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An accurate and consistent theory of phonons in metals requires that all long-range Coulomb
interactions between charged particles (electrons and ions) be treated on equal footing. So far, all
attempts to deal with this non-perturbative system were relying on uncontrolled approximations in
the absence of small parameters. In this work, we develop the Diagrammatic Monte Carlo approach
for a two-component Coulomb system that obtains the solution to this fundamental problem in
an approximation free way by computing vertex corrections from higher-order skeleton graphs.
The feasibility of the method is demonstrated by calculating the spectrum of longitudinal acoustic
phonons in a simple cubic lattice, determining their sound velocity, and obtaining the phonon
spectral densities by analytic continuation of the Matsubara Green’s functions. Final results are
checked against the lowest-order fully self-consistent GW-approximation in both adiabatic and non-
adiabatic regimes.

PACS numbers: 71.38.-k,31.15.A-,71.38.Mx

Standard theory of electron-phonon interaction (EPI)
in metals involves a number of approximations. While
some of them are based on the small adiabatic parame-
ter γ = ωD/ǫF ∼

√

m/M ≪ 1 (where ωD is the Debye
frequency, ǫF is the Fermi energy, m and M are the elec-
tron and ion masses, respectively), other approximations,
such as neglecting (i) vertex corrections based on the ef-
fective electron-electron interaction and (ii) the mutual
self-consistent feedback between the phonon and electron
subsystems, remain uncontrolled. Both effects do not in-
volve small parameters because EPI in metals is insepa-
rable from strong Coulomb forces between the electrons.
Indeed, at the level of the bare Hamiltonian, unscreened
Coulomb ion-ion interactions prevent formation of longi-
tudinal acoustic phonons by shifting their frequencies all
the way up to the frequency of ionic plasma oscillations,
ωp = q

√

(4πe2/q2ǫ∞)(ne/M) ≡
√

4πnee2/Mǫ∞, where
ne = ni is the conduction electron/ion charge density and
ǫ∞ is the ion-core dielectric constant. Once both the long-
range electron-phonon and electron-electron interactions
are accounted for, the acoustic spectrum is recovered
back due to screening1; the underlying mechanism can
be illustrated by replacing 4πe2/q2 with 4πe2/(q2 + κ2)
(where κ is the Thomas-Fermi wavevector) in the phonon
spectrum to get ω(q → 0) → ωp(q/κ).

In the adiabatic approximation it is assumed that in-
teractions between (and with) the heavy ions are screened
by the static dielectric function of a metal and the phonon
spectrum is determined from the corresponding dynamic
matrix of a solid. Thus transformed crystal vibra-
tions and EPI are no longer singular at small momenta.
When further progress is made by separating effects
of electron-electron and electron-phonon interactions2,3,
double-counting is dealt with by excluding static elec-
tronic polarization terms from the renormalization of

phonon propagators, and vertex corrections based on EPI
are neglected because they are small in γ. The adiabatic
approximation breaks down when γ & 1 is considered,
for instance, to explain enhancement of the critical tem-
perature in phonon-mediated superconductors4–6.

However, regardless of the γ parameter value, EPI does
not involve natural small parameters in metals and re-
mains strong. This means that even the first step in the
adiabatic approximation (screening of long-range inter-
actions) is ill-defined since the static dielectric function
itself should be the outcome of the non-perturbative cal-
culation based on all relevant interactions, including EPI.
The importance of vertex corrections was studied by var-
ious groups in connection with superconducting7–10 and
Dirac11 materials, as well as for polarons12,13, but never
for a two-component Coulomb system in a systematic
way when all forces are treated on an equal footing, and
all uncertainties are quantified.

In this work, we develop the bold-line Diagrammatic
Monte Carlo (BDMC) technique that allows us to deal
with Coulomb interactions in a fully self-consistent, ap-
proximations free, manner and obtain final results with
controlled accuracy by accounting for vertex corrections
from higher-order skeleton diagrams. We demonstrate
that BDMC leads to a theory capable of solving the fun-
damental problem of the phonon spectrum in a metal at
any γ, including the most difficult regime of γ ∼ 1, i.e.
when there are no small parameters of any kind.

Our model simulation considers a simple cubic lattice
of vibrating ions coupled to conduction electrons, and
aims at computing the spectrum of longitudinal phonons
and their velocity of sound in the thermodynamic limit.
We also perform spectral analysis of the phonon Mat-
subara Green’s function in the most difficult parameter
regime γ ∼ 1. We show that vertex corrections to the
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lowest-order (GW) approximation significantly soften the
sound velocity at γ & 1, and reduce the amplitude of the
giant Kohn anomaly at small γ. As far as we know,
this kind of studies were not possible to perform in the
past; none of the previous work for Coulomb systems was
done at the level of high-order skeleton technique in the
absence of small parameters.
System. We consider a lattice model of a metal defined

by the Hamiltonian

H = HFH +Hc +Hph +Hel−ph , (1)

where HFH is the standard Fermi-Hubbard model pa-
rameterized by the n.n. hopping amplitude t (with the
tight-binding dispersion relation ǫ(k)), the on-site repul-
sion U , and the chemical potential µ. In what follows
we use the lattice constant a and hopping t as units of
length and energy, respectively.
The second term describes Coulomb electron-electron

interaction, Hc =
∑

i<j,σ,σ′ Vc(rij) niσnjσ′ , where niσ =

a†iσaiσ is the electron density operator for the spin com-
ponent σ =↑, ↓ on site i (we employ standard second-
quantization notations for creation and annihilation op-
erators), and Vc(rij) = Uc/|i−j|; in Fourier space, Vc(q →
0) = 4πUc/q

2. We consider Uc = e2/ǫ∞ as an indepen-
dent (from U) parameter; the bare electron-electron in-
teraction is defined as the sum of local (spin-dependent)
and non-local terms: Vee(rij) = Uδrij + Vc(rij) (for
brevity, we do not explicitly mention the tensor struc-
ture of interactions, propagators, and irreducible objects
in the spin space).
The Hamiltonian of ionic system is assumed to be

harmonic and described by a collection of longitudinal
phonons14, Hph =

∑

q ω(q)b
†
qbq. Their bare spectrum is

gapped at small momenta: ω(q → 0) = ωp.
The electron-ion interaction has the standard density-

displacement form,

Hel−ph = i
∑

q,k,σ

M(q) a†q+k,σaq,σ(bk + b†−k) , (2)

with the interaction vertex M(q) based on the derivative
of the Coulomb electron-ion potential. This interaction
type is dominant within the tight-binding model used for
HFH . Since in all expressions we always have to deal with
|M(q)|2 it makes sense to introduce Vep(q) = |M(q)|2.
An explicit expression for the EPI used in this work has
the form Vep(q) = [ω2

p/2ω(q)]Vee(q). The technique, pre-
sented in this work (see Methodology), can work with ar-
bitrary type of EPI and momentum dependence of the
bare phonon spectrum ω(q). Solely for the purpose of
minimizing the number of model parameters and trans-
parency of presentation, we confine ourselves to a specific
choice of ω(q) = ωp with ωp/t = 0.5. The asymptotic
form of Vep(q → 0) = [ωp/2]Vc(q) is unambiguously fixed
by the electro-neutrality of the system.
Methodology. Our calculations are based on the so-

called G2W -expansion, see Fig.1(a), when irreducible
(with respect to cutting one line) diagrams for self-energy

Σ and polarization Π are expressed in terms of fully-
dressed Green’s functions, G, and screened effective in-
teractions, W , defined self-consistently through Dyson
equations in the Matsubara frequency-momentum space:

G−1 = G−1
0 − Σ , W−1 = V̄ −1 −Π . (3)

Here G−1
0 = iωn + µ − ǫ(k) and D−1

0 = [ω2
m +

ω2(q)]/2ω(q), are the bare electron and phonon Green’s
functions, respectively. Their Matsubara frequencies are
defined differently: for fermions, ωn = 2πT (n + 1/2)
with integer n; for bosons, ωm = 2πTm with integer
m. Within the G2W -expansion framework, one has to
combine the bare electron-electron potential with the
phonon-mediated term to form the frequency-dependent
potential V̄ = Vee−D0Vep appearing in the second Dyson
equation. This formulation is complete in a sense that
exponential convergence of the skeleton sequences with
increasing the diagram order leads to the final solution
of the problem15.
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FIG. 1: (a) Skeleton (irreducible) diagrams for electron self-
energy Σ and polarization function Π in terms of fully dressed
Green’s functions G and screened interactions W . Hartree
term is the only graph based on the bare potential V̄ . (b-c)
To go from free-energy diagrams to those for Π (b) or Σ (c),
one has to remove the “measuring” line marked by the red
cross.

To determine properties of the phonon subsystem, we
define the polarization function irreducible with respect
to cutting one phonon line, Π−1

P = Π−1 − Vee. By con-
struction, in combination with Vep, it plays the role of
self-energy for the renormalized phonon propagator

D−1 = D−1
0 − Σph; Σph = −VepΠP . (4)

Our implementation of the BDMC technique is closely
following that described in Ref.16. We sample the con-
figuration space of skeleton free-energy diagrams in the
(r, τ)-representation17 with one of the lines always being
marked (by red cross in Fig.1(b-c)) as “measuring”; its
functional dependence on space-time coordinates of its
end-points is arbitrary. When the “measuring line” is
removed, the remaining diagram contributes either to Π,
see Fig. 1(b), or to Σ, see Fig.1(c). In the imaginary-time
representation, we need to split W into the sum of the
bare electron-electron potential, Vee(rij)δ(τ1 − τ2), and
the rest, W −Vee(rij)δ(τ1−τ2), because δ-functional and
generic functional dependencies on time are incompati-
ble. This implies, in particular, that the measuring line
cannot be of the Vee-type.
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Both Σ and Π are computed as sums of skeleton
graphs, up to order N (there are 2N vertexes in the N -th
order graph); we will denote these sums as ΣN and ΠN .
The lowest-order contributions are known right away be-
cause they are nothing but products of G and W func-
tions; in the skeleton formulation, Σ1 and Π1 are equiva-
lent to the GW-approximation with fully self-consistent
treatment of the EPI feedback on polarization. By charge
neutrality, Hartree terms involving Vc(r 6= 0) have to be
removed. Thus, Monte Carlo statistics has to be col-
lected only from higher-order diagrams and then added
to the GW-result. The self-consistency loop is closed af-
ter Σ and Π are used in Dyson equations to define new
G and W functions that are subsequently considered in
all diagrams as the simulation continues. To solve Dyson
equations (3-4) we employ Fast-Fourier-Transform algo-
rithms to go to the momentum-frequency space where
these equations are algebraic.
The largest system size simulated in this work was

L3 = 643, with periodic boundary conditions. The ther-
modynamic limit was recovered by extrapolating results
obtained for L = 16, 32, and 64 to infinity. We also
have to perform an extrapolation to the N → ∞ limit,
or observe good convergence of results with increasing
N . In two panels of Fig.2 we plot local polarization
Π(r = 0, τ) and self-energy Σσ(r = 0, τ) along with their
partial order-by-order contributions. Clearly, contribu-
tions from the third-order skeleton graphs are already
very small, but understanding their role is required for
estimating accuracy limits of calculations truncated at
N = 2.

0 0.5 1 1.5

-0.2

0

(0
,
)

3

2- 1

3- 2

0 1 2 3
-1.6

0

(0
,
)

3

2- 1

3- 2

T/t=0.25, p/t=0.5 ne=0.3, U/t=2, Uc/t=1

FIG. 2: Convergence properties of the skeleton sequence for
system size L = 16 (other parameters are specified in the
legends). In the left panel the local polarization Π(0, τ ) =∑

σ
Πσσ(r = 0, τ ) and its order-by-order contributions are

shown as functions of τ to demonstrate that Π3 result (red
line) is an order of magnitude larger than its partial contri-
bution from diagrams of the second order (blue); third-order
diagrams make an even smaller contribution (green line). In
the right panel an identical analysis is presented for local self-
energy Σσ(0, τ ) = Σ↑(0, τ ) = Σ↓(0, τ ), with the same color
scheme meaning.

Results. The tight-binding model on a simple cubic
lattice at half-filling satisfies the “nesting” condition at
momentum QN = (π, π, π). This leads to singularity in
the density of states, logarithmic divergence of polariza-
tion at zero temperature, Π(q → QN ) ∼ ln |q−QN |, and

the corresponding “giant” Kohn anomaly in the phonon
spectrum (typical for one-dimensional systems)18. It is
expected then that at low temperature the phonon spec-
trum is anomalously soft at QN and there is a structural
phase transition with the dominant density modulation
at QN . In contrast, the conventional Kohn anomaly is
linked to the logarithmic divergence of the polarization
derivative ∂Π/∂q at momentum transfer q = 2kF (at
T = 0).
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FIG. 3: Giant Kohn anomaly in the renormalized phonon
spectrum Ω(q) at the nesting vector QN = (π, π, π) for L =
32, ne = 1, and N = 2. In the inset we show how Ω(q) at
T/t = 0.1 depends on the diagram order: GW-approximation
(magenta), N = 2 (blue).
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FIG. 4: Giant Kohn anomaly at the nesting vector QN in the
GW approximation for L = 32 and ne = 1. In the inset we
show how Ω(QN ) approaches zero with temperature.

In Fig. 3 we show the dramatic temperature depen-
dence of the renormalized phonon dispersion Ω(q) (along
the 〈111〉 direction) at half-filling. The spectrum was de-
duced from the pole-approximationD−1 ∝ ω2−Ω2(q) for
the phonon propagator, see Eqs.(4). As temperature de-
creases, the cusp at QN is getting more pronounced and
the phonon spectrum softens; temperature scales (and
appropriate system sizes) required for studying the struc-
tural transition point are exponentially small (large) in
this case. Vertex corrections substantially reduce the am-
plitude of the Giant Kohn anomaly, see inset in Fig. 3,
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but do not eliminate it. Within the GW-approximation,
see Fig. 4, the cusp at QN touches zero at T∗ ≈ 0.035
(for parameters of Fig. 4) indicating the above mentioned
structural phase transition.
Away from half-filling, the phonon spectrum should

demonstrate the standard Kohn anomaly at q = 2kF
smeared by finite-temperature effects. It can be seen
as a small wiggle on the phonon dispersion curve corre-
sponding to density ne = 0.7 in the momentum interval
4.5 < q < 5 (at this filling factor, kF ≈ 2.4 along the
〈111〉 direction), see the main plot in Fig.5.
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FIG. 5: Renormalized phonon dispersion Ω(q) along the 〈111〉
direction for various electron densities at T = ωp/2 = 0.25t.
All results were obtained for L3 = 643 and N = 2. In-
set: sound velocity as a function of γ within the GW-
approximation (red) and with N = 2 vertex corrections
(blue). Both curves are extrapolated to the thermodynamic
limit from the L = 16, 32, 64 set. Error bars are smaller
than symbol sizes.

As far as screening effects are concerned, the plasmon
gap at q → 0 is closed at all densities, and Ω(q → 0)
clearly demonstrates the characteristic sound-wave de-
pendence csq, see Figs. 3-5. When ne decreases (at
constant Uc and ωp this implies that ions are getting
lighter, M = (4πUc/ω

2
p)ne) the spectrum at large val-

ues of q > 2kF saturates at ωp, see the main panel in
Fig.5, and the sound velocity increases, see Fig.5 inset.
This behavior is in complete agreement with the Fermi-

liquid theory prediction cs ∝ (kF /m)
√

m/M ∝ n
−1/6
e at

constant plasma frequency.
Near half-filling, 0.5 < ne < 1, where the adiabatic

parameter is small, γ . 0.1, the effect of higher-order
vertex corrections on sound velocity appears to be small,
and phonon spectra at small momenta are indistinguish-
able within the error bars (this is not the case for large
momenta, especially at QN , see the inset in Fig.3). As
expected, higher-order diagrams start playing a role at
low density when the adiabatic parameter is approach-
ing unity. In the inset of Fig.5 we show how the sound
velocity depends on γ and how strong the effect of vertex
corrections is. At densities ne . 0.2 (or γ & 0.2) the
GW-approximation becomes rather unsatisfactory.

To gain additional information on dynamic properties
of phonons, we perform analytic continuation of the Mat-
subara Green’s function D(q, τ) (with Π(q = 0, ωm) ∝
δm,0 obeying the particle conservation law requirement)
into the real frequency domain. This is done by a combi-
nation of the unbiased stochastic optimization and con-
sistent constraints methods19,20. In Fig.6 we show the
phonon spectral function for several values of momenta
along the 〈111〉 direction at T = ωp/2 = 0.25t, and com-
pare GW with N = 2 results. This is done in the most
difficult low-density limit ne = 0.025 where γ ∼ 1. Note
the large width of phonon peaks that is often compa-
rable to their energies. Strong damping of longitudinal
phonons is an inevitable property accompanying screen-
ing of long range interactions, which has been observed
in metals since early neutron scattering experiments21.
First, the phonon damping is increasing with q at small
momenta, but then the phonon lines are getting more
narrow at larger values of q as the phonon life-time is be-
coming longer. For the three largest values of q > 2kF ,
the phonon energy (first moment of the spectral function)
saturates at ωp, in accordance with Fig.5.
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FIG. 6: Phonon spectral functions within the GW (blue solid
lines) and N = 2 (red dashed lines) approximations at T =
0.25t and ne = 0.025 for L3 = 643.

Conclusions. We developed and applied the BDMC
approach to solve for electronic and vibrational proper-
ties of a metal in a fully self-consistent approximations
free way by dealing with all Coulomb interactions on
equal footing in the absence of small parameters. We
find that the skeleton sequence converges fast for our pa-
rameters, and if final results are desired with accuracy of
the order of one percent then it is sufficient to account
only for the lowest-order vertex corrections in most cases.
To arrive at this conclusion, we had to quantify the con-
tributions from higher-order graphs. The presented field-
theoretical framework allows one to address virtually any
question about system’s statistical behavior.
We demonstrated that our calculations capture the

essence of screening effects in metals, and allow precise
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calculations of the renormalized phonon spectrum and
sound velocity for all values of γ. In this work we focused
on basic principles and discussed only the longitudinal
acoustic phonons; including other phonon branches is left
for future work but we do not see any difficulty in this re-
gard. One may also quantify the feedback of the phonon
subsystem on electronic properties (spectrum, dielectric
function, optical conductivity, effective interactions, etc.)
and aim at computing the irreducible Cooper-channel
couplings. It would be equally interesting to investigate
the relative effect of the on-site repulsion U on all quan-
tities.
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dation, and the Swedish Research Council grant 642-
2013-7837. N.N. and A.S.M. are supported by Grant-
in-Aids for Scientific Research (S) (No. 24224009) from
the Ministry of Education, Culture, Sports, Science and
Technology(MEXT) of Japan, and by ImPACT Program
of Council for Science, Technology and Innovation (Cab-
inet office, Government of Japan).

1 E.G. Brovman and Yu. Kagan, JETP 52, 557 [Sov. Phys.
JETP 25, 365] (1967).

2 A.B. Migdal, JETP 34, 1438 [Sov. Phys. JETP 7, 996]
(1958).

3 G.M. Eliashberg, JETP 38, 966 [Sov. Phys. JETP 11, 696]
(1960).

4 E. Cappelluti, S. Ciuchi, C. Grimaldi, L. Pietronero, and
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