This is the accepted manuscript made available via CHORUS. The article has been published as:

Heterodyne Hall effect in a two-dimensional electron gas
Takashi Oka and Leda Bucciantini
DOI: 10.1103/PhysRevB.94.155133
Heterodyne Hall Effect in a Two Dimensional Electron Gas

Takashi Oka1,2 and Leda Bucciantini1,2

1Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, D-01187, Dresden, Germany
2Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, D-01187, Dresden, Germany

(Dated: July 27, 2016)

We study the hitherto un-addressed phenomenon of Quantum Hall Effect with a magnetic and electric field oscillating in time with resonant frequencies. This phenomenon realizes an example of heterodyne device with the magnetic field acting as a driving and is analyzed in detail in its classical and quantum versions using Floquet theory. A bulk current flowing perpendicularly to the applied electric field is found, with a frequency shifted by integer multiples of the driving frequency. When the ratio of the cyclotron and driving frequency takes special values, the electron’s classical trajectory forms a loop and the effective mass diverges, while in the quantum case we find an analogue of the Landau quantization. Possible realization using metamaterial plasmonics is discussed.

I. INTRODUCTION

Quantum Hall Effect (QHE) is one of the deepest phenomena in condensed matter physics. When a static electric field is applied to a quantum Hall state, a current perpendicular to the field is induced, and their linear relation $j_x = \sigma^H E_y$ is given by the Hall conductivity $\sigma^H = e^2/\pi l$. In Integer Quantum Hall Effect (IQHE), the factor ν is strictly an integer and was related to a topological index, the 1st Chern number, by Thouless, Kohmoto, Nightingale and den Nijs2. The process is dissipationless because the current is perpendicular to the field and no Joule heating takes place.

Here, we report an extension of this concept to the physically interesting case when the magnetic and electric fields are time dependent with resonant frequencies. This realizes an example of heterodyne response, which is an ubiquitous technique in today’s electronics with various usages such as high precision optical detection3–5. Heterodyne (frequency mixer) is an electronic device that mixes frequencies of oscillating signals through a nonlinear process [Fig. 1(a)]. It is periodically driven by a “local oscillator” with frequency Ω, and integer multiples of Ω are added or subtracted to the frequency ω of the input signal. Here we will be interested in studying a heterodyne system where the driving oscillator is the magnetic field while the input signal is an electric field [Fig. 1(b)].

An important example of periodically driven systems is the zero resistance state that occurs in a 2DEG driven by microwaves in a semiconductor heterostructure in weak magnetic fields6 (reviewed in ref.7). More recently, periodically driven lattice systems are attracting interest8–11 as a way to realize a topological Chern insulator12, which was recently confirmed experimentally13,14. However, we stress that these examples focused on the response of the system to a static electric field, and the heterodyne response still waits for detailed investigation. In this paper, we set out to fill this gap and develop a theory for heterodyne response by studying the conductivity of a 2DEG confined in the xy-plane subject to a z-directed magnetic field

$$B_z(t) = B \cos \Omega t,$$

with an oscillating electric field [see Fig. 1(b)]. We will focus on the strong nonlinear effects introduced when the frequencies of the driving and of the electric field are resonant, i.e. when $\omega = n\Omega$, $n \in \mathbb{N}$.

The paper is organized as follows. In Sec. [1] and [III] we develop a theory for this system at the classical and...
quantum level respectively, while in Sec. [IV] we summarize our results and discuss open problems.

II. CLASSICAL CASE

In this section we study the response of a classical 2DEG to a time oscillating weak electric field in the presence of an oscillating magnetic field and compute the conductivity tensor, that we call heterodyne conductivity. The heterodyne conductivity \(\sigma_{ab}^{mn}\), introduced here for both classical and quantum cases, is a four index tensor implicitly defined by the linear relation that holds between the electric current density \(j_a(m\Omega)\) of the output signal with frequency \(m\Omega\), flowing along the \(a\)-direction \((a, b = x, y, z)\) and the (weak) electric field \(E_b^n\) along the \(b\)-direction with frequency \(n\Omega\).

Given an electric signal \(E_b(t) = E_b^0 e^{-i\omega t}\) along a direction \(b\) with frequency \(\omega\), the output current generated from the heterodyne along a direction \(a\) can be expanded in modes with frequencies \(\omega + l\Omega\), with \(l\) a generic integer, as \(j_a(t) = \sum_l j_a(\omega + l\Omega)e^{-i(\omega + l\Omega)t}\). Then the linear relation

\[
j_a(\omega + l\Omega) = \sum_b \tilde{\sigma}_{ab}^{n} E_b^n \tag{2}
\]

holds as long as the field is weak and defines the conductivity \(\tilde{\sigma}_{ab}^{n}\). When \(\omega = n\Omega\), with \(n \in \mathbb{N}\), defining \(E_b(n\Omega) \equiv E_b^n\) and \(l + n = m\), \(\tilde{\sigma}_{ab}^{n}\) can be rewritten as

\[
j_a(m\Omega) = \sum_b \tilde{\sigma}_{ab}^{m-n} E_b^n \tag{3}
\]

Defining \(\tilde{\sigma}_{ab}^{m-n}(n\Omega) \equiv \tilde{\sigma}_{ab}^{m,n}\), so that the upper left index labels the component of input electric field, while the upper right index the component of output electric field, then \(\tilde{\sigma}_{ab}^{m,n}\) gives

\[
j_a(m\Omega) = \sum_b \sum_{n=-\infty}^{\infty} \tilde{\sigma}_{ab}^{m,n} E_b^n \tag{4}
\]

More explicitly, the heterodyne conductivity \(\sigma_{ab}^{m,n}\) is obtained inverse Fourier transforming \(\tilde{\sigma}_{ab}^{m,n}\)

\[
\sigma_{ab}^{m,n} = \lim_{\ell_0 \to \infty} \frac{1}{\ell_0 E_b^n} \int_{-\ell_0}^{\ell_0} dt e^{i\ell_0 t} j_a(t) \tag{5}
\]

with \(j_a(t) = e_{n\Omega} v_a(t)\).

The current density \(j_a(t)\) is related to the electron’s velocity \(v_a(t)\) by the relation \(j_a(t) = n_e e v_a(t)\), with \(e < 0\) the electron’s charge and \(n_e\) the electron’s density; the velocity \(v_a(t)\) can be derived from the solution of the classical equation of motion

\[
m_e \left(\frac{d}{dt} + \eta \right) v(t) = e \left(E + \frac{1}{c} v(t) \times B(t) \right), \tag{6}
\]

where \(m_e\) is the electron’s mass while \(\eta\) is a small phenomenological scattering parameter necessary for the convergence of the particle’s trajectory in electric fields; \(B(t) = B_z(t)\hat{z}\) is the oscillating magnetic field \([1]\), \(E\) is the (infinitesimal) applied electric field. We note that we have neglected the electric field emerging from the time dependent magnetic field, which will be recovered in the quantum case. Given the rotational invariance of the system, we arbitrarily fix the direction of the electric field as the \(y\)-direction and restrict our analysis to \(\{n, m\} = 0, 1\), with \(E_y(t) = E_y^0\) \((n = 0)\) and \(E_y(t) = E_y^1 \cos(\Omega t)\) \((n = 1)\). The behavior of the particle strongly depends on the ratio

\[
r = \frac{\omega_c}{\Omega}. \tag{7}
\]

with \(\omega_c = |e|B/m_e c\) the cyclotron frequency.

The formulas for the heterodyne conductivities can be derived as follows. Defining

\[
v(t) = v_x(t) + iv_y(t), \tag{8}
\]

the equation of motion \(\{4\}\) for \(E = E_y^0 \hat{y}\) becomes

\[
v(t) = i \frac{eE_y^0}{m_e} v(t) \left(-i \frac{eB_z}{m_e c} - \eta \right), \tag{9}
\]

whose solution is

\[
v(t) = i \frac{eE_y^0}{m_e} e^{-i\eta t + i r \sin(\Omega t)} \int_0^t ds e^{i\eta s - i r \sin(\Omega s)} \tag{10}
\]

The results for the conductivities are thus

\[
\sigma_{xy}^{0,0} + i \sigma_{yy}^{0,0} = i \frac{e^2 n_e}{m_e} \sum_{n=-\infty}^{\infty} \frac{J_n(r)^2}{\eta - i\Omega n},
\]

\[
\sigma_{xy}^{1,0} + i \sigma_{yy}^{1,0} = i \frac{e^2 n_e}{m_e} \sum_{n=-\infty}^{\infty} \frac{J_n(r) J_{-n}(r) (-1)^n}{\eta + i\Omega (1-n)},
\]

where \(J_n(r)\) is the \(n\)-th Bessel function of the first kind.

From the former of these equations we derive

\[
\sigma_{xy}^{0,0} = 0, \quad \sigma_{yy}^{0,0} = \frac{e^2 n_e}{m_e \eta} J_0(r)^2. \tag{11}
\]

When applying an oscillating electric field along the \(y\)-direction with \(E(t) = E_y^1 \cos(\Omega t)\hat{y}\), the solution for \(v(t)\) is

\[
v(t) = i \frac{eE_y^1}{m_e} e^{-i\eta t + i r \sin(\Omega t)} \int_0^t ds e^{i\eta s - i r \sin(\Omega s)} \cos(\Omega s),
\]

and, as a result, we get

\[
\sigma_{xy}^{0,1} + i \sigma_{yy}^{0,1} = i \frac{e^2 n_e}{m_e} \sum_{n=-\infty}^{\infty} \frac{J_n(x) J_{-n-1}(x)}{\eta + i\Omega n}. \tag{12}
\]

Fig. [II] shows the results for the static diagonal and transverse conductivity (all in absolute values) \(\sigma_{yy}^{0,0}, \sigma_{yy}^{0,1}\) and the inverse heterodyne Hall conductivity \(1/\sigma_{xy}^{1,0}, 1/\sigma_{xy}^{0,1}\) as a function of \(r\). The diagonal conductivity \(\sigma_{yy}^{0,0}\)
first decreases when enlarging B and vanishes at a discrete set of points, labeled as $r = r_{\alpha}^{\text{cl}}$ $(\alpha = 1, 2, 3, \ldots)$. This behavior can be understood from the dynamics of the particles in zero electric field [Fig. 2(b)], which is no longer the cyclotron motion in an oscillating magnetic field. In static but spatially inhomogenous fields, particles make detours and their paths were called “snake states”. This generally also takes place in temporary oscillating magnetic field and the detour makes the particles “heavy”.

We can relate the diagonal conductivity with the particle’s effective mass m_{α}^{cl} by $m_{\alpha}^{\text{eff}} = m_{\alpha}^{\text{cl}}/\sigma_{\alpha}$, with $\sigma_{\alpha} = e^2n_{\alpha}/(\hbar m_{\alpha})$ being the zero field expression. When the diagonal conductivity $\sigma_{\alpha}^{0,0}$ vanishes at $r = r_{\alpha}^{\text{cl}}$, the particle’s trajectory in zero external field forms closed loops and the index α used to identify them has a topological meaning of winding number per half period. Indeed to have a closed trajectory, no dissipative process should be present, which implies a vanishing diagonal conductivity. The static transverse conductivity is expected to vanish due to time reversal invariance of the system on time scales multiples of a period.

The system also shows a nontrivial heterodyne Hall response. The Hall conductivity $\sigma_{xy}^{0,1}$, which coincides with $\sigma_{xy}^{1,0}$, takes values close to the classical result $(n_{\alpha}e/|e|)/B$ when the field is strong enough [Fig. 2(a)]. In particular, they coincide when the effective mass diverges at $r = r_{\alpha}^{\text{cl}}$; we note that this feature is present also in the quantum case.

III. Quantum Case

Let us now consider a quantum version of the heterodyne Hall effect in a one-particle system. This is obtained with the minimal substitution starting from free electrons ($p^\mu \to p^\mu - e/cA^\mu$, with $\mu = 1, 2$); in the Landau Gauge the vector potential is $A_z(t) = 0; A_y(t) = B_z(t) x$, which generates the electro-magnetic field

$$B_z(t) = B \cos \Omega t,$$
$$E_y(t) = -\frac{\partial B_z(t)}{\partial t} x.$$ \hspace{1cm} (13)

The quantum Hamiltonian is

$$H(t) = \frac{\hbar^2 k_x^2}{2m_e} + H_0(x, t) - F(t) x$$ \hspace{1cm} (14)

where $H_0(x, t) = \frac{p^2}{2m_e} + \frac{m_e(\omega(t))^2}{2} x^2$ is the Hamiltonian of a quantum harmonic oscillator (HO) with an oscillating frequency $\omega(t) = \omega \cos \Omega t$. $F(t)$ is a driving term which contains the (infinitesimal) input electric field, which we choose as $E_x(t) = E_1 \cos \Omega t$, and has the form $F(t) = (\omega(t)) h_k y - eE_1(t)$. We emphasize that translational invariance in the y-direction still holds.

Using the time periodicity of the Hamiltonian $H(t + T) = H(t)$ for $T = 2\pi/\Omega$, we seek for a solution of the time dependent Schrödinger equation in the Floquet form $^{[15]}$:

$$\Psi_n(x, t) = e^{-\frac{i}{\hbar} E_n(k_y) t} \Phi_n(x, t),$$ \hspace{1cm} (15)

where $\Phi_n(x, t)$ is a periodic function in time and $E_n(k_y)$ is the Floquet quasi-energy. To be more precise, being $^{[15]}$ a Floquet solution, it will be labeled by a combined index $\alpha = (n, m)$ where n is the HO energy level and $m = 0, \pm 1, \pm 2, \ldots$ represents replica states (“photons-absorbed state”).

Using the transformation by T. Taniuti and K. Husimi $^{[22]}$, the Floquet state $^{[22]}$ is given by

$$\Phi_n(x, t) = \frac{e^{ik_y x}}{\sqrt{L_y}} \varphi_n(x - X(t), t)$$

$$\times \exp \left[i \left(\frac{1}{L_y} \int_0^t \left(m_e X(t) x - X(t) \right) + \int_0^t dt' L(t') - L_0 t \right) \right].$$ \hspace{1cm} (16)

Here, $\varphi_n(x, t)$ is the solution of the eigenvalue problem $^{[20]}$:

$$[H_0(x, t) - i\hbar \frac{\partial}{\partial t}] \varphi_n(x, t) = \varepsilon_n \varphi_n(x, t),$$

with energy ε_n; The wavepacket center $X(t)$ is the solution of the equation of motion for a classical HO with a driving term $F(t)$: $m_e \ddot{X}(t) + m_e \omega(t)^2 X(t) = F(t); L(t)$ and L_0 are respectively the Lagrangian and its time average for this driven HO, given by $L(t) = \frac{1}{2} m_e X^2(t) - \frac{1}{2} m_e \omega(t)^2 X^2(t) + X(t) F(t)$ and $L_0 = \frac{1}{T} \int_0^T L(t) dt'$. The expression for $E_n(k_y)$ in $^{[15]}$ is related to ε_n by

$$E_n(k_y) = \varepsilon_n - L_0 + \frac{\hbar^2 k_y^2}{2m_e}.$$ \hspace{1cm} (17)
To extract the solution for $X(t)$ it is convenient to introduce a dimensionless variable $\xi(\tau)$

$$X(t) = -(lp^r)^2 \xi(\tau) \left(k_y - \frac{eE_y}{\hbar c}\right),$$

where $\tau = \Omega t$, $lp = \sqrt{\hbar c/eB}$ is the magnetic length and $\xi(\tau)$ is the solution for Mathieu’s equation with a source term $\xi''(\tau) + 2a\cos^2 \tau \xi(\tau) = -\cos \tau$, with $a = r^2/2$. The variable ξ inherits the periodicity $\xi(\tau+2\pi) = \xi(\tau)$ from X and oscillates around $x = 0$ as shown in Fig. 3(a). This is obtained by writing $\xi = \sum m e^{-imx}$ and solving the linear relation $\sum m e^{-imx} = 0$.

To derive the Floquet spectrum ϵ_n and the wave function $\phi_n(x,t)$, we have to compute the Floquet Hamiltonian $H(x,t) = H_0(x,t) - i\hbar \frac{\partial}{\partial t}$, whose matrix elements in the Floquet basis $|m(t)\rangle = e^{-imt}\Omega$. By

$$H^{m,m'} = \frac{i}{\tau} \int dt e^{i(m-m')\Omega} H_0(x,t) + m\delta_{m,m'}\Omega.$$ (19)

After conveniently rewriting $H_0(x,t)$ as

$$H_0(x,t) = \frac{p^2}{2m_e^2} + \frac{m_e\omega^2}{2} x^2 + \frac{1}{4} m_e\omega^2 x^2 (e^{2\alpha t\Omega} + e^{-2\alpha t\Omega}),$$

with $\omega_c = \sqrt{2\alpha}$, (19) yields

$$H^{m,m'} = \left(\frac{p^2}{2m_e^2} + \frac{m_e\omega^2}{2} x^2 + m\hbar\Omega\right) \delta_{m,m'} + \frac{1}{4} m_e\omega^2 x^2 (\delta_{m,m'+2} + \delta_{m,m'-2}).$$ (21)

Using the Floquet-Magnus expansion and $[\frac{e^2}{2m}, V(x)], V(x)] = -\frac{1}{m} (\frac{\partial V}{\partial x})^2$, the high frequency effective Hamiltonian, up to order Ω^{-2}, is

$$H_{eff} = H^{0,0} + \frac{[H^{2,0}, H^{0,0}], H^{2,0}}{(2\Omega)^2}$$

with $\omega_{eff}(\Omega) = \frac{\omega_c}{\sqrt{2}} \sqrt{1 + \frac{1}{16} \left(\frac{\omega_c}{\Omega}\right)^2}$. Therefore, in the large Ω limit, the energy eigenvalues reduce to those of a static quantum HO with a renormalized frequency that depends on the driving Ω

$$\epsilon_n = \hbar \omega_{eff}(\Omega)(n+1/2).$$ (23)

In Fig. 3(b) we present the full Floquet spectrum ϵ_n, as a function of Ω (solid lines), obtained diagonalizing (21). For large Ω values, it agrees well with the high frequency effective spectrum (23) (dashed lines). In this limit, the wave function ϕ_n in (16) is the usual HO eigenstate, i.e. $e^{-x^2/2} H_n(x/l)$ with $l = \langle \hbar m_e/\omega_{eff} \rangle^{1/2}$, while the orbital mixing increases as Ω becomes smaller.

The Floquet quasi-energy $E_n(k_y)$ can be further calculated from (17) resulting in

$$E_n(k_y) = \epsilon_n + \frac{\hbar^2 k_y^2}{2m_e} - \frac{\hbar^2}{2m_e} \left(1 - \frac{m_e}{m_e^*}\right) \left(k_y - \frac{eE_y}{\hbar \omega_c}\right)^2,$$ (24)

where the effective mass m_e^* is given by

$$\frac{m_e}{m_e^*} = 1 + \frac{r^2}{2\pi} \int_{0}^{2\pi} d\tau \cos \Omega \xi(\tau).$$ (25)

TABLE I. The values for the constant Q are reported for the first four $r = r^*_n$.

<table>
<thead>
<tr>
<th>r_n^*</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_0^*</td>
<td>1.89</td>
<td>5.07</td>
<td>8.22</td>
<td>11.37</td>
</tr>
<tr>
<td>Q</td>
<td>0.221</td>
<td>0.153</td>
<td>0.124</td>
<td>0.106</td>
</tr>
</tbody>
</table>

plotted in Fig. 4. We can compare this plot with that of the classical longitudinal conductivity $\sigma_{yy}^{0,0} \sim m_e/m_e^*$, shown in Fig. 2(a). First, we see that the effective mass m_e^* diverges at certain ratios $r = r^*_n$ collected in Table 1. When this happens, the k_y-dependence in (24) drops out in the absence of E_y and a macroscopic number of states become degenerate, an analog of Landau quantization now realized by the oscillating magnetic/electric fields [13]. Around $r = r^*_n$, the effective mass changes sign from negative (hole like) to positive (electron like). Mathematically, the condition for divergent $\epsilon_n = \epsilon_n^*$ and zero effective mass, i.e. $|m_e^*| \to \infty$, 0, coincides with the periodic solution condition of the Mathieu equation without the source term.

The quantum version of the heterodyne Hall effect occurs when we turn on the x-direction ac electric field E_y^l. [a]
leading to a dc current flowing in the y direction. We can compute the dc-current $J_y(k_y) = e \frac{\partial E_n}{\partial k_y}$ for a state with k_y as the momentum derivative of the dispersion relation (24) as in the static case. The total current denoting the states with N the future. (i) The many particle state is realized by filling the states with electrons with a spin, denoted as circles with an arrow, respecting the Pauli principle. (c) The motion of the wave packet center for the many particle state in (b). The initial position $X(0)$ depends on k_y; wavepackets with different k_y evolve independently and oscillate around $x = 0$ according to (18).

The Landau level filling $\nu = N_e/N_\Phi$ is defined as the ratio of the electron density N_e and the level degeneracy

$$N_\Phi = \frac{L_x L_y}{2\pi l_B^2 r^\alpha} \max \xi;$$

N_Φ is obtained by imposing the wave packet center (18) to be within the strip, i.e. $X(t) \in [-L_x/2, L_x/2]$ for $E_n^\alpha = 0$, where max ξ is the maximum of ξ during time evolution. The factor $Q = \left(1 - \frac{m_e}{m^*} \right)/(2r^\alpha \max \xi)$ is a nonmonotonic function of r, while its value at $r = r_\alpha^\alpha$ presented in Table I monotonously decreases.

IV. CONCLUSIONS

To summarize, we have computed the heterodyne conductivities in a 2DEG subject to a time oscillating magnetic field, both for the classical and quantum case.

We schematically illustrate our findings in Fig. 5 and discuss several problems we would like to investigate in the future. (i) The many particle state is realized by filling the states with $N_e = \nu N_\Phi$ electrons as indicated in Fig. 5(b). Since the system is heated by the external driving, it is likely to have states with mixed Landau orbitals n. The effect of Coulomb interaction may lead to interesting effects. The electron wave functions overlap simultaneously around $x = 0$ during the time evolution [Fig. 5(c)]. This makes the interaction between states with different k_y to be enhanced and long-ranged. If the system can be stabilized and cooled, ordering such as ferromagnetism, Wigner crystal, and even an analogue of the fractional QHE state might be induced. However, it is also likely that the accumulation of macroscopic number of electrons will make the system unstable and even destroy the sample along the line $x = 0$. (ii) Is the heterodyne Hall conductivity σ_{yx}^{α} a topological quantity? Similar to the traditional IQHE\cite{11}, the current expression (27) is proportional to ν and is thus quantized. The renormalized coefficient $\frac{e^2}{\hbar} Q$ is fixed as long as the magnetic field B is changed simultaneously with the frequency Ω respecting the quantization condition $r = r_\alpha^\alpha$. In order to answer this question, an edge calculation and an extension of the TKNN formula\cite{22} is important, which may reveal a bulk-boundary correspondence\cite{29} in heterodynes. (iii) Physical realization is an important problem. The driving field \cite{13} can be realized by placing two anti-parallel wires with currents oscillating as $\pm I \cos(\Omega t)$. The 2DEG is to be placed between the wires. This setup may be realized using THz plasmonics, with which it is already possible to generate magnetic fields with strength above 1 Tesla oscillating in the terahertz
This is the strength and frequency necessary to realize the quantization condition and to be in the quantum limit, i.e., small ν.

V. ACKNOWLEDGMENTS

We thank Masaaki Nakamura and Yu Mukai for illuminating discussions. TO acknowledges Stefan Kaiser, Thomas Weiss, Koichiro Tanaka and Andre Eckardt for fruitful discussions. This work is partially supported by KAKENHI (Grant No. 23740260) and from the ImPact project (No. 2015-PM12-05-01) from JST.