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Formulating consistent theories describing strongly correlated metallic topological phases is an
outstanding problem in condensed matter physics. In this work we derive a theory defining a
fractionalized analogue of the Weyl semimetal state: the fractional chiral metal. Our approach is
to construct a 4+1D quantum Hall insulator by stacking 3+1D Weyl semimetals in a magnetic
field. In a strong enough field the low-energy physics is determined by the lowest Landau level of
each Weyl semimetal, which is highly degenerate and chiral, motivating us to use a coupled-wire
approach. The one-dimensional dispersion of the lowest Landau level allows us to model the system
as a set of degenerate 1+1D quantum wires that can be bosonized in the presence of electron-electron
interactions and coupled such that a gapped phase is obtained, whose response to an electromagnetic
field is given in terms of a Chern–Simons field theory. At the boundary of this phase we obtain the
field theory of a 3+1D gapless fractional chiral state, which we show is consistent with a previous
theory for the surface of a 4+1D Chern–Simons theory. The boundary’s response to an external
electromagnetic field is determined by a chiral anomaly with a fractionalized coefficient. We suggest
that such anomalous response can be taken as a working definition of a fractionalized strongly
correlated analogue of the Weyl semimetal state.

I. INTRODUCTION

Recent exciting developments in condensed matter
physics concern a variety of topological phases. These are
phases that are not classified by broken symmetries and
local order parameters [1, 2]. While the term “topologi-
cal phases” was originally used to refer only to topolog-
ically ordered gapped phases with long-range entangle-
ment, it is now understood to encompass a broader class
of phases. This includes symmetry-protected topological
phases [3]—gapped states with no long-range entangle-
ment that are distinct from the trivial phase only in the
presence of certain symmetries—and now frequently even
gapless states [4, 5].

The prototypical gapless topological phase of matter is
the nodal semimetal in which nodal points act as sources
and sinks of Berry’s phase making them topologically
stable. Such states are realized in certain phases of liq-
uid helium and have been discussed extensively in that
context [6], while their condensed matter realization in
the 3+1D Weyl semimetals is a very recent experimental
achievement [7–13]. The non-trivial topological structure
is induced by spin-orbit coupling. The surface states cor-
responding to a pair of Weyl nodes disperse chiraly and
result in open Fermi surfaces—the Fermi arcs. The pres-
ence of these exotic surface states is closely related to
quantum anomalies which also govern the unusual re-
sponse of the system to external fields [14]. Whether
strong electron correlations can stabilize exotic cousins
of nodal phases remains an open question. These open
problems motivate our work.

One fruitful strategy to describe and analyze 3+1D
gapless unconventional gapless states of matter is in-
spired by the fact that a boundary between gapped
phases, one topological and another one not, is expected

to be gapless [15]. Accordingly, the first key idea of
this manuscript is to approach the putative fractional
Weyl semimetal as a surface state of a higher-dimensional
gapped topological state, namely that of a 4+1D frac-
tional quantum Hall state [16]. Previous studies have
described such a state in terms of Landau levels for Dirac
fermions in higher dimensions [17, 18], quaternions [19],
and ground state wave functions [20]. Our understand-
ing of these phases, however, is still much less advanced
in comparison to their 2+1D counterparts. While some
general results, such as the connection between charge
fractionalization and a non-trivial ground state degener-
acy in a gapped 2+1D system on a torus [21], should
carry through in higher dimensions, other aspects of
topological order, including for example exotic quasipar-
ticle statistics, are much less transparent. Describing the
4+1D fractional quantum Hall state, although not the
main goal of this study, will therefore be a useful spin-off
that adds to the existing body of knowledge of this state.

In this work, we combine the above strategy—
approaching a putative fractional 3+1D metallic state
as the surface state of a fractional 4+1D quantum Hall
state—with a second powerful approach, the so-called
coupled-wire construction. The advantage of the com-
bined strategy is that, unlike previous parton construc-
tions [22, 23], it does not postulate fractionalization from
the start, allows us to address both the gapped bulk
and the gapless surfaces of a 4+1D quantum Hall state,
and remains analytically tractable. The main idea is to
trade the isotropy usually inherent to low-energy topo-
logical quantum field theories for the analytical control
over electron-electron interactions provided by Luttinger
liquid theories describing (coupled) one-dimensional sys-
tems. Starting with the seminal studies [24, 25], coupled-
wire constructions have been successfully employed to
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describe a large variety of chiral topological phases in
2+1D [26–43], including surfaces of topological 3+1D
states [44, 45], topological superconductors [46–48], and
spin liquids [49–51]. First generalizations of the coupled-
wire approach to higher dimensions have been discussed
in [52–55]. In the following, we adapt the coupled-
wire construction for the description of topological 4+1D
phases, and apply it to a specific class of 4+1D fractional
quantum Hall states [56].
In the next section we summarize our main results and

discuss the main ideas. This section is aimed at those
readers that are not experts in coupled-wire construc-
tions but are interested in the main ideas behind the cal-
culation. All the technical details are given in section III
and require some background knowledge; those not in-
terested in these details can safely skip this section and
go directly to the discussion in section IV, where we also
discuss the connection to current experimental prospects.

II. SUMMARY OF MAIN RESULTS

In this section we discuss the general philosophy and
the key ideas of our work; the technical details of our
calculation are given in the next section.
The central result of our work is a coupled-wire con-

struction of a 4+1D fractional quantum Hall insulator
that has 3+1D fractional chiral metals at its surfaces,
and the conjecture of a fractionalized gapless 3+1D phase
composed of two fractional chiral metals of opposite chi-
ralities.
The 4+1D quantum Hall insulator we construct has a

current density response jµ to an external electromag-
netic field Aµ given by

jµ =
δS(4+1)

CS

δAµ
= C2

e3

8π2
ǫµνρσλ∂νAρ∂σAλ, (1)

where C2 = 1/(2m + 1) with integer m ≥ 0, µ =
0, 1, . . . , 4 and ǫ is the totally antisymmetric tensor (here
and henceforth we use units where ~ = c = 1). The
field theory underlying this response is the 4+1D Chern–
Simons theory

S(4+1)
CS =

−e3C2

6(2π)2

∫
d5x ǫµνρση Aµ∂νAρ∂σAη. (2)

According to Eq. (1) a combination of a three dimen-
sional magnetic field B and an electric field E both per-
pendicular to the x4-direction generates a current

j4 = −C2
e3

4π2
E ·B (3)

parallel to the x4-direction [57]. This result we interpret
as the chiral anomaly induced response of a surface 3+1D
fractional chiral metal.
This fractional chiral metal interpretation is motivated

by an analogy with the edge states in the 2+1D frac-
tional quantum Hall effect. There, the 2+1D Hall cur-
rent can be understood as arising from a chiral charge

that is pumped from one edge to the other. The chiral
charge is therefore not separately conserved on each edge
and the theory describing a given edge is anomalous. The
change in chiral charge is proportional to the electric field
inducing the Hall current, with a coefficient that is a frac-
tion of that obtained in the noninteracting integer case.
Analogously, the response (3) represents the pumping of
chiral charge from one anomalous 3+1D metallic surface
to another. For m > 0, the coefficient of this anomaly is
fractionalized with respect to the well-known coefficient
of the chiral anomaly of noninteracting Weyl fermions,
which is obtained for m = 0 [58]. We thus define the
obtained surface state as a fractional chiral metal.
The fundamental idea of our construction is as follows:

A 4+1D quantum Hall state is constructed by regularly
stacking 3+1D Weyl semimetals along a fourth spatial
direction at x4 = qa4, with q ∈ Z and a4 the lattice spac-
ing. By suitably coupling nodes of opposite chiralities in
neighboring Weyl semimetals the bulk is gapped out, as
shown schematically in Fig. 1.
To describe each semimetal, we restrict ourselves to the

minimal two-band model of an inversion-symmetric time-
reversal-broken Weyl semimetal, which has two Weyl
nodes of opposite chirality at the same energy separated
in momentum space. The Hamiltonian describing the
Weyl semimetal at x4 is

H0,x4
=

∑

p

Ψ†
p
(x4)H0(p)Ψp

(x4), (4)

where p is a three dimensional momentum and Ψ†
p
(x4) =

(c†↑,p(x4), c
†
↓,p(x4)) is a spinor of creation operators for

electrons of spin s ∈ {↑, ↓} and momentum p at x4. The
spin label more generally denotes the two bands, but for
simplicity we always refer to it as spin. Close to the two
Weyl nodes at pχ = (0, 0, χb/2) with chirality χ = ±1,
that is for |δp| = |p − pχ| ≪ b, the Hamiltonian matrix
H0(p) is given to lowest order in |δp|/b by

H0

∣∣
|δp|≪b

≈ χvF δp · σ. (5)

Here σ is a vector of the three Pauli matrices and vF is
the Fermi velocity. The detailed form ofH0(p) away from
the Weyl nodes is not important for our construction as
long as the separation b is large enough; we comment on
the precise conditions where appropriate.
The coupling of the 3+1DWeyl semimetals resulting in

a gapped 4+1D quantum Hall state is most transparent
in the noninteracting case. In this case, the right-handed
Weyl nodes at x4 = qa4 are coupled to the left-handed
nodes at x4 = (q + 1)a4 by tunneling, as depicted by
red arrows in Fig. 1. Since the two nodes that are so
coupled have opposite chirality they can annihilate and
gap each other out, resulting in a gapped state. In a
finite slab with 0 ≤ x4 ≤ L4, however, the left-handed
node at x4 = 0 and the right-handed node at x4 = L4

do not have partner nodes to pair up with. Instead, they
form 3+1D chiral gapless surface states that are higher
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↓ ↓

FIG. 1. Construction of a 4+1D integer quantum Hall effect
from coupled Weyl semimetals. A tunnel coupling between
the left-handed node of each Weyl semimetal with the right-
handed node of its neighbor at smaller x4, depicted by red
arrows, induces a gap for all bulk nodes. In a slab of finite
extent 0 ≤ x4 ≤ L4, single gapless nodes remain at the 3+1D
surfaces at x4 = 0 and x4 = L4.

dimensional analogues of the chiral 1+1D edge modes
of a 2+1D quantum Hall state. Like these modes, they
escape the fermion doubling theorem [59–61] by the fact
that they live on the 3+1D surfaces of a topological 4+1D
state. We therefore identify the gapped state just con-
structed as an integer 4+1D quantum Hall state.
In the presence of interactions the construction of a

gapped state is more involved and we rely on a coupled-
wire construction related to that of Kane and collabo-
rators for 2+1D fractional quantum Hall states [24]. As
in the noninteracting case, we tunnel-couple the left and
right handed nodes in neighboring Weyl semimetals, but
now the combination of interactions and tunneling leads
to several different gapped states, just as in the 2+1D
fractional quantum Hall case. The way this essentially
works is that one of the dimension in the Weyl semimetal,
say x3, is made into effective one dimensional quantum
wires by quenching the kinetic energy along the other x1

and x2 directions. These effective wires are then cou-
pled through the fourth dimension. In order to make
this calculation controlled, we need the coupling of the
wires to be the dominant coupling, such that it leads
to a nontrivial gapped phase. To this end we apply a
strong magnetic field B = B3e3, with e3 the unit vec-
tor in the x3 direction, to each of the Weyl semimetals.
This results in the formation of Landau levels that dis-
perse only in p3 and thereby naturally form a basis of
quantum wires that can be coupled, see Fig. 2. At low
energies E ≪ 1/lB, with the magnetic length defined as
lB = 1/

√
eB3, each Weyl node can be approximated by

its gapless zeroth Landau level, which is is composed of

highly degenerate chiral modes with a degeneracy fac-
tor NLL = L1L2eB3/2π. Dispersing linearly, these chi-
ral modes are readily bosonized. The right-handed chi-
ral modes in one Weyl semimetal are tunnel-coupled to
the left-handed chiral modes in the neighboring Weyl
semimetal, see Fig. 2. The inclusion of interaction al-
lows for correlated tunneling in which one particle tun-
nels between twoWeyl semimetals while at the same time
m particles in each Weyl semimetal change their chiral-
ity from right-handed to left-handed or vice versa, see
Fig. 3. This is the same multi-particle process as the one
of Kane and collaborators leading to the fractional quan-
tum Hall states, and like in that case a current along x4

occurs as a result of applying an electric field E along
the wire direction x3. Here, however, since each of the
modes is degenerate the current is also proportional to
the degeneracy factor NLL and hence to the magnetic
field B. This is the origin of the chiral anomaly form of
the current density in Eq. (3).

Up to this point we have described how the chiral frac-
tional metal emerges as the boundary state of a 4+1D
quantum Hall insulator. It remains to obtain the field
theory description of this boundary state. To that end
we take a manifold finite in the x4−direction and impose
gauge invariance, to obtain the field theory describing a
single surface:

Ssurface = κ

∫

∂Σ

∂0φdφ ∧ F (6)

where φ is a scalar field defined at that surface, F = dA
is the external field strength and κ = ±e(2m + 1)/8π2

is a constant whose sign defines the chirality of the sur-
face. This we recognize as the action of a 2+1D quantum
Hall effect edge described by ∂0φdφ with an extra func-
tional dependence dA that, as above, has its origin in
the Landau level degeneracy. Remarkably this result as
derived from the coupled-wire construction is consistent
with earlier attempts to describe the edge theory of the
4+1D Chern Simons theory (2) based on the current al-
gebra perspective [62].

Before going into the details of the calculations, a brief
note on coupling scales and renormalization. The appli-
cation of a strong magnetic field has the advantage of
allowing us to identify the dominant couplings at the mi-
croscopic level, leading to a well defined phase. We fur-
ther assume that these couplings remain the leading ones
under renormalization, and do not attempt a systematic
renormalization group analysis of all interaction terms
here, as this would take us way beyond the scope of this
work. Instead, in analogy with the canonical discussion
of 2+1D fractional quantum Hall states, we simply as-
sume that, if necessary, one can always adjust the values
of the microscopic parameters such that the renormaliza-
tion flow is towards the gapped phases we have identified.
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III. A COUPLED-WIRE CONSTRUCTION OF

4+1D FRACTIONAL QUANTUM HALL STATES

A. A single Weyl node in a magnetic field

As discussed in the previous section our coupled-wire
construction approach relies on coupling 3+1D Weyl
nodes subject to a magnetic field. Therefore we first re-
count the physics of a single isotropic 3+1D Weyl node
in a magnetic field B = Be3, where ei denotes the unit
vector in i-direction (with i = 1, 2, 3) [58, 63]. In the
Landau gauge, this magnetic field is associated with the
vector potential A = B3x1e2.
A Weyl node of chirality χ is described by the first-

quantized Hamiltonian

Hχ
0 = χvF (p− eA) · σ, (7)

where p = (p1, p2, p3) is the three-dimensional momen-
tum measured with respect to the Weyl node, and σ is
the vector of Pauli matrices. Choosing the magnetic field
such that eB3 > 0, with e the electron charge, we define
the magnetic length lB = 1/

√
eB3 and introduce the di-

mensionless creation and annihilation operators

ap2
=

1√
2

(
x1 − p2l

2
B

lB
+ ip1lB

)
, (8a)

a†p2
=

1√
2

(
x1 − p2l

2
B

lB
− ip1lB

)
. (8b)

These obey the bosonic commutator relation [ap2
, a†p2

] =
1. In the eigenstates |p2〉 of p2 the Hamiltonian takes the
form

〈p2|Hχ
0 |p′2〉 = δp2p′

2
χvF

(
p3 i

√
2a†p2

/lB
−i

√
2ap2

/lB −p3

)
.

(9)

Denoting the Landau level quantum number—the in-
teger eigenvalues of a†p2

ap2
—by n the spectrum of (9)

comprises particle-hole symmetric bands with dispersion
Eχ

0,n>0(p3) = ±χ
√
v2F p

2
3 + 2n/l2B and a chiral linearly

dispersing lowest Landau level Eχ
0,n=0(p3) = χvF p3, as

illustrated in Fig. 2. Since the bands are independent
of the momentum eigenvalue p2 it labels the degenerate
states inside each Landau level whose number is

NLL =
L1L2B3

2π/e
, (10)

where Li is the length of the system in i-direction.
When the magnetic field B3 is sufficiently large for all

energy scales of interest to be smaller than 1/lB, the low-
energy physics is determined by the gapless lowest Lan-
dau level only. Thus a single Weyl node can be approx-
imated by a macroscopically degenerate set of right- or
left-moving chiral electrons with a one-dimensional dis-
persion Eχ

0,n=0(p3). The eigenvectors of this lowest Lan-

dau level take the form (|n = 0, p2〉, 0) and are therefore
spin-polarized.

FIG. 2. Stacking of Weyl semimetals along the fourth spa-
tial dimension x4 subject to a magnetic field B = B3e3.
Each Weyl semimetal contains the Landau levels of a pair
of Weyl nodes. The left panels depicts the energy E

χ

0
of a

Weyl node of chirality χ = ± in a magnetic field described
by the Hamiltonian H

χ
0

as a function of the momentum p3
measured with respect to the Weyl node. The Landau levels
n ≥ 1 form quadratically dispersing, particle-hole symmet-
ric bands. Each Landau level is macroscopically degenerate
with respect to p2. The right panel illustrates the low-energy
description of the stacked 4+1D system at finite B, which
reduces to the gapless lowest Landau levels. As discussed in
Sec. III B, a complex hopping t ei∆p3x3 connects neighboring
Weyl semimetals.

B. The coupled-wire Hamiltonian and correlated

tunneling processes

We now construct the full 4+1D system by stacking
individual Weyl semimetals in the limit of strong mag-
netic field B = B3e3 where we can restrict our model to
the gapless lowest Landau levels. We choose the stack-
ing to be along the additional discrete spatial dimension
x4 = qa4 with q ∈ Z, see Fig. 2. The associated Hamil-
tonian reads

H = H0 +Htun +Hint, (11)

where H0 describes the individual Weyl semimetals, and
Htun and Hint encode, respectively, tunneling terms be-
tween them and the electron–electron interactions.

Let us start by detailing H0. We take the Fermi en-
ergy in each of the semimetals to reside at the Weyl
nodes, which are located at momentum pχ = (0, 0, χb/2).
Sec. III A then implies that the low-energy form of H0

is captured by linearly dispersing right- and left-moving
modes dispersing only with p3. Adapting the standard
low-energy treatment of one-dimensional systems [64], we
approximate H0 by a model with unbounded linear dis-
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persions,

H0 =
∑

x4,p2

∫
dx3

(
R†

p2
(x3, x4) (−ivF∂3)Rp2

(x3, x4)

+ L†
p2
(x3, x4) ivF∂3 Lp2

(x3, x4)
)
. (12)

Here, the chiral modes Rp2
and Lp2

precisely correspond
to the linearly dispersing low-energy excitations in the
lowest Landau levels shown in Fig. 2. As customary in
bosonization, the translation from the initial operators
cp2

(x3, x4) and c†p2
(x3, x4), creating and annihilating an

electron of momenta p2 in the lowest Landau level at
position (x3, x4), to the chiral low-energy modes is via

cp2
(x3, x4) = e−ix3b/2Lp2

(x3, x4) + eix3b/2Rp2
(x3, x4).

(13)

Next, we address the explicit form of the tunneling
term Htun. At vanishing magnetic field, we require the
tunneling to preserve the momenta p1 and p2. In the
presence of a strong magnetic field, this translates into
a conservation of the Landau level index n and the mo-
mentum p2. The electron momentum p3, however, is al-
lowed to be shifted by the tunneling, by an amount ∆p3
that depends on the precise state to be generated. Phys-
ically, a finite momentum shift demands that the elec-
trons couple to a vector potential with an x4-component
ofA4 = ∆p3x3/ea4. This can be achieved with a complex

hopping whose phase ∆p3x3 = e
∫ (q+1)a4

qa4

dx4A4 relates

to the vector potential via the Peierls substitution. Such
a Peierls phase of the complex hopping is indeed equiva-
lent to a momentum shift ∆p3 for an electron tunneling
from x4 = qa4 to x4 = (q + 1)a4. Denoting the tunnel-
ing strength by t, we thus find that the projection of the
tunneling Hamiltonian to the lowest Landau levels reads

Htun =
∑

q,p2,p3

t c†p2,p3+∆p3
((q + 1)a4) cp2,p3

(qa4) + H.c.

(14)

where cp2,p3
(x4) denotes the Fourier transform of

cp2
(x3, x4) with respect to the third coordinate.
The Hamiltonian Hint, finally, describes electron-

electron interactions, whose presence is a crucial ingre-
dient to fractional quantum Hall states. The screen-
ing of long range interactions by the large density of
states of the gapless lowest Landau level motivates us
to neglect non-local interactions. Since in addition the
wave function of an electron with degeneracy index p2
is proportional to a Gaussian centered at x1 = p2l

2
B,

the largest contribution to the local interaction involves
electrons with the same p2. We thus specialize to cou-
plings ρp2

(x3, x4) ρp2
(x3 + a3, x4) between the densities

ρp2
= c†p2

cp2
of electrons with identical p2 at the closest

possible coordinates (x3, x4) and (x3 + a3, x4), where a3
is the lattice constant along x3. Using cp2

(x3 + a3, x4) ≈
cp2

(x3, x4) + a3∂3cp2
(x3, x4), we obtain the interaction

Hamiltonian as

Hint =

∫
dx3

∑

p2,x4

Uc†p2
(x3, x4)(∂3c

†
p2
(x3, x4))

× (∂3cp2
(x3, x4))cp2

(x3, x4). (15)

The effects of further interaction processes not relevant
to our discussion are briefly addressed in Sec. III C below.
In 2+1D coupled-wire constructions, topologically or-

dered states are generated by correlated tunnelings of
electrons between wires; these are processes in which an
electron tunnels from one wire to a neighboring wire,
while simultaneously a number of additional electrons in
both wires are backscattered [24]. We generalize this
class of processes to 4+1D by analyzing the correlated
tunnelings depicted in Fig. 3, in which an electron tunnels
from the Weyl semimetal at x4 = (q+1)a4 to the neigh-
boring semimetal at x4 = qa4, while at the same time m
electrons are backscattered between the Weyl nodes of
both semimetals.
Microscopically, the correlated tunnelings in Fig. 3 are

obtained from the Hamiltonian in Eq. (11) by treating
Htun and Hint as perturbations to the decoupled Weyl
semimetals described by H0. Let us start by illustrating
the derivation in the simplest case m = 1. This process
is generated by the combined perturbative expansion of
Htun and Hint to first order in the tunneling t and second
order in U , see Fig. 4. As shown by the dotted arrow, the
local interaction U first causes two electrons at the left-
handed node in the Weyl semimetal at x4 = (q+1)a4 to
scatter off each other with a p3 momentum transfer of b;
one electron thus ends up at the right-handed node, while
the other electron occupies an intermediate high-energy
state at momentum p3 = −3b/2. The high-energy elec-
tron then hops, as indicated by the solid arrow, to the
Weyl semimetal at x4 = qa4 by virtue of the complex
tunneling t e−i∆p3x3 . It thereby acquires a momentum
shift −∆p3 and ends up at p3 = −3b/2− ∆p3. Finally,
the interaction U mediates a scattering, depicted by the
dash-dotted arrow, between the tunneling electron and
an electron that is initially close to the left-handed node
at x4 = qa4. Because the total correlated tunneling pro-
cess has to conserve energy (and momentum), this second
electron should be scattered to the right-handed Weyl
node at x4 = qa4 (or any other Weyl node for that mat-
ter, but these other processes do not generate the frac-
tional quantum Hall states we are interested in; see also
Sec. III C). The second scattering process is thus also as-
sociated with a momentum transfer of b. The tunneling
electron has thereafter acquired a total p3-momentum
shift of ∆ptot3 = −2b−∆p3. The process shown in Fig. 4,
which stabilizes a fractional quantum Hall state, is a
correlated tunneling that transfers the hopping electron
from the left-handed Weyl node at x4 = (q + 1)a4 to
the right-handed node at x4 = qa4. This requires the
total momentum shift for the tunneling electron to be
∆ptot3 = +b, and thus fixes ∆p3 = −3b for this particular
process to conserve momentum.
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To obtain a low-energy description of this process, we
integrate out the high-energy intermediate states of the
hopping electron. We then obtain an effective three-
particle interaction that annihilates two left movers with
identical quantum number p2 at the left-handed node at
x4 = (q+1)a4, and creates two right movers at the right-
handed node at x4 = qa4. Due to their fermionic char-
acter, these right and left movers cannot be at the same
position, but need to be slightly displaced. Since we gen-
erate the process using the interaction in Eq. (15) involv-
ing derivatives ∂3, this is indeed the case. For ∆p3 = −3b,
we find the low-energy Hamiltonian of the correlated tun-
neling shown in Fig. 4 to read

H
(2)
tun ∼ tU2

∑

p2,q

∫
dx3 R

†
p2
(x3, qa4)Lp2

(x3, (q + 1)a4)

×R†
p2

(x3, (q + 1)a4)
[
∂3Lp2

(x3, (q + 1)a4)
]

×
[
∂3R

†
p2
(x3, qa4)

]
Lp2

(x3, qa4) + H.c.. (16)

For ∆p3 6= −3b, when the process depicted in Fig. 4
does not conserve momentum, Eq. (16) acquires addi-
tional oscillating factors exp(±ix3(∆p3 + 3b)) that sup-
press the scattering. This is analogous to the observation
that a 2+1D Laughlin state only exists at specific filling
fractions (i.e., specific strengths of the applied magnetic
field), and that the 2+1D coupled-wire construction of
these states involves a momentum shift proportional to
the applied field [24].
The analogy to the 2+1D case, where Laughlin states

exist for many filling factors, immediately suggests that
there should be a number of momentum shifts ∆p3 6= −3b
at which other correlated tunnelings conserve momen-
tum in our 4+1D system. This is indeed the case for
∆p3 = −(2m+1)bwithm ∈ Z

+, when processes depicted
in Fig. 3 with a backscattering ofm electrons between the
Weyl nodes become resonant. These higher-order corre-
lated tunnelings are generated in first order in Htun and
2m-th order in Hint, and are thus ∼ tU2m. The first
m interaction processes now scatter m electrons in the
Weyl semimetals x4 = (q+1)a4 from the left-handed the
the right-handed node, thereby transferring a momen-
tum of −mb to one other electron that is initially in the
vicinity of the left-handed node. This latter electron is
thus pushed to a momentum p3 = −(m+ 1/2)b. It then
tunnels to x4 = qa4, and thereby acquires a momentum
shift of ∆p3 = −(2m + 1)b, which puts it at a momen-
tum p3 = (m+1/2)b. In the finalm interaction processes,
m electrons are scattered from the left-handed node to
the right-handed node at x4 = qa4 while transferring a
momentum of −mb to the electron that has tunneled.
This latter electron consequently end up at momentum
p3 = b/2, i.e., at the right-handed node. As a subtlety, we
remark that all intermediate states of the tunneling elec-
tron should be at high energies (within the lowest Landau
level approximation), and thus far away from the Weyl
nodes. As a result, the possible values of m for which our
construction is valid are constrained by the periodicity of

FIG. 3. Correlated tunnelings between neighboring Weyl
semimetals leading to fractional quantum Hall states. While
an electron hops from the left-handed Weyl-node at x4 =
(q + 1)a4 to the right-handed node at qa4, m electrons are
scattered from the left-handed node to the right-handed node
in both Weyl semimetals connected by the tunneling. This
correlated process is indicated by the arrows, whose labels
indicate the number of electrons transported along the re-
spective arrow.

FIG. 4. Generation of the correlated scattering ∼ tU2 cor-
responding to m = 1 in Fig. 3. Empty circles depict initial
states of the electrons, filled circles correspond to their final
states, and the dotted circles indicate the intermediate vir-
tual states of the hopping electron. The dotted horizontal
lines depict the Fermi level (and thus the energy of the Weyl
nodes).

the Brillouin zone to satisfy b/2+mb < π/a3 and by the
lowest Landau level approximation to vFmb ≪ 1/lB.

The low-energy Hamiltonian describing these higher-
order correlated tunnelings can be obtained in analogy to
Eq. (16) by integrating out the intermediate high-energy
states of the tunneling electron. We then obtain a scat-
tering process involving 2m+1 low-energy electrons that
includes the annihilation of m + 1 left moving electrons
with identical p3 at x4 = (q+1)a4, as well as the creation
of m+1 right moving electrons at x4 = qa4. Correspond-
ingly, the low-energy Hamiltonian again contains deriva-
tives with respect to x3 that account for the small spatial
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displacements of the individual electrons. We obtain

H
(2m)
tun ∼ tU2m

∑

p2,q

∫
dx3 R

†
p2

(x3, qa4) Lp2
(x3, (q + 1)a4)

×
m∏

j=1

[
∂j−1
3 R†

p2
(x3, (q + 1)a4)

] [
∂j
3Lp2

(x3, (q + 1)a4)
]

×
[
∂j
3R

†
p2
(x3, qa4)

] [
∂j−1
3 Lp2

(x3, qa4)
]
+H.c.. (17)

Just as Eq. (16), this Hamiltonian is only valid if the reso-
nance condition ∆p3 = −(2m+1)b is met. All correlated
tunnelings with m′ 6= m violate momentum conservation,
and are suppressed by oscillating factors.

C. Other interaction processes

The interaction in Eq. (15) is not of the most generic
form, but is rather optimized to explore a specific set of
states in our 4+1D system. Namely, we are interested
in the states generated by the couplings shown in Fig. 3.
Those are the 4+1D analogues of the correlated scatter-
ings generating Laughlin states in a 2+1D coupled-wire
system [24]. We disregard possible competing states gen-
erated by Eq. (15), or by a more general interaction. This
includes locked charge density waves in neighboring Weyl
semimetals generated by backscattering interactions, or
a 1/3-Laughlin-crystal type of order [24], see Fig. 5.

In general, any of the couplings present in a given sys-
tem may determine the low-energy physics. Technically,
this happens if the respective term has a large coupling
constant, while all other terms have small coupling con-
stants. The hierarchy of coupling constants is either due
to a fine-tuning of their bare values, or can be generated
by their RG flow. The structure of the flow is ultimately
determined by the interaction itself, which can again be
tuned to favor a particular coupling.

Since the remainder of this paper aims at character-
izing the phases generated by the correlated tunnelings
depicted in Fig. 3, we neglect all other interaction pro-
cesses by assuming that the system parameters have been
be adjusted accordingly. Note, however, that we ana-
lyze a topological state of matter that is not symmetry-
protected. The topological response given in Eq. (3) is
thus insensitive to the addition of other interactions pro-
vided these remain sufficiently small and do not alter the
RG scaling of the correlated tunneling process depicted
in Fig. 3 by preventing it from being the most relevant
term. This philosophy has already proven very useful for
the exploration of topological phases in 2+1D coupled-
wire constructions. A full RG analysis of all sine-Gordon
terms that could possibly be present in a coupled-wire
system is, however, to date lacking even for these much
simpler systems. It constitutes an important open prob-
lem for the field in general, and is beyond the scope of
the present work.

FIG. 5. Two of the possible competing interaction processes
that would lead to a charge-density-wave order (top panel),
and a 1/3-Laughlin-crystal-type of order (bottom panel) [24].

D. Bosonization

We bosonize the chiral modes using the standard pre-
scription [64]

rp2
(x3, x4) =

Urp2x4√
2πα

e−iΦrp2
(x3,x4), (18)

where Urp2x4
is a Klein factor, α−1 denotes a high mo-

mentum cutoff, and rp2
= Rp2

, Lrp2
is a compact nota-

tion for the operators introduced in Eq. (12). The chiral
bosonized fields obey

[
Φrp2

(x3, x4),Φr′p′

2
(x′

3, x
′
4)
]
= δrr′δp2p′

2
δx4x′

4

× iπr̂ sgn(x3 − x′
3), (19)

where the scalar r̂ takes the value r̂ = +1 (r̂ = −1) for
r = R (r = L). In the Luttinger liquid Hamiltonian de-
scribing the low-energy physics of the bosonized modes
Φrp2

, we retain the bosonized version of H0, the corre-

lated tunnelings H
(2m)
tun , and interactions ∼ ρrp2

ρr′p2
be-

tween the densities of the chiral modes. In bosonization,
the latter are given by ρrp2

= r†p2
rp2

= −r̂∂x3
Φrp2

/2π.
We neglect all further interactions, including in particular
the ones shown in Fig. 5 and other interaction processes
that turn right movers into left movers. Upon bosoniza-
tion, these scatterings give rise to sine-Gordon terms that

compete with the correlated tunnelings H
(2m)
tun ; as for the

terms depicted in Fig. 5, we consider system parameters
such that all of these sine-Gordon terms are irrelevant for
our system.
The gapless motion described by H0 and the chi-

ral density-density interactions can be combined into a
quadratic bosonized Hamiltonian Hbos

0 reading
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Hbos
0 =

∑

r,q,q′,p2

∫
dx3

× (∂x3
Φrp2

(x3, qa4))
T Vp2,q,q′ (∂x3

Φrp2
(x3, q

′a4)), (20)

where

Vp2,q,q′ =
vF
4π

δqq′1+ Ũp2,q,q′ (21)

depends on the Fermi velocity vF and the density-density
interactions Ũp2,q,q′ between the different bosonized
modes [64]. In order to bosonize the tunnelings in
Eq. (17), it is useful to introduce new fields

Φ̃Lp2
(x3, x4) = (m+ 1)ΦLp2

(x3, x4)−mΦRp2
(x3, x4),

(22a)

Φ̃Rp2
(x3, x4) = (m+ 1)ΦRp2

(x3, x4)−mΦLp2
(x3, x4),

(22b)

which obey

[Φ̃rp2
(x3, x4), Φ̃r′p′

2
(x′

3)] = δrr′δp2p′

2
δx4x′

4

× (2m+ 1) iπr̂ sgn(x3 − x′
3). (23)

This definition, together with Eq. (18), allows us to cast
the leading terms in the operator product expansion of
Eq. (17) into the form

H
(2m)
tun ∼ tU2m

∑

q,p2

∫
dx3

× cos
(
Φ̃Lp2

(x3, (q + 1)a4)− Φ̃Rp2
(x3, qa4)

)
. (24)

Because the argument of each sine-Gordon term in
Eq. (24) commutes with itself at different positions, each
term can order individually by pinning its argument to
one of its minima. Since the arguments also commute be-
tween different sine-Gordon terms, all of them can order
simultaneously. This fully gaps the bulk. If the system
is finite along x4 and has 3+1D surfaces at x4 = 0 and
x4 = L4, two sets of surface modes remain gapless. These

are the modes Φ̃Lp2
(x3, 0) and Φ̃Rp2

(x3, L4) which sim-
ply do not have a partner mode to pair up with and thus
do not appear in any of the sine-Gordon terms.

E. Field theory

In order to show that the bulk of the gapped state ob-
tained above behaves as a fractional 4+1D quantum Hall
state, we calculate its response to an external electromag-
netic field in a quantum field theory representation using
the action formalism. This further allows us to relate
the boundary modes to a 3+1D chiral anomaly with a
fractional coefficient as compared with the noninteract-
ing case.

In previous sections we established that a stack of
3+1D Weyl semimetals is described by a Hamiltonian

of the form H = H0 +H
(2m)
tun , where H0 is the bosonized

free theory of Eq. (20) and H
(2m)
tun encodes the relevant

correlated tunneling terms of Eq. (24). In order to ex-
plicitly derive the response of this system to an external
electromagnetic field we closely follow Ref. 34, in which
a Chern-Simon theory of 2+1D fractional topological in-
sulators was obtained, while highlighting the differences.

The starting point of the derivation is to implement,
within the coupled-wire construction, minimal coupling
of the electromagnetic field Aµ to the fermionic current jµ
through jµAµ where the summation over µ = 0, 1, 2, 3, 4
is implied. It is technically convenient to treat the dif-
ferent components separately. The µ = 1, 2 components
were already included in the construction of the Landau
levels, and the theory respects gauge invariance in these
coordinates through the Landau level degeneracy prefac-
tor NLL, which is proportional to the (gauge invariant)
magnetic field B3 = ∂1A2 − ∂2A1. The rest of the com-
ponents are obtained by demanding that our theory is
invariant under the gauge transformation:

Aα → Aα + ∂αξ, α = 0, 3, (25a)

A4 → A4 + ∂4ξ, (25b)

cp2
→ eieξ cp2

, (25c)

with an analogous relation for c†p2
. Here and for the re-

mainder of this section indices α, β imply summation over
0, 3 only while µ, ν imply summation over all indices. We
suppress in the notation the explicit dependence of all
fields on (x0, x3, x4); the dependence on x1 and x2 is en-
coded in the Landau level quantum numbers p2 and n.
Within the realm of bosonized fields the gauge transfor-
mation (25) translates, via Eq. (18), into

Φr,p2
→ Φr,p2

− eξ, (26)

Φ̃r,p2
→ Φ̃r,p2

− eξ. (27)

The gauge invariant generalization of the tunneling term
Eq. (24), which contains the electromagnetic response of
the 4+1D state along the x4 direction, then takes the
action form

S1[Φ, A4] ∼ tU2m
∑

q,p2

∫
dx0dx3 (28)

cos
(
Φ̃L,p2

((q + 1)a4)− Φ̃R,p2
(qa4) + ea4A4(qa4)

)
.

We have assumed A4 is a smooth function of x4 on scales
l ≪ a4, the lattice constant in the discrete fourth dimen-
sion.

The remaining components involve jα = (ρ, j3) with ρ
the particle density and j3 the current density along the
x3 direction. To write the corresponding coupling jαAα

in terms of the Φ̃ fields, we note that the one-dimensional
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particle density of electrons at x4 is given by

ρ =
∑

p2

1

2π
∂3(ΦL,p2

− ΦR,p2
)

=
∑

p2

1

2π(2m+ 1)
∂3(Φ̃L,p2

− Φ̃R,p2
). (29)

This implies that a 2π kink in one of the sine-Gordon
terms of Eq. (24) carries a charge of e/(2m+1). The (one-
dimensional) particle current density j3, on the other
hand, is related to the particle density by the continu-
ity equation

∂αj
α = 0. (30)

Using this continuity equation and the density expres-
sion (29) we obtain the electromagnetic response

S2[Φ, Aα] = e
∑

x4

∫
dx0 dx3 j

αAα (31)

=
∑

p2,x4

e

2π(2m+ 1)

∫
dx0 dx3 ǫ

αβ∂α(Φ̃Rp2
− Φ̃Lp2

)Aβ ,

with ǫαβ the totally antisymmetric tensor and summation
over α, β ∈ {0, 3} is implied. By combining the above
action components, Eqs. (28) and (31), with the Aµ in-
dependent kinetic term S0[Φ] obtained from Eq. (20), the
full electromagnetic response of the system finally takes
the form

S = S0[Φ] + S1[Φ, A4] + S2[Φ, Aα]. (32)

In the next step towards showing that the response (32)
reduces to that of a 4+1D fractional quantum Hall effect,
we use that the cosines in Eq. (28) pin its argument to one
of its minima when these terms become relevant. This
in turn fixes the difference between left and right chiral
fields to

Φ̃R,p2
(qa4)− Φ̃L,p2

((q + 1)a4) = ea4A4(qa4). (33)

With this strong-coupling condition we write the action
S2 in Eq. (31) in terms of A4 and Aα only

S2[A4, Aα] =
∑

p2

−e2

2π(2m+ 1)

∫
dx0dx3dx4 ǫ

αβA4 ∂αAβ .

(34)

Importantly, the summands are now independent of p2
which allows us to replace the sum

∑
p2

with the Landau

level degeneracy NLL = eB3L1L2/2π. This action yields
the current density

j4 =
δS
δA4

= − e3

4π2(2m+ 1)
B3E3. (35)

One immediately identifies this as the response (3) of a
4+1D quantum Hall effect to an external electromagnetic
field that satisfies B = B3e3 and E = E3e3.

To finally connect this response to a 4+1D Chern–
Simons term, we express the Landau level degeneracy
as

NLL =
B3L1L2

2π/e
=

∫
dx1dx2

1

2π/e
ǫγδ∂γAδ, (36)

where γ, δ ∈ {1, 2}. With this, the action S2 in Eq. (34)
becomes

S2[Aµ] =
−e3

(2π)2(2m+ 1)

∫
d5x ǫαβǫγδA4 (∂αAβ) (∂γAδ),

(37)

where α, β ∈ {0, 3} and γ, δ ∈ {1, 2}. This action can
be interpreted as a part of the isotropic fractionalized
Chern–Simons action

S(4+1)
CS [Aµ] =

−e3

6(2π)2(2m+ 1)

∫
d5x ǫµνρση Aµ∂νAρ∂σAη.

(38)

This action exactly generates the response given by (1)
with a fractional C2 = 1/(2m+1), with the current den-
sity along x4 taking the form

j4 = − e3

4π2(2m+ 1)
B ·E, (39)

reproduced in Eq. (3).

Due to its intrinsic anisotropy, the coupled-wire con-
struction only recovers the part of Eq. (39) given by
Eq. (35). Note, however, that we are free to redefine
the direction of the external magnetic field as well as
the direction along and perpendicular to the wires. Had
we chosen other directions, we would have separately
obtained all the parts that compose the Chern–Simons
action (38). Another argument for the correctness of
the isotropic Chern–Simons functional form of (38) is
that the complete isotropy is required from gauge invari-
ance in the bulk. A way to understand this is by anal-
ogy with emergent 2+1D Chern–Simons terms in non-

relativistic field theories (dimensionality is irrelevant for
the present argument). If Lorentz invariance is preserved,
one expects the functional form ǫµνρaµ∂νaρ for a generic
bosonic field aµ, with all terms having the same coeffi-
cient. The absence of Lorentz invariance naively would
lead one to expect different prefactors for a0∂iaj and
ai∂0aj but this statement is incorrect; a Chern–Simons
field theory is only gauge invariant if all of its terms are
present with the same coefficient [65].

Considering all the above, we conclude that Eq. (39)
represents the isotropic current response of the gapped
state found in our coupled-wire construction. This is
the response of a fractional 4+1 D quantum Hall insula-
tor to an external electromagnetic field, as advertised by
Eq. (3).
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F. Surface theory: Fractional chiral metal

Having obtained a bulk description of the 4+1D frac-
tional quantum Hall state, we now characterize its
boundary modes—the chiral fractional metal.
Our object of interest is the 3+1D theory at the surface

of the 4+1D quantum Hall insulator. From our findings
in the previous section, see Eqs. (34) and (36), the 3+1D
surface state should be constructed from NLL copies of
the edge of a 2+1D Chern–Simons theory, each copy la-
belled by p2. A useful and general way to access such sur-
face theories is to describe the quantum Hall states with
an effective theory of conserved current operators Jµ in
terms of bosonic fields bρσ··· (the number of indices is de-
termined by dimensionality) so that Jµ = ǫµνρσ···∂νbρσ···
satisfies ∂µJ

µ = 0 by construction [65, 66]. In our case,
the effective action is a sum of 2+1D actions for each
copy labelled by p2

Seff[b
(p2)
µ , Aµ] =

∫
d3x

∑

p2

Leff[b
(p2)
µ , Aµ]; (40)

Leff[b
(p2)
µ , Aµ] =

2m+ 1

4π
ǫµνρb(p2)

µ ∂νb
(p2)
ρ

− e

2π
ǫµνρAµ∂νb

(p2)
ρ . (41)

This theory recovers the characteristic 2+1D Chern–
Simons term after integrating out the NLL gauge fields

b
(p2)
µ

SCS[Aµ] =
e2

4π(2m+ 1)

∑

p2

∫
d3x ǫµνρAµ ∂νAρ, (42)

resulting in the fractional Hall conductivity σH =
e2

(2m+1)h for each p2. The Chern–Simons theory Eq. (34)

in its isotropic form is obtained by summing over p2
which results in an overall prefactor of NLL in front of
the 2+1D Chern–Simons theory (42) provided µ, ν, ρ ∈
{0, 1, 4}. For notational simplicity and until otherwise
stated, we now drop the label p2.
To write down the edge theory of each 2+1D dimen-

sional ‘slice’ defined in the (x0, x1, x4) coordinate space,
consider an infinite strip Σ = R

2 × [0, L4] of length L4

in the x4 direction. Firstly, it is possible to check [34]
that gauge invariance at the boundary ∂Σ requires that
bµ|∂Σ = ∂µφ where φ is a scalar field, which we will in-
terpret physically shortly. By using this constraint and
partial integration of the action (40) we can rewrite its
first term as (see Appendix A for details)

Seff[bµ, 0] =
(2m+ 1)

2π

∫

Σ

[b4(∂0b3 − ∂3b0) + b3∂4b0]

+
(2m+ 1)

4π

∫

∂Σ

[∂0ΦR∂3ΦR − ∂0ΦL∂3ΦL],

(43)

where we have identified the two chiral bosonized fields
defined in (18) with the scalar field φ at the edges such

that ΦR := φ(x0, x3, x4 = L4) and ΦL := φ(x0, x3, x4 =
0). In other words we have associated a physical meaning
to φ: it is the bosonic scalar field that represents the two
chiral modes at the boundary.
The surface theory is completed by the non-universal

Hamiltonian defined by the first term in Eq. (21). Adding
it to Eq. (43), the full surface theory is

Ssurface[ΦR,L] =
2m+ 1

4π
NLL

∫

∂Σ

[∂0ΦL∂3ΦL − vF (∂3ΦL)
2

− (∂0ΦR∂3ΦR + vF (∂3ΦR)
2)]. (44)

Note that since each p2 copy, described by the pair of

fields Φ
(p2)
L,R , is decoupled from the rest, they all contribute

equally to the path integral. Therefore, the summation
over p2 results in the NLL prefactor reinstated above,
and the field theory can be written in terms of a single
copy described by the pair ΦR,L. This action describes
two chiral modes propagating in opposite directions. To
understand this, recall that from (29) the right and left
moving densities are ρR,L ∝ ∂xΦR,L. The equations of
motion of ΦR,L are thus the continuity equations for the
two chiral surface fluids, namely

∂0ρR,L + (−1)r̂vF ∂zρR,L = 0 (45)

where r̂ = ±1 for R,L respectively.
To summarize our findings so far, we have found that

the coupled-wire construction leads to a description of a
fractional 4+1D quantum Hall effect composed of NLL

copies of 2+1D Chern–Simons theories. All copies to-
gether lead to a surface theory that is physically NLL

copies of fractional chiral edge modes of a 2+1D frac-
tional quantum Hall effect. We define these surface
modes as the (critical) 3+1D fractional chiral metal the-
ory we were after.
To further support our conclusion, we now relate the

field theory emerging at the boundary of a 4+1D Chern–
Simons theory found by earlier work [62] to our findings
based on the coupled-wire construction presented above.
Based on a current algebra analysis of the 4+1D Chern–
Simons field theory in closed boundaries, Gupta and
Stern [62] wrote a consistent field theory of the boundary
modes, with action

SφF = κ

∫

∂Σ

∂0φdφ ∧ F (46)

where φ is a scalar field and F = dA is a 2-form that is
closed and non-dynamical in ∂Σ. The action (46) defines
the coupling of a scalar field to an external divergenceless
field B̃i ≡ ǫijkFjk.
To make the connection with the surface theory ex-

plicit note that, rewriting the NLL prefactor using (36)
we can write Eq. (43) in the functional form

Ssurface[Φ, Aα] = −r̂
(2m+ 1)e

8π2

∫

∂Σ

∂0Φr∂3Φrǫ3βα∂βAα

(47)
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for a single surface that we write using the compact nota-
tion r̂ = +1,−1 for Φr = ΦL,ΦR respectively. Compar-
ing (46) with (47) we find that the former is the general-
ization of the latter if we identify the divergenceless field
B̃i in Gupta and Stern’s construction with the external
magnetic field (B̃i = Bi) that creates the 3+1D Weyl
semimetal Landau levels. Such an identification provides
a physically meaningful interpretation of the more math-
ematical construction of Ref. [62]. In addition, this anal-
ysis fixes the coefficient to κ = e(2m + 1)/8π2. The
structure of the surface theory (47) shows that the result
emerging from the coupled-wire construction is consis-
tent with an independent analysis based on the current
algebra analysis of the 4+1D Chern Simons field theory.
It is therefore suggestive to define (47) as the action de-
scribing the theory of a fractional chiral metal in 3+1D.
We conclude by justifying why the fractional metal is

actually “chiral”. We start building our argument for
each 2+1D quantum Hall effect copy by recalling that the
Hall response is intimately related to the chiral anomaly
of the edge states in 1+1D. In Fig. 6(a) we show the
pictorial representation of a quantum Hall (or Chern in-
sulator) state as obtained in the coupled-wire construc-
tion [24]. Upon applying an electric field in the x3 direc-
tion E = E3e3 [Fig. 6 (b)] the Fermi momentum kF of the
left (right) chiral mode is shifted downwards (upwards).
This creates a deficit of left movers in favor of an excess of
right movers and the difference between their densities is
proportional to the electric field. This phenomenon, the
chiral anomaly [58] in 1+1D pumps electrons through
the bottom of the lowest band, generating a Hall cur-
rent along x4. In our 4+1D construction the magnetic
field B = B3e3 splits the system into 1+1D wires that
are NLL degenerate. Each wire experiences a (fractional)
chiral anomaly in 1+1D. Since there are NLL wires, the
total pumped chiral charge adds up to the 3+1D chiral
anomaly given by Eq. (3).

IV. DISCUSSION AND CONCLUSIONS

In this section we motivate and conjecture the exis-
tence of 3+1D systems exhibiting the physics we dis-
cussed thus far in terms of 4+1D quantum Hall edge
states, contextualize our results within existing experi-
mental proposals to simulate higher dimensions, discuss
the principal advantages of our construction, and de-
scribe alternative approaches and open problems.

A. General remarks on potential realizations of

3+1D fractional chiral metals

An evident and fundamental question is whether the
surface (or surfaces) of the fractional quantum Hall states
in 4+1D described in this work can lead to new insights
into strongly-correlated phases in 3+1D. While individ-
ual surface states of 4+1D integer quantum Hall states

FIG. 6. (a) Upper panel: Wire construction of the a 2+1D
quantum Hall effect. Lower panel: Each wire has a quadratic
dispersion relation that is gapped by inter-wire tunneling
terms at integer filling, depicted by the dashed line. The
lowest band is composed of boundary left and right movers
denoted by blue and red filled circles respectively, distinct
from bulk states (black circles). (b) When an electric field is
applied, left movers are pumped to right movers through the
bulk states. The non-conservation of left and right chiralities,
manifested through the distinct left and right chemical po-
tential depicted as dashed lines, is the 1 + 1D chiral anomaly.
Our construction can be thought of as NLL copies of this state,
each contributing with its own chiral anomaly. The surface
states of the 4+1D quantum Hall effect constructed in this
way defines the chiral metal at the boundary (see main text).

cannot exist in a purely 3+1D system, two of its surface
states (i.e., two Weyl nodes) of opposite chiralities can be
combined into a 3+1D Weyl semimetal. Therefore, it is
natural to expect that the same holds true for the 4+1D
fractional quantum Hall states we have constructed here,
which leads us to conjecture the existence of a gapless
fractionalized 3+1D phase whose properties can be un-
derstood by combining two fractional chiral metals of op-
posite chiralities in a 3+1D system.

A simplistic toy model that realizes such a fraction-
alized generalization of a Weyl semimetal starts from a
minimalistic version of our construction in Sec. III: two
Weyl semimetals stacked along a fourth direction. As
elaborated further below, the two sites along the fourth
direction can be achieved through an internal two-level
degree of freedom of a 3+1D system. Upon adding the
same couplings between the Landau levels of the two
stacked Weyl semimetals as we do for the 4+1D bulk
system in Sec. III, one obtains the 3+1D analogue of a
fractional helical Luttinger liquid [40, 41]. This indicates
that the current flowing in such a collection of fractional
helical Luttinger liquids is indeed only a fraction of the
one expected for a Weyl semimetal.

Although a more realistic 3+1D model remains to
be found, our construction provides a clear fingerprint
of the proposed fractionalized gapless 3+1D phase: its
response to an applied electromagnetic field is that of a
Weyl semimetal with a fractionalized prefactor. Such a
signature should be accessible by standard experimental
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probes (see e.g. [67, 68]), and, even more importantly,
its topological origin guarantees its independence of
system-specific details.

Furthermore, it is interesting to observe that recent
progress brings our seemingly purely academic consider-
ations for the bulk 4+1D fractional quantum Hall states
closer to real experimental setups. In particular, research
on 4+1D integer quantum Hall states has lately also been
fueled by experimentally accessible proposals for quan-
tum simulators of five dimensional space-time systems.
For instance, the connectivity of a collection of coupled
superconducting qubits and resonators determines the
effective dimensionality of a given array and thus can
simulate extra- or even fractal-dimensional Ising mod-
els [69]. Alternatively, extra dimensions can be encoded
via additional degrees of freedom in optical lattices [70],
a strategy recently exploited to propose an experimen-
tal realization of the 4+1D quantum Hall effect using
ultra-cold atoms [71]. In an orthogonal approach, it
was argued that quasicrystalline materials may encom-
pass higher dimensional topological structure [72] (see
also Ref. [73] for a discussion of topological equivalence
to regular crystals). In particular, the energy gaps of a
2+1D quasicrystal are characterized by the second Chern
number [74], a topological invariant associated to the
4+1D quantum Hall effect in class A [75]. In a nutshell,
the long-range quasiperiodic order in two dimensions can
be mapped to two additional degrees of freedom that,
when added to the two-dimensional momenta, construct
the higher dimensional invariant. Finally, bi-volume pho-
tonic lattices—two photonic lattices coupled by evanes-
cent modes—can encode the extra degrees of freedom
needed to simulate a synthetic extra dimension, and have
been proposed to access higher dimensional solitons [76].
In addition, the different modes of photonic resonator
arrays can be used to mimic synthetic gauge fields and
extra dimensions for photons [77], that in turn can also
engineer higher dimensional quantum Hall physics [78].

Among these proposals, allocating the extra dimension
in additional degrees of freedom in optical lattices is
perhaps the most appealing route to access interacting
4+1D quantum Hall physics [70, 71]. Multi-orbital cold
atomic set-ups will naturally include residual interactions
that could be helpful in driving a strongly correlated
phase. Although the particular form of the interaction
needed to drive our state is yet to be determined, cold
atomic set-ups may allow to realize the coupled-wire
construction discussed in Sec. III. This motivates the
further investigation of more practical issues such as
the effect of the trapping potential [79–82], the role of
heating [83–86], as well as how to physically access the
boundary state.

Finally, it is worth mentioning that the construction
presented here relies on the presence of a strong mag-
netic field B3, which masks the isotropic nature of Weyl
nodes. Hence, even though the chiral anomaly and the

subsequent fractional response are manifest in our con-
struction, the fact that we cannot reach the isotropic
point makes us reluctant to call the resulting phase a
fractional Weyl semimetal. This motivates us to propose
the name chiral fractional metal. Still, we believe that
fractional chiral metals with m > 0 are smoothly con-
nected to their zero magnetic field limit, in which case
they should be described by an isotropic theory. This is
certainly true for the non-interacting m = 0 case corre-
sponding to the usual Weyl nodes.
The chiral character of the surface states is physically

most apparent for m = 0, for which the surface theory
(44) more precisely describes the Landau levels of chi-
ral Weyl nodes. By analogy, the fractional case m > 0
corresponds to the Landau levels of the fractional chiral
metal. One might hope to gain further insights into the
fractional case by refermionizing the system at fine-tuned
values of the interactions, by analogy to Luther–Emery
points [64, 87], but we have not been able to find such a
point in our construction.

B. Conclusions

The main advancement of our work is twofold: first, it
adds to the small but steadily increasing body of knowl-
edge on the nature of the 4+1D quantum Hall effect;
second, it is an attempt towards a consistent definition
of a 3+1D fractional chiral metallic phase.
Regarding the first point, our construction of the 4+1D

quantum Hall effect has two advantages: i) it naturally
incorporates by construction the chiral anomaly at the
boundary and ii) it provides a natural way to write down
the boundary field theory, one of our main results. Al-
though we leave it here as an open question, it is plausi-
ble to expect that our construction can be connected to
earlier studies of these states [16–20, 88]. In particular,
the parton construction is a natural framework for the
1/(2m+ 1) Laughlin like states we obtain.
Related to the second point, the fractional chiral metal

is fundamentally a new state of matter. The description
and classification of strongly correlated phases is gener-
ally a hard open question to address. Due to the un-
bounded growth of the correlation length in metals, the
search is oftentimes restricted to gapped phases. This
context highlights how the construction presented here
is useful: going to higher dimension, we have been able
to define what a chiral fractional metal is, through its
response to an external electromagnetic field. We have
done so by defining this phase as the state that responds
to an external electromagnetic field not preserving chi-
rality. The technical key achievement is to calculate
this response from the gapped bulk action of a higher-
dimensional topological state, and to rely on the bulk-
boundary correspondence to identify our result with the
response of the strongly interacting surface states. This
way, we find that the fractional chiral metal existing at
each edge of the 4+1D fractional quantum Hall effect
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pumps chiral charge to the opposite boundary through
the bulk, only now the magnitude of this phenomenon
is a fixed fraction of that corresponding to the non-
interacting case of Weyl semimetals.

An important ingredient of our coupled-wire construc-
tion is the selection of the wire axis by the applied
magnetic field, which quenches the kinetic energy in
the (x1, x2)-plane. Alternatively, one could stack Weyl
semimetals with strongly anisotropic Weyl nodes, in
which the velocity in a given direction, x3 for instance, is
much larger than the rest, e.g., the (x1, x2)-plane. Treat-
ing the motion in this plane as a perturbation to the
dominantly one-dimensional motion along x3, we have
checked that correlated tunnelings analogue to the ones
depicted in Fig. 3 can lead to a bulk gapped state with
gapless edge modes. In the integer quantum Hall case,
the edge modes recover a single anisotropic Weyl node
per surface once the weak dispersion in the (x1, x2)-plane
is taken into account. In the fractional case, the edge
modes do not correspond to free fermions, but still ex-
hibit an anisotropic three-dimensional dispersion.

Finally, our work opens a number of future direc-
tions. The coupled-wire construction can be naturally
generalized to incorporate non-Abelian states [25] and
it would be appealing to define topological defects with
anyonic statistics in chiral 3+1D metals [55]. What is
missing at this point is a microscopic Hamiltonian that
can support a fractional chiral metal as its ground state.
Our construction has defined such a state, thus making
the first step toward realization of this novel phase of
matter; we expect our work to trigger further research
in strongly correlated metallic topological phases.
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Appendix A: Explicit derivation of (43)

Here we show how to explicitly obtain (43) starting
from the action

Seff = C1

∫
d3xǫµνρbµ∂νbρ (A1)

with C1 = 2m+1
4π that corresponds to the first term in

the Lagrangian specified in Eq. (41). This term can be
rewritten as

Seff = C1

∫
d3xb0(∂3b4 − ∂4b3)

+ b3(∂4b0 − ∂0b4) + b4(∂0b3 − ∂3b0) (A2)

= 2C1

∫
d3x[b4(∂0b3 − ∂3b0)]

+ C1

∫
d3x[b3∂4b0 − b0∂4bx] (A3)

In the last step we have integrated by parts the first and
fourth term in (A2) and neglected surface contributions.
We are allowed to do so since we are interested in the
manifold Σ = R

2 × {[0, L4]}, i.e. an infinite strip of
length L4 in the x4 direction. Note that the anisotropic
coupled-wire construction misses the last two terms in
the bulk theory in order to recover the full Chern Simons
theory [34]. Integrating by parts the last term of Eq. (A3)
and noting that in this case we must keep the boundary
terms we obtain

Seff = 2C1

∫

Σ

d3x[b4(∂0b3 − ∂3b0) + b3∂4b0]

+ C1

∫

Σ

dx0dx3(b0b3)
∣∣x4=L4

x4=0

=

∫

Σ

d3x2C1[b4(∂0b3 − ∂3b0) + b3∂4b0]

+ C1

∫

∂Σ

dx0dx3[∂0ΦR∂3ΦR − ∂0ΦL∂3ΦL],(A4)

where in the last step we have i) used the gauge invariant
constraint bµ|∂Σ = ∂µφ and ii) defined the two chiral
bosonized fields at the boundary as ΦR := φ(x0, x3, x4 =
L4) and ΦL := φ(x0, x3, x4 = 0) as indicated in the main
text (c.f. Eq. (18)).
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