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In contrast to bulk FeSe, which exhibits nematic order and low temperature superconductivity,
highly doped FeSe reverses the situation, having high temperature superconductivity appearing
alongside a suppression of nematic order. To investigate this phenomenon, we study a minimal
electronic model of FeSe, with interactions that enhance nematic fluctuations. This model is sign
problem free, and is simulated using determinant quantum Monte Carlo (DQMC). We developed a
DQMC algorithm with parallel tempering, which proves to be an efficient source of global updates
and allows us to access the region of strong interactions. Over a wide range of intermediate couplings,
we observe superconductivity with an extended s-wave order parameter, along with enhanced, but
short ranged, q = (0, 0) ferro-orbital (nematic) order. These results are consistent with approximate
weak coupling treatments that predict that nematic fluctuations lead to superconducting pairing.
Surprisingly, in the parameter range under study, we do not observe nematic long range order.
Instead, at stronger coupling an unusual insulating phase with q = (π, π) antiferro-orbital order
appears, which is missed by weak coupling approximations.

PACS numbers: 05.30.Rt,74.25.Dw,74.70.Xa,74.40.Kb

I. INTRODUCTION

A remarkable recent development in materials science
has been the observation of enhanced superconductivity
in single layers of FeSe, grown initially on SrTiO3 (STO)
substrates [1, 2]. In contrast to bulk FeSe which un-
dergoes a superconducting transition at a relatively low
temperature Tc ∼ 6 K [3], Tc in monolayers on STO is at
least an order of magnitude larger, in excess of 60 K [4, 5]
with even higher transition temperatures reported by an
unconventional transport measurement [6]. Initial stud-
ies attributed the enhancement of superconductivity to
coupling between electrons in the FeSe layer and an STO
phonon, which was also implicated in creating shadow
electron bands observed in angle resolved photoemission
experiments [7, 8]. However, such shadow bands are also
observed for electrons on the surface of STO itself, which
does not superconduct [9].

Many studies have observed enhancement of Tc ∼ 40 K
in FeSe in the absence of STO substrate – for example
when grown in thin layers on MgO substrate [10], by
surface electron doping by depositing potassium [11–13],
or in the layered material (Li0.8Fe0.2)OHFeSe [14, 15].
Since the phonon spectra of these materials are entirely
different from STO, a separate mechanism must be at
play, which is intrinsic to the FeSe layers and does not
depend on interface effects. A common element between
these and also the original FeSe on STO experiments is
that heavy electron doping leads to a pair of electron
like Fermi surfaces [4, 12, 13, 16–18]. Hence we seek a
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mechanism for superconductivity that is intrinsic to FeSe
and is controlled by electron doping. The even higher Tc
of FeSe on STO is presumed to be due to a pairing boost
arising from the STO phonon [18, 19], in addition to the
intrinsic mechanism; we will not consider this additional
effect.

What is the origin of this intrinsic Tc enhancement?
Nematic fluctuations present an appealing possibility for
the following reasons: (i) Bulk FeSe undergoes a nematic
transition at 100 K, and is unique in the family of iron
pnictides/chalcogenides in not having a proximate mag-
netic transition. In fact, no magnetic order is observed
down to the lowest temperatures [20, 21] (ii) Electron
doping has been shown to suppress nematic order [18] in
potassium-doped FeSe, following which superconductiv-
ity appears. (iii) Theoretically, fluctuations of nematic
order in the vicinity of a nematic quantum critical point
are expected to enhance superconductivity, and this ef-
fect is particularly pronounced in 2D [22–24]. However,
existing analytical theories have focused on universal as-
pects of the physics and do not capture non-universal
aspects that are relevant to experiments. On the other
hand, treatments that incorporate details of FeSe band
structure and interactions, often use weak coupling or
uncontrolled approximations [19, 25–27], and may not
correctly capture the true phase structure of the system.

In this paper we investigate the role of nematic fluctua-
tions in enhancing superconductivity, by studying a sign
problem free model of the FeSe monolayer, using deter-
minant quantum Monte Carlo (DQMC). The phase dia-
gram obtained differs substantially from that predicted
by the Random Phase Approximation (RPA) [26], par-
ticularly in the strong coupling limit. At intermediate
couplings, we find a region with substantially enhanced
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nematic fluctuations and superconductivity. Although
there is no long range ordered nematic, a notable fea-
ture is that the maximum enhancement of uniform ne-
matic fluctuations coincides with the peak in a supercon-
ducting dome. Moreover, we find that superconductivity
responds to doping in an essentially asymmetric way –
electron doping enhances, while hole doping suppresses
superconductivity. All these findings link the emergence
of superconductivity to nematic fluctuations, and are po-
tentially relevant for the physics of FeSe films.

Other models, which were recently studied using
DQMC [28, 29], introduce the order parameter – such
as antiferro-magnetic or nematic order – as a separate,
dynamic bosonic degree of freedom. Moreover, supercon-
ductivity was not observed in the effective model consid-
ered by [29]. While such an approach is appropriate to
studying universal aspects of quantum phase transitions,
here we will be interested in more microscopic questions.
We emphasize that our model defined below includes only
electronic degrees of freedom, with properly chosen in-
teractions that are sign problem free. Similar techniques
can be used to study many other multi-orbital models,
for which the presence of two spin species removes the
sign problem at any doping.

II. MODEL

We consider a two-band tight binding model, where
electrons occupy the dxz, dyz orbitals of iron atoms on a
square lattice. This simplified model captures basic fea-
tures of the iron pnictide bandstructure [30] and allows
for nematic symmetry breaking. We take the Hamilto-
nian

H = −
∑

ij,ab,σ

(tabij c
†
iaσcjbσ + h.c.)− µ

∑
i,a

ni,a

− g

2

∑
i

(ni,xz − ni,yz)2 (1)

where a, b = xz, yz are orbital indices, σ =↑, ↓ is the spin

index and ni,a =
∑
σ c
†
iaσciaσ is the occupation of orbital

a on lattice site i.
Allowed hopping coefficients tabij are dictated by the

symmetry of the dxz,yz orbitals and we include hop-
ping between nearest-neighbor (t1, t2) and next-nearest-
neighbor sites (t3, t4), as shown in Fig. 1(a). The val-
ues of t1,...,4 coincide with those used in Ref. [26]; we
will measure energy in units of t1. The Fermi surface in
the non-interacting limit (g = 0) with chemical potential
µ = 0.6 consists of two electron pockets at X,Y and two
hole pockets at Γ,M [Fig. 1(b)]. Upon increasing µ the
hole pocket at M disappears, while the electron pockets
grow.

The attractive interaction term (g > 0) in the second
line of Eq. (1) favors an on-site nematic symmetry by
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FIG. 1. (a) Definitions of hopping coefficients tabij , where
dxz and dyz are schematically shown in red/blue color. All
hoppings except for t4 conserve orbital index. (b) Fermi sur-
face for chemical potential µ = 0.6 (solid lines) and µ = 2
(dashed lines) at g = 0, showing two hole pockets at Γ,M
and two electron pockets at X,Y . The hopping values are
t1 = −1.0, t2 = 1.5, t3 = −1.2, t4 = −0.95. The filling frac-
tions per site per orbital are f = 0.43, 0.58 at µ = 0.6, 2
respectively. Throughout, we will work in the one iron-unit
cell convention.

splitting the two orbitals and breaking C4 rotational sym-
metry. This is characterized by a non-zero order param-
eter δni = ni,xz − ni,yz. Since the interaction is strictly
on-site, the pattern of any orbital ordering is not specified
a priori.

The weak coupling Random Phase Approximation
(RPA) considers the leading instability of the system
from the free fermion susceptibility and predicts a va-
riety of orders for Eq. (1) , depending on the value of
µ. In the range 0.2 . µ . 2.5, including the original
parameters considered in [26], the RPA predicts onset of
uniform nematic order for gc ≈ 1.7. For µ & 2.5, the
susceptibility peaks at wave-vector (0, π) and (π, 0) pre-
dicting stripe order, while for µ . 0.2 the susceptibility
peaks at wave-vector (π, π) predicting antiferro-orbital
(AFO) [antiferro-quadrupole (AFQ)] order.

When interactions dominate g � t, µ, we can get intu-
ition from a strong coupling expansion in t/g. At zeroth
order, the ground state is doubly degenerate – either or-
bital xz or yz is fully occupied on each site. This degener-
acy is split by second order processes, leading to nearest-
and next-nearest-neighbor Ising-type interactions of or-
der ∼ t2/g. For our hopping parameters, the ground
state of the resulting Ising model is a checkerboard pat-
tern [31, 32] – this corresponds to AFO order at half-
filling (f = 0.5 electrons per site per orbital per spin).
On the other hand, intuition from anti-ferromagnetic or-
der in the half-filled Hubbard model [33] suggests that
doping will quickly destroy this checkerboard order.

The sensitivity of the weak coupling instability to µ,
along with the instability of AFO order with respect to
doping away from half filling suggest a number of com-
peting orders and we proceed to study the phase diagram
of Eq. (1) numerically.
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III. SIGN-PROBLEM-FREE DQMC

We simulate the model in an unbiased fashion us-
ing Determinant Quantum Monte Carlo with discretized
time-steps as described in [34–36]. In order to sample
the full imaginary time partition function Z = Tr e−βH ,
we decouple the interactions in the nematic channel
using an onsite, continuous Hubbard-Stratonovich field
ϕ; the interaction term is ∼ ∑

i ϕiδni. Integrating
out the fermions analytically, the partition function
becomes a path integral of the auxiliary field, Z =∫
Dϕ e−Sb(ϕ) DetG−1(ϕ), and can be sampled using

the Monte Carlo algorithm. The fermion determinant
DetG−1(ϕ) decouples into spin sectors since the kinetic
energy does not mix spins and ϕi couples equally to
↑, ↓ through δni. The spin sectors are equal by time
reversal for any field configuration ϕ, DetG−1(ϕ) =
DetG−1↑ (ϕ) DetG−1↓ (ϕ) = |DetG−1↑ (ϕ)|2 > 0, which
guarantees that the partition function can be sampled
in a sign-problem-free manner at any filling.

We perform sweeps through the space-time lattice and
update the Hubbard-Stratonovich field ϕ on each site. As
ϕ couples different orbitals, we perform rank-two Wood-
bury updates [37] when calculating G↑ on a given time-
slice. We use the one-sided Jacobi Singular-Value Decom-
position algorithm [38] for numerical stabilization [39] on
every second time-slice. In order to reduce ergodicity
problems at strong interactions, we run the DQMC sim-
ulation in parallel for various interaction strengths g and
use a parallel-tempering algorithm [40], which proposes
to exchange ϕ configurations between simulations at dif-
ferent g after each sweep. For the data presented here,
we have simulated systems with periodic boundary con-
ditions up to L2 = 10 × 10 in spatial size (200 orbitals)
with an inverse temperature of up to β = 8 (βEF ∼ 40);
the imaginary time step is ∆τ = 1/16.

IV. PHASE DIAGRAM

We swept the phase diagram of the model described by
Eq. (1) as a function of interaction strength g and filling
fraction f (Fig. 2), showing regions of superconducting
and antiferro-orbital order. Since we are considering a fi-
nite temperature system in two spatial dimensions, only
quasi-long-range order exists. Our simulations are on lat-
tice sizes smaller then the scale of these fluctuations and
our finite size extrapolations indicate long range order of
the T = 0 ground state.

We first discuss the phase diagram in vicinity of half-
filling f = 0.5, which corresponds to two electrons per
site. In the limit of strong coupling g & 3.7 we see de-
velopment of long-range antiferro-orbital order. This is
fully consistent with the intuition from the strong cou-
pling expansion of a fully polarized state in the orbital
basis with a checkerboard ordering pattern (Fig. 3 inset).
The onset of order is confirmed by considering the equal
time nematic correlation function

g
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FIG. 2. Phase diagram of the model Eq. (1) as a func-
tion of interaction g and filling fraction f at inverse tem-
perature β = 8. The red dashed line indicates the bound-
ary of the region where the superconducting order parameter
extrapolates to a finite value in the thermodynamic limit.
The blue dashed line marks the boundary of phase with
antiferro-orbital order. The red / blue coloring is the in-
terpolated equal time correlation function of the s-wave su-
perconductivity / antiferro-orbital order on a 10 × 10 lat-
tice; white space is outside of range sampled. Dots indicate
simulated points along 9 values of the chemical potentials
µ = −1.0,−0.5, 0.0, 0.6, 1.6, 1.8, 3.0, 3.5, 4.0; the dots joined
by a grey dotted line correspond to µ = 0.6. The black dashed
line marks half filling.

Cτ=0(q) =
1

L2

∑
i,j

eiq·(i−j)〈δniδnj〉. (2)

The behavior of Cτ=0(q) at q = (π, π) is shown in Fig. 3.
To reduce finite size effects, we show Cτ=0(q) averaged
over three neighboring points q,q + 2πx̂/L,q + 2πŷ/L
which coincide in the thermodynamic limit. We also can
confirm the onset of order via the Binder ratio [41] for
the boson field ϕ conjugate to δn at zero frequency.

The AFO order rapidly disappears when the system is
doped away from half-filling, or the interaction strength
is decreased. In contrast to the expectations from weak
coupling RPA, we do not observe any nematic ordering at
other wave-vectors. Instead, when the long range AFO
disappears, we observe a large region with non-zero su-
perconducting order. To probe the superconducting or-
der, we study the equal-time pair correlation function

∼ 〈∆ab(i)∆
†
cd(j)〉, where the specific form of the ∆ab(i)

depends on the symmetry of pairing. We consider all
possible irreducible representations of lattice point group
D4 involving on-site, nearest neighbor and next nearest
neighbor sites and found non-vanishing pair correlation
function for the order parameter with s-wave (A1) sym-
metry. The dominant response is the on-site pairing,
where the only non-vanishing pairing is within the same
orbitals with equal sign (A1 ×A1 representation),

∆s(i) =
1

2
ciaα(iσyαβ)(τ0ab)cibβ . (3)



4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

5

10

15

20

25

30
6× 6

7× 7

8× 8

9× 9

10× 10

3.0 3.5 4.0
0.0

0.1

0.2

0.3

0.4

0.5

g

C
τ
=
0
(π
,π

)

g

C
τ
=

0
(π
,π

)/
L

2

FIG. 3. Equal time nematic correlation function averaged
around q = (π, π) rises rapidly, signaling onset of the long-
range order. The left inset shows a cartoon of the antiferro-
orbital ordering pattern. The second inset indicates the con-
vergence of the correlation function, when normalized by L2,
as expected from long-range order. Note the even-odd effect
due to periodic boundary conditions.

Here σ and τ are the Pauli matrices acting in the spin
and orbital basis, and τ0 is an identity matrix. The order
parameter ∆s(i) coexists with the extended s-wave pair-
ing between nearest neighbors, ∆s-ex(i), where the gap
changes sign between orbitals (B1 ×B1 representation),

∆s-ex(i) =
1

2

∑
ê

d(ê) ci+ê,aα(σyαβ)(τzab)cibβ , (4)

as is reflected by τz matrix. Here, the vector ê runs
over nearest neighbors and d(ê) denotes the dx2−y2 -wave
symmetry form-factor, d(±x̂) = 1, and d(±ŷ) = −1. For
µ ≥ 2, the s-wave pairing also extends to next-nearest
neighbor sites, along the diagonals of the square lattice.
It has a dxy-wave form factor along with the τx pairing
in the orbital basis (B2 ×B2 representation).

The equal time (τ = 0) pair correlation function for
the on-site s-wave is defined as

P s
r =

1

L2

∑
i

〈∆s(i + r)∆s(i)〉, P s
q =

1

L2

∑
r

eiq·rP s
r (5)

in the coordinate and Fourier space respectively, where
both sums are performed over all lattice points. In
the thermodynamic limit, the value of P s

q at q = 0
must converge to the value of P s

r at maximum sepa-
ration r = (L/2, L/2), if there is long-range supercon-
ducting order. At small L, P sq=0 includes mostly short
range contributions and overestimates the order param-
eter [42]. Fig. 4(a) shows data from the superconducting
phase where both quantities extrapolate to finite value
as 1/L → 0, moreover these quantities become closer to
each other for larger system sizes. In contrast, Fig. 4(b)
shows data from the AFO phase, where the pair correla-
tion functions are non-zero only due to finite size effects
and extrapolate to zero in the thermodynamic limit.
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P
s q
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P
s q
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FIG. 4. Finite size scaling of the on-site s-wave equal time
pair correlation at maximal-distance P sr=(L/2,L/2) and zero-
momentum P sq=0. (a) In the region which we identify as a
superconductor (µ = 0.6, g = 3.59) Pr, Pq extrapolate to a
finite value in the thermodynamic limit. (b) In the region of
the AFO phase (µ = 0.6, g = 3.91), both pair correlation
functions scale to zero in the thermodynamic limit.

In order to confirm the above picture of the ordered
phases, we consider the pseudo-density of states [43]

Ñ =
1

TL2

∑
q

G

(
τ =

β

2
,q

)
=
∑
q

∫ ∞
−∞

N(ω,q)dω

2T cosh(ω/2T )

(6)

where G(τ,q) is the imaginary time Green function
summed over orbitals and N(ω,q) is the single-particle

density of states at momentum q. Ñ gives us a measure
of the single-particle states at the Fermi energy with-
out numerically challenging analytic continuation; in the
limit where the temperature is far below any other energy

scale Ñ ' πN(ω = 0). Fig. 6 shows Ñ for the chemical
potentials µ = 0.6 (a) and µ = 4.0 (b). At weak inter-
actions, there is a finite density of states corresponding
to the metallic phase with larger finite size effects due to
the discrete sampling of the Fermi surface. Once the sys-

tem enters the superconducting phase, Ñ drops to zero
which is consistent with the fully gapped s-wave pairing
symmetry. For (a) the system is in the AFO phase at
g & 3.7, which we see is insulating.

V. ORIGIN OF SUPERCONDUCTIVITY

We observed an extended s-wave superconducting or-
der in a large portion of the phase diagram. One may
worry that this superconducting order arises only from
the attractive parts of the interaction in the model de-
fined by Eq. (1). However, decoupling the interaction in
the pairing channel within a mean field calculation only
leads to significant superconducting pairing for much
stronger interactions, g ≥ 6 at β = 8. Since the mean
field approximation tends to overestimate the ordering
tendency, this suggests that this scenario in isolation is
improbable.
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FIG. 5. The (a) uniform nematic correlation function, (b)
on-site s-wave pair correlation function, and (c) nearest neigh-
bor extended s-wave have very similar dependence on the
interaction strength for fixed value of µ = 0.6. The onset
and termination of the on-site superconducting order coin-
cides with similar trends in the nematic susceptibility. In
(a), the inset shows the unnormalized nematic susceptibility
Cω=0(0, 0) = 〈δnδn〉 at q = 0, ω = 0 – here we derive this data
from the correlation function of the Hubbard-Stratonovitch
fields, since ϕ is conjugate to δn; see also Appendix B.

A number of recent works [22, 24] addressed enhance-
ment of superconductivity in a vicinity of a uniform ne-
matic transition by nematic fluctuations. While we do
not find long-range uniform nematic order in the consid-
ered range of doping and interactions, the intuition from
weak-coupling RPA suggests possible competition be-
tween various ordering tendencies for this model. Then,
upon approaching the AFO transition, we expect to have
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FIG. 6. The pseudo-density of states Ñ along lines of con-
stant chemical potential (a) µ = 0.6 and (b) µ = 4.0 shows
large finite size variation in the metallic state and starts de-
ceasing once the system enters a gapped state. From correla-
tion function measurements the system in (a) enters the su-
perconducting state at g ∼ 2.5 and the AFO state at g ∼ 3.7;
we see here that the AFO state is gapped. The system in (b)
is strongly electron doped and always far away from the AFO

state; the drop to zero of Ñ suggests the superconductor is
fully gapped, as expected from a s-wave superconductor. The
three bottom panels (c) show the q space resolved pseudo-
density of states of the 10× 10 lattice at µ = 0.6; one quater
of the Brillouin zone is shown. As the interaction increases,
the states close to the Fermi surface are gapped out.

enhancement of fluctuations in various channels, includ-
ing uniform nematic fluctuations.

To check if the uniform nematic fluctuations play a
role in the superconducting phase, we compare the evolu-
tion of equal time nematic and pair correlation functions
with interactions, Fig. 5(a)-(c). The uniform nematic
correlation function has a maximum around g ≈ 3.5, ex-
actly where P s

r peaks. For larger interaction, the onset
of the AFO phase signaled by a rapid increase in AFO
correlations for g ≥ 3.7 (see Fig. 3) coincides with the
destruction of superconductivity and suppression of uni-
form nematic correlations.

To further explore the relationship between uniform
nematic fluctuations and superconductivity, we consider
adding an explicit symmetry breaking term ∆µ

∑
i δni/2

to the Hamiltonian. This suppresses the uniform nematic
fluctuations by causing the system to order in one of the
orbitals; the superconducting order (Fig. 7) is strongly
suppressed with increase symmetry breaking. However,
the symmetry breaking term also causes a change in
the band-structure and pushes the filling dependence to
higher electron doping (at a fixed chemical potential µ),
which we also expect to modify the superconducting re-
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FIG. 7. On-site s-wave correlation is suppressed in sim-
ulations which have an explicit orbital symmetry breaking
term ∆µ

∑
i δni/2. The simulations are performed at con-

stant chemical potential µ = 0.6, so the dependence of filling
on g is different from the case ∆µ = 0. Note for ∆µ & 0.4,
pairing persists to higher values of the interaction strength
g. This is understandable since the filling is shifted to higher
electron doping where the insulating phase is suppressed.

sponse. While it is hard to isolate the impact of these
different effects, the following comparison may be worth-
while – an orbital splitting of ∆µ = 0.6 leads to a 65%
suppression of superconductivity at g = 3.0. However,
a uniform chemical potential change of the same magni-
tude at the same filling leads to a suppression of 67% for
hole doping and a 60% enhancement for electron doping.
Thus orbital splitting appears to have a more significant
impact on superconducting pairing.

VI. DISCUSSION AND IMPLICATIONS FOR
FESE

Motivated by the idea of a nematic instability driven by
electron-electron interactions [44], we considered a purely
electronic model with interactions in the nematic chan-
nel. Our studies revealed a phase diagram with a large
superconducting region. While our two-band model is
oversimplified, it roughly captures the behavior of the
FeSe Fermi surface with doping: electron pockets in-
crease in size upon doping, while hole pockets shrink.
Moreover, we use a local on-site interaction that favors
imbalance in orbital occupancy. We consider our in-
teraction term as an approximation after one integrates
out high energy bosonic modes; similar interaction terms
were shown to arise from the Fe-ion oscillations [45]. The
on-site Coulomb repulsion, which is absent in our model,
will suppress on-site pairing, but the extended parts of
the superconducting pairing, which we find share the
same trends as the onsite pairing, will presumably be
less affected, and may be directly relevant for the ob-
served superconductivity in FeSe films.

Our model in Eq. (1) was found to have a long-range
antiferro-orbital order at strong coupling, whereas the
bulk FeSe is believed to have a uniform nematic order.
Nevertheless, the model considered here has enhanced
uniform nematic fluctuations as a precursor to the onset
of uniform order. We found that these nematic fluctu-
ations are correlated with enhancement of superconduc-
tivity. Moreover, we observed an essential asymmetry
of the superconducting phase, doping with electrons en-
hances superconducting order, while hole doping destroys
it. This is consistent with the phenomenology of FeSe,
where SC emerges upon strong electron doping. One
can potentially try to connect the nematic fluctuation
mechanism more closely with the observed superconduc-
tivity by looking for anisotropy of the gaps in momen-
tum space [24], which is left for future work on larger
system sizes. Beyond considerations of FeSe, many sys-
tems, such as intermetallic rare earth compounds, show
ferro-quadrupole or antiferro-quadrupole order without
any magnetic phase transitions [46]. They have recently
received renewed attention [47] and our results might be
relevant to the physics of these materials.

To conclude, we proposed a two band model with inter-
actions which enhance nematic fluctuations and studied
this model using DQMC. We find that robust high tem-
perature superconductivity appears that is accompanied
by ferro-nematic fluctuations, although the ferro-nematic
ordered phase itself does not appear in the range that
was studied. Our findings can be relevant to enhanced
superconductivity in FeSe films, as well as other situa-
tions where a fluctuating order may be responsible for
superconductivity. Our methods are readily extendible
to a wide class of multi-orbital models.
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Appendix A: Temperature Dependence

Throughout the main paper, we have shown data at
a fixed temperature β = 8, where the AFO and su-
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FIG. 8. Equal time nematic correlation function for a 10×10
lattice as a function of β. The correlation functions are (a) for
the AFO order as defined for Fig. 3 and (b) the on-site super-
conductivity as defined for Fig. 5(b). The value increases dra-
matically in the ordered regions as β increases, supporting the
presence of order as presented in the main text. However, the
small lattice sizes gives rise to large finite-size contributions,
even when the extrapolation to the thermodynamic limit in-
dicates no order.

perconducting orders were well developed on the simu-
lated system sizes and finite size extrapolation indicated
the presence of order. Here in Fig. 8, we illustrate the
temperature dependence of the AFO equal time correla-
tion function (2) and of the correlation function for on-
site superconducting order (5) at maximum separation
r = (L/2, L/2).

Both AFO and superconducting correlation functions
show an increase as the temperature is lowered, as ex-
pected in regions were order appears. Because of large
finite size effects, significant increases are seen even at
intermediate temperatures such as β = 2, 4 where finite
size scaling indicates absence of long range order in the
thermodynamic limit. At temperatures β = 8, extrapo-
lation shows the presence of AFO and superconducting
orders. At β = 6, large error bars in the finite size extrap-
olations do not allow to rigorously establish presence of
either order. Tentatively, there is an indication that su-
perconducting order is already established and the super-
conducting transition is at β < 6, although simulations
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FIG. 9. Susceptibility for (a) the nematic and (b) the AFO
order, derived from the connected correlation function of the
Hubbard-Stratonovitch fields. The transition to the AFO is
at g ∼ 3.7; for g & 3.4 the fluctuations of the AFO dominate
as expected close to the transition. For weaker g the nematic
fluctuations have are stronger for smaller lattice sizes as dis-
cussed in the main text.

on larger lattice sizes are needed to refine this estimate.

Appendix B: Nematic and AFO Fluctuations

Figure 9 shows the nematic susceptibility at ω = 0,
calculated via the connected corrector of the Hubbard-
Stratonovitch fields

Cω(q) =
1

L2β

∑
i,j,τ

eiq·(i−j)−iτω [〈ϕτ,iϕ0,j〉 − 〈ϕτ,i〉〈ϕ0,j〉] .

(B1)
The fields ϕ are the conjugate variable to δn and there-
fore this correlation function is directly proportional to
the strength of fluctuations. The Hubbard-Stratonovitch
fields have significantly slower convergence compared to
the fermion Green functions and should be interpreted
with caution. However, there are two general aspects
which might be gained from the data. First, that the
uniform nematic and AFO fluctuations are of the same
order of magnitude until very close to the AFO tran-
sition, where superconductivity is suppressed. Second,
that the peak in the uniform fluctuations on short lattices
(‘short-range order’) is a not an artifact of the equal-time
correlation function of Fig. 5(a), but indeed a signal of
enhanced uniform fluctuations.
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180502 (2016).

[22] M. A. Metlitski, D. F. Mross, S. Sachdev, and T. Senthil,
Phys Rev B 91, 115111 (2015).

[23] T. A. Maier and D. J. Scalapino, Phys. Rev. B 90, 174510
(2014).

[24] S. Lederer, Y. Schattner, E. Berg, and S. A. Kivelson,
Phys Rev Lett 114, 097001 (2015).

[25] S. Graser, T. A. Maier, P. J. Hirschfeld, and D. J.
Scalapino, New Journal of Physics 11, 025016 (2009).

[26] H. Yamase and R. Zeyher, Phys Rev B 88, 180502 (2013).
[27] K. Jiang, J. Hu, H. Ding, and Z. Wang, Phys. Rev. B

93, 115138 (2016).
[28] E. Berg, M. A. Metlitski, and S. Sachdev, Science 338,

1606 (2012).
[29] Y. Schattner, S. Lederer, S. A. Kivelson, and E. Berg,

ArXiv e-prints (2015), arXiv:1511.03282 [cond-mat.supr-
con].

[30] S. Raghu, X.-L. Qi, C.-X. Liu, D. J. Scalapino, and S.-C.
Zhang, Phys Rev B 77, 220503 (2008).

[31] K. Binder and D. P. Landau, Phys Rev B 21, 1941 (1980).
[32] J. Yin and D. P. Landau, Phys Rev E 80, 051117 (2009).
[33] J. E. Hirsch, Phys Rev B 31, 4403 (1985).
[34] R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys

Rev D 24, 2278 (1981).
[35] S. R. White, D. J. Scalapino, R. L. Sugar, E. Y. Loh,

J. E. Gubernatis, and R. T. Scalettar, Phys Rev B 40,
506 (1989).

[36] F. Assaad and H. Evertz, in Computational Many-
Particle Physics, Lecture Notes in Physics, Vol. 739,
edited by H. Fehske, R. Schneider, and A. Weiße
(Springer Berlin Heidelberg, 2008) pp. 277–356.

[37] W. H. Press, S. A. Teukolsky, W. Vetterling, and
B. Flannery, Numerical recipes, 3rd edn. The art of scien-
tific computing (Cambridge University Press, Cambridge,
2007).

[38] Z. Bai, C. Lee, R.-C. Li, and S. Xu, Linear Algebra and
its Applications 435, 659 (2011).

[39] E. Y. Loh, J. E. Gubernatis, D. J. Scalapino, R. L. Sugar,
S. R. White, and R. T. Scalettar, Stable simulations of
many fermion systems, Tech. Rep. (United States, 1989).

[40] H. G. Katzgraber, S. Trebst, D. A. Huse, and M. Troyer,
Journal of Statistical Mechanics: Theory and Experi-
ment 2006, P03018 (2006).

[41] K. Binder, Zeitschrift fur Physik B Condensed Matter
43, 119 (1981).

[42] C. N. Varney, C.-R. Lee, Z. J. Bai, S. Chiesa, M. Jarrell,
and R. T. Scalettar, Phys. Rev. B 80, 075116 (2009).

[43] N. Trivedi and M. Randeria, Phys Rev Lett 75, 312
(1995).

http://stacks.iop.org/0256-307X/29/i=3/a=037402
http://dx.doi.org/10.1038/ncomms1946
http://dx.doi.org/10.1038/ncomms1946
http://dx.doi.org/10.1073/pnas.0807325105
http://dx.doi.org/10.1073/pnas.0807325105
http://dx.doi.org/10.1038/nmat3648
http://dx.doi.org/10.1038/nmat3648
http://dx.doi.org/ 10.1007/s11434-015-0842-8
http://dx.doi.org/ 10.1007/s11434-015-0842-8
http://dx.doi.org/10.1038/nature13894
http://dx.doi.org/10.1038/ncomms6044
http://dx.doi.org/10.1038/ncomms6044
http://dx.doi.org/10.1038/ncomms9585
http://dx.doi.org/10.1038/nphys3530
http://dx.doi.org/10.1038/nphys3530
http://dx.doi.org/10.1038/ncomms10840
http://dx.doi.org/10.1038/ncomms10840
http://dx.doi.org/10.1038/nmat4302
http://dx.doi.org/ 10.1103/PhysRevB.93.020507
http://dx.doi.org/10.1038/nmat4155
http://dx.doi.org/10.1038/nmat4155
http://dx.doi.org/10.1021/ic5028702
http://dx.doi.org/10.1038/nmat3654
http://dx.doi.org/10.1038/nmat3654
http://dx.doi.org/10.1103/PhysRevLett.116.157001
http://dx.doi.org/10.1103/PhysRevLett.116.157001
http://arxiv.org/abs/1512.02526
http://arxiv.org/abs/1512.02526
http://dx.doi.org/ 10.1103/PhysRevB.86.134508
http://dx.doi.org/10.1038/nmat4138
http://dx.doi.org/10.1038/nmat4138
http://dx.doi.org/ 10.1103/PhysRevB.93.180502
http://dx.doi.org/ 10.1103/PhysRevB.93.180502
http://dx.doi.org/10.1103/PhysRevB.91.115111
http://dx.doi.org/10.1103/PhysRevB.90.174510
http://dx.doi.org/10.1103/PhysRevB.90.174510
http://dx.doi.org/ 10.1103/PhysRevLett.114.097001
http://stacks.iop.org/1367-2630/11/i=2/a=025016
http://dx.doi.org/10.1103/PhysRevB.88.180502
http://dx.doi.org/ 10.1103/PhysRevB.93.115138
http://dx.doi.org/ 10.1103/PhysRevB.93.115138
http://dx.doi.org/10.1126/science.1227769
http://dx.doi.org/10.1126/science.1227769
http://arxiv.org/abs/1511.03282
http://arxiv.org/abs/1511.03282
http://dx.doi.org/ 10.1103/PhysRevB.77.220503
http://dx.doi.org/10.1103/PhysRevB.21.1941
http://dx.doi.org/10.1103/PhysRevE.80.051117
http://dx.doi.org/10.1103/PhysRevB.31.4403
http://dx.doi.org/10.1103/PhysRevD.24.2278
http://dx.doi.org/10.1103/PhysRevD.24.2278
http://dx.doi.org/10.1103/PhysRevB.40.506
http://dx.doi.org/10.1103/PhysRevB.40.506
http://dx.doi.org/ http://dx.doi.org/10.1016/j.laa.2010.06.023
http://dx.doi.org/ http://dx.doi.org/10.1016/j.laa.2010.06.023
http://dx.doi.org/10.1007/BF01293604
http://dx.doi.org/10.1007/BF01293604
http://dx.doi.org/ 10.1103/PhysRevB.80.075116
http://dx.doi.org/10.1103/PhysRevLett.75.312
http://dx.doi.org/10.1103/PhysRevLett.75.312


9

[44] R. M. Fernandes, A. V. Chubukov, and J. Schmalian,
Nat Phys 10, 97 (2014).

[45] H. Kontani and S. Onari, Phys Rev Lett 104, 157001
(2010).
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