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We theoretically study the circularly polarized light-induced Floquet state in line-node semimetals
with time-reversal symmetry and inversion symmetry. It is found that the Floquet state can show
the photovoltaic anomalous Hall effect when an applied circularly polarized light creates a gap the
line node in the bulk and leaves Weyl point nodes. The Hall conductivity is sensitive to the location
of the Fermi level: When the Fermi level is located at the node, the Hall conductivity depends on
the radius of the line node and is nearly independent of the intensity of the light. Far from the
line node, the Hall conductivity is dependent on the intensity of the light. The sensitive Fermi-level
dependence of the Hall conductivity in the presence of a laser of weak intensity can have applications
in phototransistors based on thin films of line-node semimetals.

I. INTRODUCTION

Topological matter has attracted enormous attention
in recent years because it can host exotic edge or surface
states protected by nontrivial bulk topologies. Topo-
logical insulators, which are well known examples, are
characterized by a fully insulating gap in the bulk and
symmetry-protected metallic states at the boundaries1,2.
Currently, research interest in topological materials has
shifted from insulators to semimetals, as semimetals with
topologically non-trivial Fermi surfaces can also sup-
port robust surface states. In general, the bulk band
structures of topological semimetals possess point or line
nodes in the momentum space3,4. 3D Dirac semimetals
form one class of topological semimetals with four-fold
degenerate point nodes, where the electrons have linear
dispersions near the Dirac nodes. Na3Bi

5 and Cd3As2
6,7

have been experimentally confirmed to be topological
Dirac semimetals, where the Dirac nodes are protected
by a crystalline symmetry. If inversion or time-reversal
symmetry is broken, each Dirac node splits into two Weyl
nodes that are separated in the momentum space, and
the systems become Weyl semimetals8. Weyl nodes with
distinct chiralities lead to a variety of exotic measurable
consequences such as Fermi arc surface states and chi-
ral anomalies. Weyl semimetals have become a hot topic
because real Weyl semimetal materials have been theo-
retically proposed9,10 and experimentally discovered in
inversion-symmetry-breaking TaAs-class crystals11–14.

Unlike Dirac/Weyl semimetals, in which the conduc-
tion band touches the valence band at discrete points in
the momentum space, the conduction and valence bands
in topological line-node semimetals touch each other on
closed lines, and symmetry protected drumhead sur-
face states emerge3,4,15–17. Recently, several theoretical
proposals18–27 and experimental studies26–32 on line-node
materials have appeared. Because the dimension of line
nodes is different from that of point nodes in Dirac/Weyl
semimetals, we expect that line-node semimetals will ex-
hibit new topological transport and response phenom-
ena characteristics for line nodes. Several studies have

shown novel phenomena in line-node semimetals, e.g.,
minimal conductivity3,25, quantized Hall conductivity25,
a flat Landau level33, plasmons34,35, and electric polariza-
tion and orbital magnetization36. One method for real-
izing nontrivial transport phenomena in semimetals is to
irradiate the materials using light. Dirac/Weyl semimet-
als in the presence of circularly polarized light have been
theoretically studied within the framework of Floquet
theory37–39. The circularly polarized light couples to
electrons in a nontrivial way: the angular momentum of
the incident light interacts with that of electrons, which
can break the time-reversal symmetry. The anomalous
Hall effect due to the light-induced interaction, which is
called the photovoltaic anomalous Hall effect40, occurs
when the Fermi level is located near the Weyl nodes.
In this paper, we study the transport phenomena of

line-node semimetals in the presence of circularly po-
larized light within the framework of Floquet theory.
We find that the light-induced interaction in line-node
semimetals, unlike that in Dirac/Weyl semimetals37–39,
has a strong dependence on the direction of incident
light and is highly anisotropic. We show that photo-
voltaic anomalous Hall effect in line-node semimetals
with time reversal and inversion symmetries, such as
that in Ca3P2

28, can be generated by applying circu-
larly polarized light. We calculate the Hall conductivity
σAHE
zx (ǫF) as a function of Fermi level ǫF and tempera-

ture. We find that for ǫF = 0, which means that the
Fermi level is located at the line node, the Hall conduc-
tivity depends on the radius of the line-node, but that
it does not depend on the strength of the light-induced
interaction. For ǫF 6= 0, on the other hand, the Hall con-
ductivity depends on both the radius of the line-node and
the strength of light-induced interaction. As a result, the
magnitude of σAHE

zx (ǫF) is sensitive to ǫF in the presence
of weak-intensity incident light.

II. MODEL

We consider a line-node semimetal with time-reversal
and spatial-inversion symmetries that can be described
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by a minimal two-band model. In the absence of an
applied electromagnetic field, the low-energy effective
model Hamiltonian of line node semimetal is expressed
by20,21,41

H0 =
∑

k

ψ†
kH0ψk, (1)

H0(k) =

(

~
2k2

2m
−m0

)

τzs0 + vkzτ
ys0 − ǫFτ

0s0, (2)

where m is the effective mass of the electron; ψk =
(ψ↑,+ ψ↑,− ψ↓,+ ψ↓,−)

T is the annihilation operator with
spin up (↑), down (↓), even- (+), and odd- (−) parity
orbitals under the mirror reflection with respect to the
z = 0 plane; and k2 = k2x + k2y + k2z holds. sx,y,z (τx,y,z)

and s0 (τ0) are the Pauli matrices and the identity ma-
trix in the spin (orbital) space, respectively. When the
bands are inverted (m0 > 0), a line node appears on the
circle of k2x + k2y = 2mm0/~

2 and kz = 0. m0 and v are
parameters corresponding to the radius of the line node
and the velocity in the z direction, respectively.
Additionally, we take the electromagnetic fields for

line-node semimetals into account. The total Hamil-
tonian is obtained using the Peierls substitution, i.e.,
k → k − eA/~. Keeping the first-order term expansion
about the vector potential A, the total Hamiltonian is
approximated by

H = H0 +Hem, (3)

Hem = −
∑

k

ψ†
kj ·Aψk. (4)

where the charge current j is represented by

j =
e~

m

(

k − e

2~
A
)

τzs0 − ev

~
τys0ez, (5)

where e < 0 is the elementary charge of an electron and
ez is the unit vector along the z direction. The elec-
tric field E is obtained from the spatially-uniform vector
potential A; E = −∂tA.
In Sec. III, we note that A = AL(t) and E = EL de-

note the vector potential and electric field of the incident
light, respectively. In Sec. IV, to consider the anoma-
lous Hall effect, a DC electric field (Edc) is also included:
E ≡ EL +Edc and A ≡ AL +Adc.

III. FLOQUET STATES

Based on the model Hamiltonian of Eqs. (1)-(4),
we consider the Floquet state in line-node semimetals
using the standard approach37–40. Consider the time-
dependent vector potentialA(t), which is a periodic func-
tion with a period of 2π/Ω. Then, the total Hamiltonian
Eq. (3) is also periodic, as H(t) = H(t + 2π/Ω), with a
frequency of incident light of Ω. Below, AL is assumed
to be the monochromatic frequency of the coherent light.
Then, the wave function of the Schrödinger equation

TABLE I. Effects of circularly polarized light along the z, x,
and y axes in a semimetal with a line node on the kz = 0 plane.
PAHE indicates the photovoltaic anomalous Hall effect.

Axis Induced term PAHE

z δm0τ
zs0 0

x δm0τ
zs0, −Lxkyτ

xs0 σAHE
yz

y δm0τ
zs0, −Lykxτ

xs0 σAHE
xz

i∂tψ(t) = Hψ(t) is given by ψ(t) =
∑

u φue
−i(ǫ/~+u~Ω)t,

where ǫ is the Floquet quasi-energy and u takes all in-
teger values. From the Schrödinger equation and the
Floquet equation,

∑

n Hu,nφn = (ǫ + u~Ω)φu is ob-

tained. Here, Hu,n ≡ 1
Ω/(2π)

∫ Ω/(2π)

0 H(t)ei(u−n)Ωtdt +

u~Ωδun is the block Hamiltonian in the Floquet state.
Using Eq. (1), the diagonal term becomes Hu,u =

u~Ω+ 1
Ω/(2π)

∫ Ω/(2π)

0
H(t)dt = u~Ω+H0+

e2

2m |AL|2τzs0;
the off-diagonal terms are Hu,u+1 = H†

u+1,u =

− 1
Ω/(2π)

∫ Ω/(2π)

0 j ·AL(t)e
−iΩtdt. The other off-diagonal

terms are identically zero. Each solution to the Floquet
equation is regarded as a periodic steady state.
Next, we focus on the effective Hamiltonian H̃0,0, in-

tegrating out the higher-energy states φn≥1. Hem renor-
malizes the parameters and introduces new terms into
H̃0,0. Using the symmetry considerations, we find that
kyτ

xs0 (or kxτ
xs0) is the only time-reversal-symmetry-

breaking term induced by Hem in H̃0,0 without spin-orbit
interaction (see Appendix A for details). This term gives
rise to the photovoltaic anomalous Hall effect, as dis-
cussed in Sec. IV. In the following section, we derive the
light-induced terms in the effective Hamiltonian within
second-order perturbation theory.
We assume that, for perturbation theory, the energy

scale of the incident light (~Ω) is larger than the width of
the energy scale in Eq. (1). Then, the off-diagonal term
is regarded as a perturbation for H0, and the effective
Hamiltonian Heff = H̃0,0 in the periodic steady state is
given by

Heff = H0 +
e2|AL|2
2m

τzs0 +
[H0,−1,H0,1]

~Ω
+O(A4

L). (6)

The first and second terms are derived from the diagonal
term H0,0. The third term is the second-order correc-
tion due to the off-diagonal terms. Note that the second
term and third term are newly added in the Hamiltonian.
Below, we consider the details of these terms and their
physical meanings, which are summarized in Table I.

A. Light propagation along the z axis

When light propagates along the z axis, AL is given
by

AL = AL(cosΩt, σ
z
L sinΩt, 0), (7)
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where AL ≡ iEL/Ω and EL are the magnitudes of the
vector potential and the electric field of the light, respec-
tively. The spin angular momentum of light, σz

L = ±1,
indicates the chirality of right-handed and left-handed
circularly polarized light. Then, [H0,−1,H0,1] vanishes
and the effective Hamiltonian is given by

Heff = H0 + δm0τ
zs0, (8)

where

δm0 =
e2E2

L

2mΩ2
. (9)

Thus, there is no time-reversal-symmetry-breaking term
in Heff. We find that in Eq. (8) the induced term is
proportional to τzs0 and its sign is always positive δm0 >
0; therefore, this term plays a role in decreasing m0 of
Eq. (1) by δm0. In other words, m0 is renormalized into
m̄0;

m0 → m̄0 = m0 − δm0, (10)

which means that applying light along the z direction
simply changes the radius of the line node, assuming δm0

is smaller than m0.
A line node may induce the quasi-topological response

of the electric polarization Pz and the orbital magneti-
zation Mz along the z direction, which are proportional
to m0

36. This result implies that the values of Pz and
Mz can be controlled through the application of circu-
larly polarized light along the z direction. We also find
that the changes of Pz and Mz are independent of the
chirality of the incident light.

B. Light along the y axis

When the incident light propagates along the y axis,
a new term, which breaks the time-reversal symmetry, is
induced, in addition to the δm0 term, as shown below.
AL is represented by

AL = AL(σ
z
L sinΩt, 0, cosΩt). (11)

The off-diagonal term H0,−1(= H†
0,1) is given by

H0,−1 =
ieEL

2~Ω

(

−~
2

m [σz
Likx + kz] iv

−iv ~
2

m [σz
Likx + kz]

)

,

(12)

and the third term in Eq. (6) becomes

1

~Ω
[H0,−1,H0,1] = −ve

2E2
L

m~Ω3
σz
Lkxτ

xs0. (13)

The above term is represented in the form of iE × E
∗ =

|E|2σz
Lq, which indicates the direction of the light prop-

agation and the chirality of the incident polarized light,
where q is the unit vector of the incident light and E and

E
∗ are the complex vector of the electric field and its com-

plex conjugate, respectively. When the light is along the
y axis, the complex vector is given by E = EL(i, 0, 1)/

√
2.

As a result, the effective Hamiltonian is obtained to be

Heff = H0 + δm0τ
zs0 − Lykxτ

xs0, (14)

with

La=x,y,z =
ive2

m~Ω3
(E × E

∗)a. (15)

Note that the light-induced term, Lykxτ
xs0, in Eq.

(14) indicates the interaction depending on the spin an-
gular momentum of the light (σz

L), the orbital degrees of
freedom (τx), and the momentum k. The magnitude of
the coefficient Ly is proportional to both the laser inten-
sity and Ω−3. The sign of Ly denotes the chirality and
the propagation direction of the light. It is also found
that nonzero Ly is generated by nonzero v, which is cor-
responding to the velocity in the z direction in Eq. (2).

C. Light along the x axis

The effective Hamiltonian for the light along the x axis
is derived by the π/2 rotation of that along the y axis.
AL is represented by

AL = AL(0, cosΩt, σ
z
L sinΩt). (16)

The off-diagonal terms, H0,−1 (= H†
1,0) and

1
~Ω [H0,−1,H0,1], are found to be

H0,−1 =
ieEL

2~Ω

(

−~
2

m [ky + iσz
Lk

z] −σz
Lv

σz
Lv

~
2

m [ky + iσz
Lk

z ]

)

,

1

~Ω
[H0,−1,H0,1] = −Lxτ

xs0ky. (17)

Therefore, the effective Hamiltonian in the Floquet state
is given by

Heff(k) = H0 + δm0τ
zs0 − Lxkyτ

xs0.

Note that the third term denotes the coupling between
τx and ky .

IV. PHOTOVOLTAIC ANOMALOUS HALL

EFFECT

Using the effective Hamiltonian in Eq. (14), we con-
sider the photovoltaic anomalous Hall effect, which is a
characteristic type of transport in the Floquet state in
the presence of both incident circularly polarized light
and an applied DC electric field. The direction of the
incident light and the applied electric field are along the
y direction and x direction, respectively, as illustrated in
Fig. 1. Note that before applying the circularly polarized
light, there is no anomalous Hall effect.
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FIG. 1. (Color online) Schematic illustration of the setup
for photovoltaic Hall effect measurement in a line-node
semimetal. The incident light travels along the y direction
and the DC electric field is applied along the x direction.
The photovoltaic anomalous Hall current flows along the z
direction.

The energy spectrum of Eq. (14) is found to be

E±(k) = −ǫF ±

√

(

~2k2

2m
− m̄0

)2

+ v2k2z + L2
yk

2
x, (18)

which has Weyl points at kx = kz = 0 and ky = k0;

k0 =

√
2mm̄0

~
. (19)

The position of the Weyl point k0 is slightly shifted by
the change of m0 → m̄0 = m0− δm0, as shown in Fig. 2.
It is known that Weyl semimetals exhibit the anomalous
Hall effect42,43; the present system under incident light
also exhibit this effect, as explained below.
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FIG. 2. (Color online) The energy dispersion of the line-node
semimetal in the Floquet state at kz = 0 and ǫF = 0 for
two finite values of Ly. Realistic parameters, i.e., ~2/(2m) =
4.5 eV·Å2, v = 2.5 eV·Å, and m0 = 0.184 eV for Ca3P2,
are used15. (Left panel) The ky dependence of the energy
dispersion of Eq. (18) with fixed kx = 0. The position of
the Weyl point is slightly shifted by the change m0 → m̄0 =
m0−δm0. (Right panel) The kx dependence of Eq. (18) with
fixed ky = 0. A finite Ly value plays a role in opening the
band gap, and the line-node vanishes.

FIG. 3. (Color online) Anomalous Hall conductivity σAHE
zx

for (a) EL = 10 KeV/cm and for (b) EL = 5 KeV/cm, as a
function of the Fermi level ǫF and the temperature T . This
figure is based on realistic parameters for Ca3P2

15, which are
the same those used in Fig. 2. The light frequency is set
to Ω = 100/(2π) THz. The light-induced terms are evalu-
ated as follows. (a) δm0 = 0.82 meV, Ly = 0.2 eV·Å for
EL = 10 KeV/cm, and (b) δm0 = 0.21 meV, Ly = 0.05 eV·Å
for EL = 5 KeV/cm, respectively. The two cases of (a) and
(b) correspond to the solid and dashed lines in Fig. 2, respec-
tively.

The Hall conductivity σAHE
zx is obtained using the

Kubo formula:

σAHE
zx = −i~e2

∫

d3k

(2π)3

∑

α6=β

[vz(k)]αβ [vx(k)]βα

× f (ǫF + Eα(k))− f (ǫF − Eβ(k))

[Eα(k)− Eβ(k)]
2 , (20)

where f is the Fermi distribution function and vi =
(∂H(k)/∂ki)/~ is the velocity matrix along the i-th axis.
σAHE
zx is easily obtained for ǫF = 0 at zero temperature,
T = 0. Because the system is a two-dimensional insula-
tor for a fixed value of ky (except for ky = k0), the two-
dimensional Hall conductivity is quantized to e2/h × Z.
The Hall conductivity in the overall system is given by
an integral, i.e.,

σAHE
zx |ǫF=T=0 = 2× e2

h

k0
π
, (21)

where the prefactor 2 is due to the spin degeneracy. This
expression is the same as that in a Weyl semimetal in
which the Weyl points are located at ky = ±k0 and kx =
kz = 0. Note that the above value depends only on the
location of the Weyl points, irrespective of the induced
time-reversal-symmetry-breaking term Ly. For arbitrary
ǫF and T , σAHE

zx is numerically calculated, as shown in
Fig. 3. For ǫF → 0 and T → 0, the value of σAHE

zx =
2e2/h× k0/π = 0.5 mΩ−1 · cm−1 is reproduced for both
cases shown in Figs. 3(a), 3(b), and the solid line in
Fig. 4. The Hall conductivity is reduced by the effects
of finite temperature and Fermi energy, except for finite
Fermi energy in low temperatures.
The maximum of σAHE

zx (Eq. 21) has a large value for
a large radius of the line node (m) and small |EL/Ω|,
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FIG. 4. (Color online) Temperature dependence of anomalous
Hall conductivity for ǫF = 0 eV (solid line), ǫF = 0.1 eV
(dashed line), and ǫF = 0.2 eV (dotted line).

because of Eqs. (10) and (19). For finite ǫF and T , on
the other hand, Ly plays an important role: σAHE

zx is
immediately suppressed when Ly is weak, because Ly is
proportional to the magnitude of the light-induced gap,
which is essential for ensuring the stability of the Hall
conductivity for ǫF 6= 0 and T 6= 0.
Figure 4 shows the temperature dependence of σAHE

zx

for three typical cases: (i) ǫF = 0, for which the Fermi
level is located only on the Weyl points; (ii) ǫF = 0.1 eV,
for which the carrier is moderately doped and the Fermi
surface forms a torus; and (iii) ǫF = 0.2, for which the
carrier is sufficiently doped and a conventional spherical
Fermi surface is realized. The Hall conductivity σAHE

zx

monotonically and algebraically decreases as a function
of T for ǫF = 0 eV, whereas it slightly increases for fi-
nite Fermi energy (ǫF = 0.1 eV and 0.2 eV) in the low-
temperature regime and decreases to zero in the high-
temperature limit (not shown in the figures).

V. DISCUSSION AND CONCLUSION

In this section, we will discuss an experimental real-
ization of the circularly polarized light-induced effective
Hamiltonian Heff and nonzero value of σAHE

zx . The ob-
tained result is verified when the energy scale of the inci-
dent light (~Ω) is much larger than that of the low-energy
effective Hamiltonian H0, i.e., ~Ω ≫ ǫF. The light along
the in-plane (xy) direction breaks the mirror-reflection
symmetry that protects the line-node on the kxky plane;
therefore, the band gap opens, except at the Weyl points.
As a result, the nonzero anomalous Hall current, which is
a characteristic transport in the Floquet states, is driven
by an applied DC electric field on the xy plane, where
the line node is located and perpendicular to the light
direction.
Fig. 3 shows that the magnitude of σAHE

zx is signifi-
cantly reduced by having a finite value of ǫF, and that a
large value of Ly is needed for the detection of a nonzero

σAHE
zx in doped line-node semimetals. Recently, a method

for generating a large electric field, i.e., over 1 MV/cm, at
both infrared frequencies (72 THz)44 and terahertz fre-
quencies (1 THz)45 has been reported. This light induces
a giant orbital-momentum coupling Ly ≈ 0.1 eV.Å, which
enables one to observe a large value of σAHE

zx in wide ǫF
and T regions [see Fig. 3(a)].
In a thin film of line-node semimetal, the Fermi level

can be manipulated by applying a gate voltage. Thin
films are also suitable for the irradiation of light, i.e., the
light extends over the entire system when the thickness
of the film is smaller than the wavelength of the light.
For example, one can use a 1-µm (or thinner) film for
visible light of high energy (~Ω ∼ 1 eV ≫ ǫF).
In addition, the anomalous Hall conductivity can be

detected, even if the intensity of the light is weak, because
σAHE
zx has a very large value for ǫF ∼ 0, as shown in Fig.

3. Additionally, Eq. (21) shows that the anomalous Hall
conductivity in the line-node semimetal is nearly inde-
pendent of the laser intensity, and it is unlike that in Weyl
semimetals: In Weyl semimetals with Floquet states, the
anomalous Hall conductivity depends on the laser inten-
sity, because the Weyl nodes are shifted by the circu-
larly polarized light; this shift is proportional to the laser
intensity37–39. In addition, we find that, unlike the light-
induced effective Hamiltonian in Dirac/Weyl semimetals,
this result is highly anisotropic regarding the direction of
the incident light.
Finally, we consider applications of the photovoltaic

anomalous Hall effect to optical and electrical devices. In
the presence of a weak light, σAHE

zx (ǫF) is roughly zero,
except for ǫF = 0, indicating that there are significant dif-
ferences between σAHE

zx (ǫF 6= 0) and σAHE
zx (ǫF = 0). The

Fermi level, ǫF, is controlled by the on-off gate voltage in
a thin film. Using the analogy to resistive random access
memory or phase random access memory, the magnitude
of the Hall conductivity σAHE

zx (ǫF 6= 0) and σAHE
zx (ǫF = 0)

can be regarded as ”0” and ”1” logic signals. This large
difference in the Hall conductivity is applicable to optical
and electrical memory devices or phototransistors. The
basic mechanism could rely on the characteristic property
of line-node semimetals. Additionally, we noted that the
anomalous Hall effect is useful for the detection of the di-
rection of light, because the nonzero value of σAHE

zx occurs
when the light is along the mirror-symmetry-breaking di-
rection of the line-node semimetal.
Note added.— During the preparation of the

manuscript, we became aware of similar works by Z. Yan
et. al.,46, C.-K. Chan et. al.,47, and A. Narayan48, which
discuss the transition from line-node semimetals to Weyl
semimetals.
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Appendix A: Symmetry consideration for effective

Hamiltonian induced by circularly polarized light

The form of the effective Hamiltonian in the Floquet
state is determined by the symmetry consideration, as
described below.

1. Symmetry of circularly polarized light

Circularly polarized light along the q direction is ob-
tained from the vector potential of

AL = R(q̂)AL(cosΩt, σ
z
L sinΩt, 0)

T, AL ∈ iR, (A1)

where R(q) ∈ SO(3) is the rotational matrix that rotates
ẑ into q. The Hamiltonian describing the interaction be-
tween an electronic system and the light has the following
form

Hem(t) = −J ·AL, (A2)

where J denotes the charge current of the system.
Hem(t) has mirror-reflectionMq symmetry perpendic-

ular to q, and rotational symmetry along q. As a re-
sult, spatial-inversion symmetry is also retained. J is
time-reversal odd. Time-reversal T , on the other hand,
reverses the chirality of the light, i.e., Hem(t) breaks time-
reversal symmetry. The two mirrors, Mq̄1

and Mq̄2
, are

parallel to q, as shown in Fig. 5; they also reverse the chi-
rality. Therefore, Hem(t) is invariant for the composite
operation, namely, so-called magnetic reflection, Mq̄i

T ;

(Mq̄i
T )−1Hem(t)(Mq̄i

T ) = Hem(−t). (A3)

Similarly, the magnetic-rotational C(πq̄i)T symmetry
along q holds.
In summary, Hem(t) is invariant under the following

symmetry operations: C(θq̂), Mq, I, Mq̄i
T , C(πq̄i)T .

For the realization of the photovoltaic Hall effect, the Flo-
quet effective Hamiltonian must have a time-reversal-odd
term of the A2g representation or its compatible ones.

TABLE II. 16 matrices in the minimal theory.

I Mx My Mz T

τ 0s0, τ zs0 + + + + +

τ 0sx, τ zsx + + − − −

τ 0sy, τ zsy + − + − −

τ 0sz, τ zsz + − − + −

τxs0 − + + − +

τxsx − + − + −

τxsy − − + − −

τxsz − − − − −

τys0 − + + − −

τysx − + − + +

τysy − − + + +

τysz − − − − +

kx − − + + −

ky − + − + −

kz − + + − −

2. Minimal model for a line-node semimetal

A minimal (D∞h) model hosting a line node consists of
even-parity (i.e., τz = +1) and odd-parity (i.e., τz = −1)
orbitals under mirror reflection with respect to the hori-
zontal plane. The symmetry operations, spatial inversion
I, and mirror reflection with respect to the xi = 0 plane
Mi are represented by

I = τz , Mx = sx, My = sy, Mz = τzsz. (A4)

The 16 matrices τµσν in this theory are summarized in
Table II.
A Hamiltonian for a line-node semimetal, which has

an A1g representation, is given by

H0(k) = c(k)τ0s0 +m(k)τzs0 + vkzτ
ys0, (A5)

where

c(k) = c0 + c1k
2
z + c2(k

2
x + k2y), (A6)

m(k) = m0 +m1k
2
z +m2(k

2
x + k2y). (A7)

In Eq. (1), for simplicity, the c(k) term is ignored and
m1 = m2 is assumed.
In the following, we derive the effective Hamilto-

nian based on the symmetry consideration. The Flo-
quet Hamiltonian shares the same symmetry as H0(k) +
Hem(t). Hem(t) renormalizes the parameters in H0(k)

and yields new terms H̃em(k). Here, we focus on

the time-reversal-symmetry-breaking terms in H̃em(k),
which may trigger the photovoltaic anomalous Hall ef-
fect.

a. Circularly polarized light along the z direction

Symmetry of the system under circularly polarized
light along the z direction is reduced to the point group
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∞/mm′m′ from ∞/mmm, where ′ denotes the magnetic
operation. The time-reversal-symmetry-breaking terms
induced by the light belong to the time-reversal-odd A2g

representation of ∞/mmm;

H̃em = (a0zτ
0 + azzτ

z)sz + λyτ
y(kxs

x + kys
y)

+ ayzkzτ
ysz +O(k2). (A8)

The light may induce many spin-dependent terms only
when the system has a spin-orbit interaction.

b. Along the x direction

The symmetry of the system under circularly po-
larized light along the x direction becomes m′mm′

from ∞/mmm. The time-reversal-symmetry-breaking
terms are the time-reversal-odd E(2n−1)g representation
of ∞/mmm:

H̃em = (a0xτ
0 + azxτ

z)sx + τy(ayzkxs
z + ayxkzs

x)

+ ax0kyτ
xs0 +O(k2). (A9)

Similar to the previous case of light along the z direc-
tion, many spin-dependent terms may be induced in the
presence of a spin-orbit interaction. Note that the last
term arises, even in the absence of a spin-orbit interaction
because it is independent of spin.
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