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In this paper we calculate the nonlinear susceptibility and the resonant Raman cross section for
the paramagnetic phase of the ferromagnetic Quantum Ising model in one dimension. In this region
the spectrum of the Ising model has a gap m. The Raman cross section has a strong singularity
when the energy of the outgoing photon is at the spectral gap ωf ≈ m and a square root threshold
when the frequency difference between the incident and outgoing photons ωi −ωf ≈ 2m. The latter
feature reflects the fermionic nature of the Ising model excitations.
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I. INTRODUCTION

When photons enter into a strongly interacting
medium one expects nonlinear phenomena such as fre-
quency mixing and inelastic light scattering [1],[2]. These
effects are interesting by itself, but they can also serve
as experimental tools to extract otherwise unaccessible
information about strongly correlated dynamics since all
these tools probe multi-point dynamical correlation func-
tions which carry much richer information than a simple
linear response.

In this paper we will present calculations of three- and
four-point dynamical correlation functions for the fer-
romagnetic Quantum Ising (FQI) model in one spatial
dimension (1D) and relate them to two spectroscopic
probes: the nonlinear susceptibility and the inelastic
scattering cross section of light (Raman scattering). We
have chosen the 1D FQI model for three reasons. Firstly,
this is a strongly correlated model whose applicability to
real materials has been firmly established (see the dis-
cussion at the end of the paper). Secondly, this model
admits a resonance regime of where nonlinear effects are
strongly enhanced. The effectiveness of light probes is
somewhat restricted by the fact that the photons carry
a very small momentum, but in most strongly correlated
systems the strongest correlations occur at finite wave
vectors of order of the size of the Brillouin zone. The
1D FQI model represents an exception from this rule.
The third factor is a comparative simplicity of the cal-
culations which will allow us to concentrate on the cru-
cial points avoiding cumbersome technical details. We
consider FQI as the first integrable model among many
where multi-point correlation functions can be calculated
and their current calculations present a skeleton of the
general scheme for all such models.

The quantum Ising model is described by the Hamil-

tonian

H =
∑

n

(

− Jσz
nσ

z
n+1 + hσx

n

)

, (1)

where σa are the Pauli matrices. This model is one of the
best studied models of strongly correlated physics (see
[3],[4],[5] for a review). Its exact solution was obtained
as early as 1928 by Jordan-Wigner transformation which
expresses the spin operators in terms of fermionic cre-
ation and annihilation ones. For the reasons explained
above we are ingterested in the case J > 0 (FQI model).
The best condensed matter realization known to date is
found in columbite CoNb2O6 [6],[7],[8]. We will discuss
it in Conclusions.
The Ising model (1) may describe not only spins, but

any coupled two level systems. If these are spins then
operators σz

n directly couple to external magnetic field:
µBB

z
nσ

z
n. Alternatively the states of two level system

may correspond to positions of electric charges in a dou-
ble well potential. Then σa would be the dipole moment
operators; the first term in (1) is the dipole-dipole in-
teraction and the transverse field describes the quantum
tunneling between the wells. The interaction of dipole
moments with the electric field is given by pEz

nσ
z
n with p

being the dipole moment magnitude.
When the dominant interaction is ferromagnetic J > 0,

the strongest fluctuations take place at zero wave vectors
which guarantees a direct coupling to the electromag-
netic field creating optimal resonance conditions. The
Ising model (1) has two phases depending on the sign of
m = h − J . The resonance occurs in the paramagnetic
phase m > 0 when the ground state average of the order
parameter 〈σz 〉 = 0. In that case the electromagnetic
field has a nonzero matrix element between the ground
state and single magnon state.
Raman light scattering is a powerful experimental

technique frequently used in condensed matter physics.
The measured quantity is the inelastic scattering cross
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section of photons R(q,Ω) which contains information
about the excitations of condensed matter systems with
which the photons interact. The theory of Raman scat-
tering was formulated in the nineteen twenties [9, 10]
when the formulae for R(q,Ω) were derived (see also
[11]). A radical simplification of these formulae was sug-
gested in [12] where the resonant part of the Raman cross
section was expressed as a particular limit of the four
point correlation function of the current operators. This
simplification allows one to apply to the problem vari-
ous techniques of quantum field theory such as Feynman
diagram expansion and also simplifies the application of
nonperturbative techniques.
Another technique to be discussed is a nonlinear re-

sponse directly related to the three-point correlation
function. The related themes are two-dimensional spec-
troscopy and spectroscopy with entangled photons [13]
,[14]. A relation of third-order nonlinear optical proper-
ties to magnetic interactions was demonstrated in [15].
The Jordan-Wigner transformation transforms FQI

into a model of noninteracting noninteracting massive
Majorana fermions. In the scaling limit m << J their
dispersion becomes relativistic ǫ(k) =

√
v2k2 +m2, v ∼

J. In what follows we will set v = 1 to restore J in the
final expressions.
The fact that the excitations of the Ising model do

not interact does not make the model trivial. Indeed,
since σz operators are very nonlocal in terms of the
fermions, the electromagnetic field has matrix elements
between states with different number of fermionic exci-
tations. Such situation is typical for strongly interacting
systems and experimental probes of multipoint correla-
tors are highly suitable to reveal this nonlocality. In the
paramagnetic phase of FQI the inelastic processes involve
matrix elements with odd number of the Ising fermions
with the leading low energy processes being transitions
from single- to two-fermion states. The fermionic nature
of the excitations is reflected in the fact that the cross
section vanishes at the threshold: R(Ω) ∼ (Ω − 2m)1/2

(see Eqs. (8,9) below.

II. THE OBSERVABLES

A. The nonlinear susceptibility

is the third derivative of the action with respect to the
dynamical magnetic field:

χ(3)
zzx = 〈T̂ σz(t1)σ

z(t2)σ
x(t3)〉connected, (2)

where σ =
∑

n σ
z
n (we assume that electromagnetic ra-

diation carries no momentum). In the Ising model such
response exists only when the polarization of photons is
such that the magnetic field has both z and x components
so that the coupling to the magnetic field is described as

V = µB

∑

n

(Bzσz
n +Bxσx

n), (3)

The nonlinear susceptibility describes the effects or fre-
quency mixing. As follows from (2), the only nonzero
third order response includes two magnetic fields with
frequencies ωz, ωx − ωz along the z- and one field with
frequency −ωx along the x-direction. Our result where
we take into account only two magnon production pro-
cesses, is

χ(3)
zzx(ωz,−ωz + ωx,−ωx) = C2µ3

B(mJ
3)−1/4×

{ (ωx − 2m)h (ωx/2m + iδ)

(ωz −m) (ωx − ωz −m)
+ (ωx,z → −ωx,z)

+ 16mπ
(ωx − ωz)ωz −m2

(ω2
z −m2) ((ωx − ωz)

2 −m2)

}

(4)

where C ∼ 1 is a numerical constant and (see appendix
C)

h (x) =

∫ ∞

−∞

(

1 +
1

cosh θ

)2
1

cosh θ − x
dθ.

B. Relation between the Raman cross section and
the correlation functions

As it was stated above we assume the following spin-
photon interaction V =

∑

n pEnσ
z
n. Then according to

Eqs. (2.21) from [12] the cross section for the light beam
polarized along the z-axis is given by the following ex-
pression

R(ωi, ωf ) = 2πµB
4[(hωi)(hωf )]

χR(ωi, ωf )

1− exp[−β(ωi − ωf )]
,

(5)
where β = 1/T , ωi and ωf are frequencies of the incident
and the scattered light. We will consider the T = 0 limit.
Then the function χ is expressed as (see Eqs. 2.30, 2.31
from [12])

χR(ωi, ωf) =
1

2πi
lim

δ1>δ2→0
{

Ξ̃(−ωi − iδ1, ωf + iδ2,−ωf + iδ2, ωi − iδ1)−

Ξ̃(−ωi − iδ2, ωf + iδ1,−ωf + iδ1, ωi − iδ2)
}

, (6)

where Ξ̃ is the Fourier transform of the four-point time
ordered correlation function:

〈 T̂ σ(t1)σ(t2)σ(t3)σ(t4) 〉connected (7)

Below we will derive the expression for (7) in the para-
magnetic phase of model (1) at T = 0 in the limit
m = h − J << J and will use the result to calculate
the Raman cross section (5). For ωi > ωf > 0 we obtain
the result by substituting Eq. (20) into (6) (see appendix
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B)

χR(ωi, ωf ) ∼ (m/J)1/2
J3

m4

[ G
(

1
2m (ωi + ωf )

)

(ωf −m)
2
(ωi −m)

2

+
G
(

1
2m (ωi − ωf)

)

(ωf +m)
2
(ωi −m)

2

]

(8)

where

G(x) = Θ(x− 1)
(x− 1)

1/2
(x+ 1)

5/2

x3
. (9)

The calculation takes into account only 2-particle inter-
mediate states and hence is valid in the range of frequen-
cies |ωi − ωf | < 4m when the processes with emission of
more than 2 particles do not contribute to the inelastic
cross section. The threshold for the inelastic scattering
is at ωi ± ωf = 2m corresponding to the emission of two
fermionic excitations.

III. GREEN’S FUNCTIONS

Below we will do our calculations in the most general
form valid for all integrable models and at the end apply
the results to the Ising model. We will concentrate on the
most difficult case of the four-point function, the calcu-
lations of the three-point one are comparatively straight-
forward.
Let φ be a scalar bosonic field (for the Ising model it

is the scaling limit of the σz). Its Green’s functions are
defined as time ordered n-point functions

τ(x) = 〈 0 |Tϕ(x1) . . . ϕ(xn)| 0 〉
=

∑

perm(x)

Θ1...n(t)w(x) ,

here w(x) = 〈 0 |ϕ(x1) . . . ϕ(xn)| 0 〉 is the Wightman
function and Θ1...n(t) = Θ(t12)Θ(t23) . . . Θ(tn−1,n). In
momentum space

τ̃ (k) =

∫

d2xeixikiτ(x)

=
∑

perm(k)

∫

d2xeixikiΘ1...n w(x) .

The connected Green’s functions are given by

τ̃ (k) =
∑

k
1
∪···∪k

m
=k

τ̃c(k1) . . . τ̃c(km) . (10)

For convenience we split off the energy momentum δ-
function and define Π̃(k)by

τ̃c(k) = (2π)
2
δ(2) (

∑

ki) Ξ̃(k) . (11)

S-matrix and form factors. For integrable quan-
tum field theories the n-particle S-matrix factorizes into
n(n− 1)/2 two-particle ones

S(n)(θ1, . . . , θn) =
∏

i<j

S(θij) ,

where the product on the right hand side has to be taken
in a specific order (see e.g. [17]). The numbers θij are
the rapidity differences θij = θi−θj, which are related to
the momenta of the particles by pi = m (cosh θi, sinh θi).
The form factors of a bosonic field are defined as the
matrix elements

F (θ) = 〈 0 |ϕ(0) | θ1, . . . , θn 〉 (12)

(For the paramagnetic phase of the Ising model they are
non-zero for n = odd). They satisfy the form factor equa-
tions (i) – (v) (see e.g. [22]). We use the normalization
〈 0 |ϕ(0) | θ 〉 = 1. As a generalization we write

F (θ′; θ) = 〈 θ′n′ , . . . , θ′1 |ϕ(0) | θ1, . . . , θn 〉 (13)

which is related to (12) by crossing. In particular (see
appendix A)

F (θ1; θ2, θ3) = F (θ1, θ2 − iπ−, θ3 − iπ+) + δθ12 + δθ13
(14)

F (θ2, θ3; θ4) = F (θ3 + iπ+, θ2 + iπ−, θ4) + δθ24 + δθ34
(15)

with iπ± = iπ ± iǫ and δθ12 = 4πδ(θ1 − θ2).

A. The Green’s functions in the low particle
approximation

Calculations of the Green’s functions of massive theo-
ries simplify when we restrict our interest to their imagi-
nary parts, as in the case of Raman scattering (5). In that
case for any given energy only limited number of matrix
elements contribute to the calculations, namely, those
ones which correspond to emissions of particles whose
energy does not exceed the threshold.

Below we will derive expressions for the four-point
Green’s functions in the two-particle approximation.

The 2-point Wightman function in 1-particle interme-
diate states approximation is (with the short notation
∫

θ = 1
4π

∫

dθ)

w1(x1 − x2) =

∫

θ

〈 0 |ϕ(x1) | θ 〉〈 θ |ϕ(x2) | 0〉

=

∫

dp

2π2ω
e−i(x1−x2)p = i∆+ (x1 − x2) .

The 4-point Wightman function in 1-0-1 intermediate
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particle approximation is

w101(x) =

∫

θ1

〈 0 |ϕ(x1) | θ1 〉〈 θ1 |ϕ(x2) | 0〉

×
∫

θ4

〈 0 |ϕ(x3) | θ4〉〈 θ4 |ϕ(x4) | 0 〉

= w1(x1 − x2)w
1(x3 − x4) . (16)

The 4-point Wightman function in 1-2-1 intermediate
particle approximation is (with

∫

θ
=
∫

θ1
. . .
∫

θ4
and

xp = x1p1+x2 (p2 + p3 − p1)+x3 (p4 − p2 − p3)−x4p4)

w121(x) =
1

2

∫

θ

〈 0 |ϕ(x1) | θ1 〉 〈 θ1 |ϕ(x2) | θ2, θ3〉

× 〈 θ3, θ2 |ϕ(x3) | θ4〉 〈 θ4 |ϕ(x4) | 0 〉

=
1

2

∫

θ

e−ixpF (θ1; θ2, θ3)F (θ2, θ3; θ4)

with (see (14) and (15))

1
2F (θ1; θ2, θ3)F (θ2, θ3; θ4)

= 1
2 (F (θ1, θ2 − iπ−, θ3 − iπ+) + δθ12 + δθ13)

× (F (θ3 + iπ+, θ2 + iπ−, θ4) + δθ24 + δθ34)

= I(θ) = I1(θ) + I2(θ) + I3(θ) .

We have introduced (see appendix A)

I1(θ) =
1
4F (θ1, θ2 − iπ+, θ3 − iπ−) (17)

× F (θ3 + iπ+, θ2 + iπ−, θ4)

+ 1
4F (θ1, θ2 − iπ−, θ3 − iπ+)

× F (θ3 + iπ−, θ2 + iπ+, θ4)

I2(θ) =
1
4 (δθ12 (1 + S(θ23)) + δθ13 (1 + S(θ23)))

× F (θ3 + iπ+, θ2 + iπ−, θ4)

+ 1
4F (θ1, θ2 − iπ−, θ3 − iπ+)

× (δθ24 (1 + S(θ32)) + δθ34 (1 + S(θ32)))

I3(θ) =
1
2 (δθ12 + δθ13) (δθ24 + δθ34) .

From I3 we calculate

w121
3 (x) = w1 (x1 − x4)w

1 (x2 − x3)

+ w1 (x1 − x3)w
1 (x2 − x4) . (18)

Therefore neglecting contributions from higher particle
intermediate states using (10) and (16) we obtain the
connected 4-point Green’s function

τ̃c(k) =
∑

perm(k)

∫

d2xΘ1...ne
ixiki

×
(

w121
1 (x) + w121

2 (x)
)

(19)

where w121
i (x) is given by the contribution from Ii(θ) in

(17). For ki = (k0i , 0) we obtain from (11) (see appendix

B)

Ξ̃(k) =
1

32πm6

∑

perm(k)

(20)

× m

m− k01 − iǫ

m

k04 +m− iǫ
g

(−1

2m

(

k03 + k04
)

)

with

g(x) = −2π

∫

θ

1

ω/m
I(0, θ,−θ, 0) 1

ω/m− x
(21)

where I = I1 + I2 contribute. For integrable models typ-
ically S(0) = −1, then the contribution from I2 vanishes
for θi → 0. With (6) and G(x) = (x − 1)2 Im g(x) equa-
tion (8) follows. Next we consider a simple model, for
which we calculate the function g(x) explicitly.

B. The scaling limit of the Ising model

In the scaling limit this model may be described by
an interacting Bose field σz

n = Cm1/8φ(x), where C is
a numerical constant and m = h − J . The excitations
are noninteracting Majorana fermions with the 2-particle
S-matrix S(θ) = −1. The field σx = (m/J)1/2ǫ(x) ∼
ψ̄ψ(x), where ψ is a free Majorana spinor field. In [3, 18,
19] the form factor was proposed

F (θ) = 〈 0|σ(0) | θ1, . . . , θn 〉 = (2i)
n−1

2

∏

i<j

tanh 1
2θij .

(22)
For ki = (k0i , 0) in momentum space the contribution
from I2 in (17) vanishes, because S(0) = −1. From (17)
and (22) we obtain (see appendix B)

I1(0, θ,−θ, 0) = tanh2 θ coth4 1
2 (θ − iǫ) + (ǫ→ −ǫ) .

Substituting it into (21) and taking into account G(x) =
(x − 1)2 Im g(x) and the relation between σz and φ we
obtain (9).
From ǫ(x) ∼ ψ̄ψ(x) one has for a free Majorana spinor

field

〈0|ǫ(0)|θ1, θ2〉 = sinh(θ12/2). (23)

For low intermediate particle numbers this leads to (4)
as above (see appendix C).

IV. CONCLUSIONS AND
ACKNOWLEDGEMENTS

We calculated the three and the four point correlation
functions for the ferromagnetic Quantum Ising model and
discussed their relation to the observable quantities. In
the paramagnetic phase of FQI the magnetic field is di-
rectly coupled to the spin operator which has matrix el-
ements between states with odd and even number of the
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Ising fermions. The fact that light can create odd number
of fermionic excitations is quite remarkable. It empha-
sizes an ambiguity between bosons and fermions existing
in one dimension.
As we have said in Introduction, the best experimen-

tal realization of FQI model known to date is found in
columbite CoNb2O6 [6],[7],[8]. Another possible candi-
date is Sr3CuIrO6 [16]. Both these materials are quasi
1D insulators; the columbite displays a quantum critical
point at B = 5.5T which is very well described by the
theory of the Ising model [7]. Neutron scattering [6] and
terahertz spectroscopy [8] also yield excellent agreement
with the theoretical predictions. In the view of these we
suggest that a good test of our theory would be high field
spectroscopic measurements at terahertz frequencies on
CoNb2O6.
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Rühl (Ed.), Field theoretic methods in particle physics,
Plenum, New York, (1980) , 307–324, Presented at
Kaiserslautern NATO Inst. 1979.

[20] J. Balog, M. Niedermaier, F. Niedermayer, A. Pa-
trascioiu, E. Seiler, et al., The intrinsic coupling in inte-
grable quantum field theories, Nucl.Phys.B583, 614–670
(2000).

[21] H. Babujian and M. Karowski, Exact form factors in in-
tegrable quantum field theories: The sine-Gordon model.
II, Nucl. Phys. B620, 407–455 (2002).

[22] H. Babujian, A. Foerster, and M. Karowski, Exact form
factors in integrable quantum field theories: The scaling
Z(N)-Ising model, Nucl. Phys. B736, 169–198 (2006).



6

Appendix A: Crossing

The form factors (13) satisfy crossing relations (see e.g. (31) in [21] ), in particular

F (θ1; θ2, θ3) = 〈 θ1 |ϕ(0) | θ2, θ3〉 = F (θ1 + iπ−, θ2, θ3) + δθ12 + δθ13S(θ23) (A.1)

F (θ2, θ3; θ4) = 〈 θ3, θ2 |ϕ(0) | θ4〉 = F (θ3 + iπ−, θ2 + iπ−, θ4) + δθ24 + δθ34S(θ32)

with iπ± = iπ± iǫ and δθ12 = 4πδ(θ1 − θ2). Using the form factor equation (iii) and Lorentz invariance (see e.g. [22])

Res
θ12=iπ

F (θ1, θ2, θ3) = 2i (1− S(θ23))

F (θ1, θ2, θ3) = F (θ1 + µ, θ2 + µ, θ3 + µ)

we can rewrite these equations as (14) and (15). And further one derives

1
2F (θ1, θ2 − iπ−, θ3 − iπ+) + δθ12 + δθ13 = 1

2 (F (θ1, θ2 − iπ+, θ3 − iπ−) + δθ12 (1 + S(θ23)) + δθ13 (1 + S(θ23))) (A.2)
1
2F (θ3 + iπ+, θ2 + iπ−, θ4) + δθ24 + δθ34 = 1

2 (F (θ3 + iπ−, θ2 + iπ+, θ4) + δθ24 (1 + S(θ32)) + δθ34 (1 + S(θ32))) .
(A.3)

Using equations (14,15) and the identity
(a+ b+ c) (d+ e+ f) =

(

1
2a+ b+ c

)

d+ a
(

1
2d+ e+ f

)

+ (b + c) (e+ f) we derive

F (θ1; θ2, θ3)F (θ2, θ3; θ4)

= (F (θ1, θ2 − iπ−, θ3 − iπ+) + δθ12 + δθ13) (F (θ3 + iπ+, θ2 + iπ−, θ4) + δθ24 + δθ34)

=
(

1
2F (θ1, θ2 − iπ−, θ3 − iπ+) + δθ12 + δθ13

)

F (θ3 + iπ+, θ2 + iπ−, θ4)

+ F (θ1, θ2 − iπ−, θ3 − iπ+)
(

1
2F (θ3 + iπ+, θ2 + iπ−, θ4) + δθ24 + δθ34

)

+ (δθ1θ2 + δθ1θ3) (δθ4θ2 + δθ4θ3)

then (A.2) and (A.3) prove (17).

Appendix B: Proof of (8)

1. Calculation of τ 121

c :

To derive (20) from (19) we calculate (for i = 1, 2)
∫

d2xΘ1...ne
ixiki

∫

p

e−ix1p1−ix2(p2+p3−p1)−ix3(p4−p2−p3)+ix4p4Ii(θ1, θ2, θ3, θ4)

=

∫

dx0Θ1...ne
ix0

i
k0

i

∫

θ

e−ix0

1
ω1−ix0

2
(ω2+ω3−ω1)−ix0

3
(ω4−ω2−ω3)+ix0

4
ω4

(2π)
4
δ(p1 − k11)δ(p2 + p3 − p1 − k12)δ(p4 − p2 − p3 − k13)δ(p4 + k14)Ii(θ1, θ2, θ3, θ4).

For ki = (k0i , 0) this is equal to

= 2πδ
(

k11 + k12 + k13 + k14
)

∫

dx0Θ1...ne
ix0

i
k0

i

∫

θ

e−ix0

1
m−ix0

2
(ω2+ω3−m)−ix0

3
(m−ω2−ω3)+ix0

4
m

× (2π)
3
δ(p1)δ(p2 + p3)δ(p4)Ii(0, θ2,−θ2, 0)

= 2πδ
(

k11 + k12 + k13 + k14
) 1

(2m)
2

∫

θ

1

2ω
Ii(0, θ,−θ, 0)

∫ ∞

−∞

dx01

∫ 0

−∞

dx02

∫ 0

−∞

dx03

∫ 0

−∞

dx04

× eix
0

1(k
0

1
−m)+i(x0

2
+x0

1)(k
0

2
−(2ω−m))+i(x0

3
+x0

2
+x0

1)(k
0

3
−(m−2ω))+i(x0

4
+x0

3
+x0

2
+x0

1)(k
0

4
+m)

and
∫ ∞

−∞

dx01

∫ 0

−∞

dx02

∫ 0

−∞

dx03

∫ 0

−∞

dx04e
ix0

1(k
0

1
−m)+i(x0

2
+x0

1)(k
0

2
−(2ω−m))+i(x0

3
+x0

2
+x0

1)(k
0

3
−(m−2ω))+i(x0

4
+x0

3
+x0

2
+x0

1)(k
0

4
+m)

= 2πδ
(

k01 + k02 + k03 + k04
) −i
k02 + k03 + k04 +m− iǫ

−i
k03 + k04 + 2ω − iǫ

−i
k04 +m− iǫ
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proves (20) and (21). For integrable models typically S(0) = −1, then the contribution from I2 vanishes for θi → 0
(for the scaling Ising model we have S(θ) ≡ −1).

2. The function g(x) for the scaling Ising model:

From (17) and (22) we obtain (up to const)

I1(0, θ,−θ, 0) = 1
4F (0, θ − iπ+,−θ − iπ−)F (−θ + iπ+, θ + iπ−, 0) + (ǫ→ −ǫ)

=

((

tanh
1

2
(−θ + iπ + iǫ)

)(

tanh
1

2
(θ + iπ − iǫ)

)

tanh
1

2
(2θ)

)

×
((

tanh
1

2
(−2θ)

)(

tanh
1

2
(−θ + iπ + iǫ)

)

tanh
1

2
(θ + iπ − iǫ)

)

+ (ǫ→ −ǫ)

= tanh2 θ coth4 1
2 (θ − iǫ) + (ǫ→ −ǫ) .

and

g(x) = −2π

∫

θ

1

ω/m
I1(0, θ,−θ, 0)

1

ω/m− x
= −1

2

∫ ∞

−∞

dθ

(

coth4 1
2 (θ − iǫ) tanh2 θ + (ǫ→ −ǫ)
cosh θ (cosh θ − x)

)

=
16

1− x
− 15π

2x
− 8

x
− 4π + 2

x2
− π

x3
− (x+ 1)

2 √
x2 − 1

x3 (x− 1)
2 2 ln

(

−x+
√

x2 − 1
)

(B.1)

with g(0) = 10π + 94
3 (see also [20]) and the imaginary part for x > 1

Im g(x± iǫ) = ±Θ(x− 1)2π
(x+ 1)

2 √
x2 − 1

x3 (x− 1)2
. (B.2)

3. The 4-point Ξ-function and calculation of χ(ωi, ωf ):

The sum over all permutations in (20) yields

Ξ(k) =
1

32πm6

{

(

m

k04 +m
+

m

k03 +m

)(

m

−k01 +m
+

m

−k02 +m

)

g

(−1

2m

(

k03 + k04
)

)

+

(

m

k04 +m
+

m

k02 +m

)(

m

−k01 +m
+

m

−k03 +m

)

g

(−1

2m

(

k02 + k04
)

)

+

(

m

k04 +m
+

m

k01 +m

)(

m

−k02 +m
+

m

−k03 +m

)

g

(−1

2m

(

k01 + k04
)

)

+

(

m

k03 +m
+

m

k01 +m

)(

m

−k02 +m
+

m

−k04 +m

)

g

(−1

2m

(

k01 + k03
)

)

+

(

m

k02 +m
+

m

k01 +m

)(

m

−k03 +m
+

m

−k04 +m

)

g

(−1

2m

(

k01 + k02
)

)

+

(

m

k02 +m
+

m

k03 +m

)(

m

−k01 +m
+

m

−k04 +m

)

g

(−1

2m

(

k03 + k02
)

)

}

Substituting this into (6) we obtain

χ(ωi, ωf ) ∼
(ωi − ωf + 2m)2 Im g

(

−1
2m (ωi − ωf − iδ12)

)

(ωi +m)
2
(ωf −m)

2 +
(ωi + ωf + 2m)2 Im g

(

−1
2m (ωi + ωf − iδ12)

)

(ωi +m)
2
(ωf +m)

2

+
(ωi + ωf − 2m)

2
Im g

(

1
2m (ωi + ωf + iδ12)

)

(ωf −m)2 (ωi −m)2
+

(ωi − ωf − 2m)
2
Im g

(

1
2m (ωi − ωf + iδ12)

)

(ωf +m)2 (ωi −m)2

At ωi > ωf > 0 only the last two terms remain and (8) follows with G(x) = (x− 1)2 Im g(x).
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Appendix C: Proof of (4):

We consider the 3 point Greens function

τϕϕǫ(x) = 〈 0 |Tϕ(x1)ϕ(x2)ǫ(x3)| 0 〉

and the Fourier transform (for ϕ1, ϕ2, ϕ3 = ϕ, ϕ, ǫ)

τ̃ϕϕǫ(k) =

∫

d2xeixikiτϕ1ϕ2ϕ3
(x) =

∑

π∈S3

∫

d2xeixiπkiΘ123 〈ϕπ1(x1)ϕπ2(x2)ϕπ3(x3)〉

= (2π)
2
δ(2) (k1 + k2 + k3) Ξ̃ϕϕǫ(k). (C.1)

The 3-point Wightman functions in low intermediate particle number approximation are

w12
ϕϕǫ(x) =

1

2!

∫

θ

〈 0 |ϕ(x1) | θ1 〉〈 θ1 |ϕ(x2) | θ2, θ3〉〈 θ3, θ2 | ǫ(x3) | 0 〉

w11
ϕǫϕ(x) =

∫

θ

〈 0 |ϕ(x1) | θ1 〉 〈 θ1 | ǫ(x2) | θ2〉 〈 θ2 |ϕ(x3) | 0 〉

w21
ǫϕϕ(x) =

1

2!

∫

θ

〈 0 | ǫ(x1) | θ1, θ2 〉 〈 θ1 , θ2|ϕ(x2) | θ3〉 〈θ3 |ϕ(x3) | 0 〉.

As above using the form factor formulas (23), (22) and the crossing relations (A.1) one obtains the Fourier transforms
(for ki = (k0i , 0))

Ξ̃12
ϕϕǫ(k1, k2, k3) =

−i
32πm4

m

k01 −m+ iǫ
h
(

−k03/(2m) + iǫ
)

Ξ̃11
ϕǫϕ(k1, k2, k3) = −1

4

i

m4

m

m− k01 − iǫ

m

m+ k03 − iǫ

Ξ̃21
ǫϕϕ(k1, k2, k3) =

−i
32πm4

m

−k03 −m+ iǫ
h
(

k01/(2m) + iǫ
)

with

h(x) =

∫ ∞

−∞

(

1 +
1

cosh θ

)2
1

cosh θ − x
dθ = − 2

x
π − 2

x
− 1

x2
π − 2

x2 + 2x+ 1

x2
√
x2 − 1

ln
(

−x−
√

x2 − 1
)

.

Finally with (C.1) we obtain

Ξ̃ϕϕǫ(k1, k2, k3) = Ξ̃12
ϕϕǫ(k1, k2, k3) + Ξ̃11

ϕǫϕ(k1, k3, k2) + Ξ̃21
ǫϕϕ(k3, k1, k2) + (k1 ↔ k2)

which proves (4).


