states with energy, E, corresponds to the maximum of
the functional P among all the fluctuations that create
a level with energy, E. In application to QAH effect,
the wave function, Ψ(r), corresponding to this level, is a
two-component spinor,

Ψ(r) =

(
ψe(r)
ψh(r)

)
, (5)

which satisfies the Schrödinger equation

ĥ∆(r)Ψ = EΨ. (6)

The Hamiltonian ĥ∆(r) is a standard Hamiltonian of the
minimal model Ref. 2 in which only one spin component
is retained. In conventional notations2 it has the form

ĥ∆(r) = A(k̂xσx + k̂yσy) +
(
Bk̂2 + Eg + ∆(r)

)
σz, (7)

where σx, σy, and σz are the Pauli matrices acting in

the pseudospin space. Relative sign of Eg and param-
eter B determines whether or not the chiral modes are
the eigenstates of this Hamiltonian in the presence of an
edge4.

The procedure of minimization of the functional Eq.
(4) with restriction Eq. (6) is conventionally carried
out22,23 by introducing the Lagrange multiplier, λ, and
searching for a minimum of the auxiliary functional

λ〈Ψ|ĥ∆(r)|Ψ〉+
1

2γ

∫
dr∆2(r). (8)

with respect to ∆(r). The minimization yields

∆(r) = −λγ
(
|ψe(r)|2 − |ψh(r)|2

)
. (9)

The remaining task is to substitute Eq. (9) into the
Schrödinger equation, find ψe(r), ψh(r), substitute them
into Eq. (9), and evaluate P with extremal ∆(r) defined
by Eq. (9).

III. ASYMPTOTIC SOLUTION OF THE
INSTANTON EQUATION.

Asymptotic solution of the instanton equation.
Assuming the azimuthal symmetry of ∆(r), the solu-

tions of Eq. (6) can be classified according to the an-
gular momentum: ψe(r) = iψme (ρ) exp(imφ), ψh(r) =
ψmh (ρ) exp[i(m+ 1)φ], where ρ and φ are the radius and
the azimuthal angle, respectively. Then the system of
equations for ψme (ρ) and ψmh (ρ) reads

[
Eg − E − λγ

(
|ψme (ρ)|2 − |ψmh (ρ)|2

)]
ψme (ρ)

= A
( ∂
∂ρ

+
m+ 1

ρ

)
ψmh (ρ),

[
Eg + E − λγ

(
|ψme (ρ)|2 − |ψmh (ρ)|2

)]
ψmh (ρ)

= A
( ∂
∂ρ
− m

ρ

)
ψme (ρ). (10)

Here we dropped the term Bk̂2 in the Hamiltonian ĥ∆(r)

and will incorporate it later, see Appendix A.
The solution of the system is straightforward when the

energy, E, is close to the band-edge, (Eg − E) � Eg.
Then we have ψmh � ψme , so that the system Eq. (10)
reduces to a single equation

A2

2Eg
∇2ψe(r) + λγ

[
ψe(r)

]3
= (Eg − E)ψe(r). (11)

This is a standard instanton equation for a particle mov-
ing in a white-noise random potential.22–25 The radial

size of this instanton is ∼
[
Eg(Eg − E)/A2

]−1/2
. Thus,

the integral over r in Eq. (4) is proportional to (Eg−E).
The full expression for the density of states in the tail
reads

N(E) ∝ exp
[
− κ0

(A2

γ

)Eg − E
Eg

]
, (12)

so that the characteristic tail energy is given by Et =
γEg

A2 . The value of the numerical factor κ0 = 5.8 was
established in Refs. 24, 25. It originates from the solution
of Eq. (11) with zero angular momentum. Physically, the
tail states are due to local gap reductions, as depicted in
Fig. 1.

The result Eq. (12) applies when the tail energy is
much smaller than the gap, i.e. for γ � A2. This result
cannot be used even as an order-of-magnitude estimate
for the middle of the gap. This is because the shape of the
fluctuation, ∆(r), at |E| � Eg is dramatically different
from a simple gap reduction, ∆(r), captured by Eq. (11).
Below we demonstrate that for |E| � Eg the expression
for the density of states has the form

N(E) ∝ exp

[
− κ1

(A2

γ

)Eg
|E| ln

Eg
|E|

]
. (13)
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FIG. 2: (Color online) (a) The density of the in-gap states due
to the composition disorder is shown schematically. Near the
gap edges (dashed lines) it is a simple exponent, see Eq. (12),
while near E = 0 it represents a semi-hard gap, Eq. (13).
(b) The components, ψe and ψh, of the spinor corresponding
to the fluctuation state, E � Eg, are shown schematically
versus the dimensionless distance from the ring center. An-
alytically, ψe is given by Eq. (23). The width of the ring
exceeds logarithmically the in-gap decay length at E = 0.

Singular energy dependence of | lnN(E)| reflects the fact
that the probability of formation of a state near the gap
center is highly unlikely since the corresponding fluctua-
tion requires a local gap reversal.

To create a state exactly at E = 0 the gap should be
negative in the left half-space and positive in the right
half-space26 (or vice versa). Naturally, such a fluctuation
has a zero probability. To have a finite probability, the
fluctuation must include two gap reversals, i.e. |∆(r)|
should exceed Eg inside the fluctuation. To establish the
shape of this fluctuation, we start from a one-dimensional
case when |∆(r)| changes only along the coordinate, y,
Fig. 1.

A one-dimensional version of the system Eq. (10) reads

[
Eg − E − λγ

(
|ψe(y)|2 − |ψh(y)|2

)]
ψe(y) = A

dψh(y)

dy
,

[
Eg + E − λγ

(
|ψe(y)|2 − |ψh(y)|2

)]
ψh(y) = A

dψe(y)

dy
.

(14)

Upon a natural rescaling

y =
A

Eg
χ, ε =

E

Eg
, ψe,h =

(Eg
λγ

)1/2

Φe,h, (15)

it acquires a fully dimensionless form
[
1− ε−

(
|Φe(χ)|2 − |Φh(χ)|2

)]
Φe(χ) =

dΦh
dχ

,

[
1 + ε−

(
|Φe(χ)|2 − |Φh(χ)|2

)]
Φh(χ) =

dΦe
dχ

. (16)

Dimensionless length in Eq. (16) corresponds to a phys-
ical decay length of the wave function in the middle of
the gap. Local gap reversals correspond to the regions of

χ where
(
|Φe(χ)|2 − |Φh(χ)|2

)
exceed 1. A formal rea-

son why there are no midgap fluctuation states is that
for ε = 0 electron-hole symmetry requires |Φe(χ)|2 =
|Φh(χ)|2, which is incompatible with decay of Φe,h at
χ→ ±∞.

To find an asymptotic solution of the system at finite
energy, we make use of the smallness of parameter ε.
As a first step, instead of Φe and Φh, we introduce new
functions

Φe(χ) = C(χ) coshϕ(χ), Φh(χ) = −C(χ) sinhϕ(χ),
(17)

after which the system takes the form

1− ε− C(χ)2 = −
[
dϕ

dχ
+ tanhϕ(χ)

( dC

Cdχ

)]
,

1 + ε− C(χ)2 = −
[
dϕ

dχ
+

1

tanhϕ(χ)

( dC

Cdχ

)]
. (18)

Upon subtracting the two equations, we can express the
function C(χ) in terms of ϕ(χ) as follows

C(χ) = C0 exp
[
− ε

χ∫

0

dχ′ sinh 2ϕ(χ′)
]
, (19)

where C0 is a constant. Substituting this expression back
into the system, we arrive to a closed differential-integral
equation for ϕ(χ)

1− C2
0 exp

[
− 2ε

χ∫

0

dχ′ sinh 2ϕ(χ′)
]

= −dϕ
dχ

+ ε cosh 2ϕ.

(20)
In a zero order in ε � 1 the solution of Eq. (20) is a
linear function

ϕ(χ) =
χ

b
, b =

1

C2
0 − 1

. (21)

Gap reversal, which corresponds to C0 > 1, is terminated
at certain distance χ = χε when ε coshϕ becomes big.
This yields

χε =
b

2
| ln ε|. (22)

Importantly, the exponential term in the left-hand side of
Eq. (20) drops abruptly from 1 to 0 at the same χ = χε,
or, more precisely, in the domain |χ− χε| . 1.

The behavior of C(χ) at |χ−χε| > 1 can be found tak-
ing into account that C2

0 -term in Eq. (20) is negligible
in this domain. Then it follows from Eq. (20) that the
function ϕ(χ) saturates at the value ϕ = ϕε, such that
ε cosh 2ϕε = 1. Smallness of ε allows to simplify ϕε to
1
2 | ln ε|. This is exactly the same value which one obtains
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upon substituting χε into Eq. (21). The fact that ϕ(χ)
saturates at χ > χε suggests that the function C(χ) falls
off exponentially, as exp

[
− (χ − χε)

]
at χ > χε, as fol-

lows from Eq. (19). The behavior of ϕ(χ) and C(χ) is
depicted in Fig. 2.

Returning to dimensional units, we summarize our re-
sult

Φe(y)=

[
Eg
λγ

(
1+

1

b

)]1/2

×





cosh
(
Eg

Ab y
)
, y < yE,

(
Eg

E

)1/2

exp
[
− Eg

A (y − yE)
]
, y > yE,

(23)
where

yE =
A

Eg
χε =

Ab

2Eg
ln
Eg
E
. (24)

The corresponding expression for ψh differs by replace-
ment of cosh by sinh. At y = yE the two expressions
match within a numerical factor.

The solution Eq. (23) of the system of instanton equa-
tions in 1d is, actually, sufficient to find the 2d density
of states. Compared to the system Eq. (14), the 2d in-
stanton equations contain the extra “centrifugal” terms
∝ 1/ρ. These terms create an energy shift ∼ A/ρ, and
thus prevent the formation of the fluctuation in-gap levels
with small energies. For such levels to exist, the double
reversal of the gap sign should take place within a ring
with radius, ρE, much bigger than the width, see Fig. 1.
Then the solutions of the system Eq. (14) near the ring
center are one-dimensional with y = ρ−ρE. More quanti-
tatively, see Appendix B, with angular motion taken into
account, the energy levels of the ring-shape fluctuation
are given by

Em = ±
[
A2
(2m+ 1

ρE

)2

+ E2

]1/2

, (25)

where the first term described the quantization of the an-
gular kinetic energy. The above equation suggests that,
for level E to exist, the minimal radius of the ring is
A/|E|.

In the expression Eq. (4) for the density of states the
integral dr can be replaced by the integral 2πρEdy over
the area of the ring

N(E) ∝ exp

[
− 1

2γ

(
2πρE

∞∫

−∞

dy∆2(y)
)]
. (26)

The expression for magnitude of the fluctuation, ∆(y), is
given by Eq. (9). Taking into account that the dominant
contribution to the integral over y comes from the domain
|y| < yE, we get

N(E) ∝ exp

[
−2πλ2γρE

yE∫

0

dy
(
ψ2
e(y)−ψ2

h(y)
)2
]
. (27)

Substituting Eq. (23) into Eq. (26), and taking into
account that the difference

(
ψ2
e − ψ2

h

)
is constant for

y < yE, we reproduce the result Eq. (13) in which the
constant κ1 should be identified with a combination

κ1(b) = π
(

1 +
1

b

)2

b. (28)

The dependence κ1(b) has a minimum at b = 1, where it
is equal to 4π. The value b = 1 corresponds to C0 = 21/2,
which, in turn, means that the most probable fluctuation
corresponds to a complete gap reversal, i.e. the gap is
equal to −Eg at the core of the fluctuation.

IV. DISCUSSION

The main outcome of our study is that, even when
the spins of magnetic dopants are fully aligned, the un-
avoidable statistical fluctuations in their density (alloy
disorder27–30) smear the gap, Eg. In conventional semi-
conductor mixed crystals this disorder is known to cause
the tail in the optical absorption and even turn a gapless
semiconductor into a metal29. The degree of smearing is
governed by a dimensionless material parameter

ν =
γ

A2
=
x(1− x)

A2N0

(dEg
dx

)2

. (29)

For ν � 1 only a narrow energy interval |E−Eg| ∼ νEg
is affected by the disorder, see Eq. (12). As ν exceeds 1,
it might seem from Eq. (12) that the gap is completely
washed out. However, our result Eq. (13), see also Fig.
2, suggests that, even for strong disorder, there is an al-
most hard gap near E = 0 which exists in the domain
|E| . Eg/ν. Probably, see Appendix C, it is this hard
gap that governs the temperature dependence of the lon-
gitudinal resistance in the experiments5–21. The scale of
temperatures for QAH effect is known to be much lower
than the Curie temperature. The fact that the bulk gap
in QAH is narrow follows most convincingly from Ref. 10,
where the strong temperature-dependent deviations from
the quantized value of non-diagonal resistance were ob-
served in high applied external field, so that they cannot
be accounted for by the domain structure in the sample.
Moreover, the analysis in experimental paper Ref. 15
indicates that the low-temperature behavior of the zero-
field diagonal conductivity is activational rather than the
variable-range hopping, which is consistent with the sce-
nario of a hard gap. To estimate the experimental value
of parameter ν we chose x = 0.1, as in most experi-
ments, A = 3eVÅ (Ref. 4), and α = 2.7eV (Ref. 31).
With N0 = 5 · 1014cm−2, we got ν ≈ 0.5, suggesting that
statistical disorder is relevant for QAH effect.

There are two principle issues that complicate quan-
titative comparison of our predictions with experiment.
Firstly, we used the simplest description of electron states
based on the Hamiltonian Eq. (7). This Hamiltonian,
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proposed in Ref. 31, is believed to capture the low-energy
excitations after the pseudospin components, ψe and ψh,
are identified with symmetric and antisymmetric combi-
nations of the top and bottom surface states. However,
the experiments were performed on multilayer structures.
It is unclear whether the purely 2d description applies to
them quantitatively. Secondly, in realistic samples, the
in-gap states due to the magnetic disorder can be masked
by the smearing due to non-magnetic impurities. In-gap
states due to these impurities do not “preserve” the en-
ergy E = 0. The only information about the disorder in
QAH samples is the value of mobility, µ = 760cm2/Vs,
measured in Ref. 8 at temperature 80K, much higher
than the Curie temperature, 15K. However, relating this
mobility to the random potential, which could be added
to the Hamiltonian Eq. (7), is impossible, again, due to
the complex bandstructure of multilayers.

In conclusion, we point out that for a really strong
disorder ν � 1, the hard gap near E = 0 disappears.
In this limit one can neglect Eg in the Hamiltonian, so
that the problem reduced to disorder induced smearing
of a linear Dirac spectrum. This problem has a long
history32–34, and was addressed in relation to e.g. d-wave
superconductivity. However, in the absence of energy
scale to compare the disorder with, there is no definite
answer.
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VI. APPENDICES

A. The role of Bk2 term in the Hamiltonian

In order to estimate the effect of Bk2 term in the
Hamiltonian Eq. (7), we compare it to the linear term
and find the scale of momenta k ∼ A/B when this term
becomes important. In other words, the term Bk2 plays
a dominant role when the spatial scales in the problem
are ∼ B/A. On the other hand, with logarithmic accu-
racy, the size of the fluctuation is ∼ A/Eg. The ratio of

the two scales yields a dimensionless parameter BEg/A
2,

which becomes progressively small as the gap decreases.
More quantitative information about the role of Bk2 can
be obtained upon incorporating it into Eq. (20). Then

it takes the form

dϕ

dχ
= C2

0 exp
[
− 2ε

χ∫

0

dχ′ sinh 2ϕ(χ′)
]
− 1 + ε cosh 2ϕ

+
BEg
A2

[(dϕ
dχ

)2

− d2ϕ

dχ2

]
. (30)

Similar to the steps in the main text, we neglect small
terms containing ε and substitute ϕ(χ) = χ/b. This leads
to the following modified relation between the parameters
b and C0

C2
0 = 1 +

1

b
−
(
BEg
A2

)
1

b2
. (31)

Note that for the “topological” bandstructure, when the
signs of B and Eg are opposite, the last term in Eq.
(31) causes only a slight increase of C0, which results
in a small suppression of the exponent in the density of
states. On the contrary, for a “trivial” bandstructure,
this last term decreases C0, leading to the enhancement
of the density of states. Moreover, Eq. (31) suggests
that this enhancement can be parametrically big when
the second and the third terms closely compensate each
other. For such a compensation the width of the ring
should be of the order of the minimal length B/A. This,
however, violates our basic assumption that the shape of
the fluctuation is dominated by the inner part.

B. Quantized levels on a ring with inverted
bandgap

Consider a gap-inverting fluctuation confined to a ring
ρ1 < ρ < ρ2. More specifically, the gap, ∆(r), changes in
a radial direction as follows:

∆(r) =





∆0, 0 < ρ < ρ1,

−∆0, ρ1 < ρ < ρ2,

∆0, ρ > ρ2.

(32)

We assume for simplicity that the gap reversal is full. In
the domain ρ < ρ1, the in-gap solution of the system Eq.
(10) which is finite at the origin reads

(
ψme (ρ)
ψmh (ρ)

)
=

(
αIm+1(sρ)√
∆0−E
∆0+EαIm(sρ)

)
, (33)

where Im(z) is the modified Bessel function, and s =√
∆2

0−E2

A . Corresponding solution for ρ > ρ2, which de-
cays at ρ→∞ can expressed in terms of the Macdonald
function as follows

(
ψme (ρ)
ψmh (ρ)

)
=

(
βKm+1(sρ)

−
√

∆0−E
∆0+EβKm(sρ)

)
. (34)
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Within the ring, the solution is a linear combination of
Im(sρ) and Km(sρ)

(
ψme (ρ)
ψmh (ρ)

)
=

(
α1Im+1(sρ) + β1Km+1(sρ)√

∆0+E
∆0−E

(
− α1Im(sρ) + β1Km(sρ)

)
)
,

(35)

The gap inversion is reflected in the relative signs of the
components of the spinor inside and outside the ring.
Four unknown coefficients, α, β, α1, and β1 are related by
continuity of the components of the spinors at ρ = ρ1 and
ρ = ρ2. Energy levels are determined from the condition
of consistency of the system, which reads

(∆0 − E
∆0 + E

) Km(sρ2)

Km+1(sρ2)
=

(
Im+1(sρ1)Km(sρ1)− ∆0−E

∆0+E Im(sρ1)Km+1(sρ1)
)
Im(sρ2)− 2∆0

∆0+E Im+1(sρ1)Im(sρ1)Km(sρ2)
(
Im+1(sρ1)Km(sρ1)− ∆0−E

∆0+E Im(sρ1)Km+1(sρ1)
)
Im+1(sρ2) + 2∆0

∆0+E Im+1(sρ1)Im(sρ1)Km+1(sρ2)
.

(36)

The near-midgap levels with |E| � ∆0 appear only when
the conditions sρ1 � 1 and s(ρ2 − ρ1)� 1 are met. Un-
der these conditions Eq. (36) allows serious simplifica-
tions. Firstly, using the asymptotes of the Bessel func-
tions, the common bracket in the numerator and denom-
inator of the right-hand side simplifies to

Im+1(sρ1)Km(sρ1)−
(∆0 − E

∆0 + E

)
Im(sρ1)Km+1(sρ1)

≈ 1

2sρ1

(2E

∆0
− 2m+ 1

sρ1

)
. (37)

As a next step, we divide both sides by the ratio
Im(sρ2)/Im+1(sρ2) and take the large-ρ asymtotes. Then
the left-hand side takes the form
(∆0 − E

∆0 + E

)Km(sρ2)Im+1(sρ2)

Km+1(sρ2)Im(sρ2)
= 1−2E

∆0
−2m+ 1

sρ2
. (38)

The expressions in the numerator and denominator of
the right-hand side are equal to Eq. (37) ± a small cor-
rection. The asymptotic form of this correction is the
following

2∆0

∆0 + E
Im+1(sρ1)Im(sρ1)

Km(sρ2)

Im(sρ2)

≈ 2∆0

∆0 + E
Im+1(sρ1)Im(sρ1)

Km+1(sρ2)

Im+1(sρ2)
≈ 2e−2s(ρ2−ρ1)

2sρ1
.

(39)

Upon combining Eqs. (37)-(39), the equation for the
energy levels reduces to

1− 2E

∆0
− 2m+ 1

sρ2
= 1− 4 exp

[
− 2s(ρ2 − ρ1)

]
2E
∆0
− 2m+1

sρ1

. (40)

For a narrow ring one can replace ρ1 and ρ2 in the de-
nominators by (ρ1 + ρ2)/2. Also, with accuracy E2/∆2

0,
one can replace s by ∆0/A. This leads to the following
expression for the energy levels
(

2E

∆0

)2

=

[
2(2m+ 1)A

∆0(ρ1 + ρ2)

]2

+ 4 exp
[
− 2

(ρ2 − ρ1)∆0

A

]
.

(41)

The right-hand side is the sum of contributions from the
quantized motion along the ring and quantized motion
across the ring, as in Eq. (23).

C. Temperature dependence of conductivity

Neglecting the energy dependence of logarithm in Eq.
(13), we approximate the energy-dependent density of
states with

N(E) = N0 exp
(
− Eg
νE

)
, (42)

where parameter ν is defined by Eq. (27). Assume that
the energy responsible for the transport is E0. The den-
sity of states can be treated as a constant within a strip
|E − E0| < νE2

0/Eg. A typical distance between the
localized states within the strip is

r(E0) =
(νE2

0N(E0)

Eg

)−1/2

. (43)

Following the derivation of Mott’s law, we minimize the
log-resistance,

lnR (E0) =
E0

T
+

2r(E0)

ξ
, (44)

corresponding to activation into the strip and tunneling
between the neighbors, with respect to E0. Here ξ is the
localization radius. The condition of minimum reads

1

T
=

1

(N0ξ2)
1/2

( Eg
νE2

0

)3/2

exp

(
Eg

2νE0

)
, (45)

where we have differentiated only the exponent in r(E0).
Upon expressing E0 from Eq. (45) and substituting it
back into Eq. (44), we find with logarithmic accuracy

lnR (E0) =
Eg
2νT

[
ln
Eg
νT

(N0ξ
2Eg
ν

)1/2
]−1

. (46)
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The result Eq. (46) applies when the logarithm is big.
By virtue of the same condition the activation term in
Eq. (45) exceeds the tunneling term. Concerning the di-
mensionless combination, N0ξ

2Eg, under the logarithm,

with localization length, ξ = A/Eg, in the middle of the
gap being disorder independent, this combination is some

unknown power of ν. Thus, for ν ∼ 1, Eq. (46) applies
for T < Eg. We conclude that, due to a rapid growth
of the density of states away from the gap center, the
behavior of the resistance remains Arrhenius even at low
temperatures. This is consistent with observation in Ref.
15.
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