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Electrons, holes, and spin in the IV-VI monolayer ‘four-six-enes’

Ian Appelbaum∗ and Pengke Li (李鹏科)†
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Bandedge states in the indirect-gap group-IV metal monochalcogenide monolayers (‘four-six-enes’
such as SnS, GeTe, etc.) inherit the properties of nearby reciprocal space points of high symmetry
at the Brillouin zone edge. We employ group theory and the method of invariants to capture these
essential symmetries in effective Hamiltonians including spin-orbit coupling, and use perturbation
theory to shed light on the nature of the bandedge states. In particular, we show how the structure
of derived wavefunctions leads to specific dominant momentum and spin scattering mechanisms
for both valence holes and conduction electrons, we analyze the direct optical transitions across the
bandgap, and expose the interactions responsible for subtle features of the local dispersion relations.

I. INTRODUCTION

Broken lattice symmetry nearly always has substantial
consequences for the electronic structure of materials1–3.
One well-known example is Dresselhaus spin splitting4

upon the breaking of inversion symmetry in any time-
reversal invariant (i.e. non-magnetic) system; this is fun-
damental to the differences between bandstructure in the
case of diamond and zincblende lattices. Another such
phenomenon is the valley splitting of otherwise equiv-
alent band extrema in the presence of uni- or bi-axial
strain that breaks a discrete rotational symmetry in any
multivalley material, e.g. the group-IV elemental semi-
conductors Si or Ge5. Even a subtle atomic distortion,
such as in the transition from cubic to tetragonal phase in
many perovskites6, has dramatic repercussions on band
dispersion beyond the obvious generation of multiferroic
moments.

Within the realm of two-dimensional semiconductors,
phosphorene (see Ref. [7] and references therein) provides
an elemental touchstone material on which to explore the
role of symmetry breaking. Removing the equivalence of
all four group-V atoms within the unit cell by replacing
them with equal numbers of group-IV and -VI atoms to
retain the complete sp3 covalency has many immediate
consequences: Dresselhaus spin splitting will emerge due
to broken space inversion symmetry, and together with a
persistent uniaxial deviation from orthorhombic configu-
ration, the more ionic bonding between atoms with differ-
ent valence results in a bulk dipolar electric field8,9. Also,
the relevant band-edge states are no longer at the Bril-
louin zone center, so that remaining structural anisotropy
gives rise to valley splitting.

The resulting materials formed from {Ge, Sn} and {S,
Se, Te} are the so-called ‘group-IV metal monochalco-
genide’ monolayers. More succinctly named ‘four-six-
enes’ (adapted from ‘graphene’), they have been studied
recently using density functional theory (DFT) both with
and without spin-orbit interaction10–12. While this well-
developed method provides valuable information on band
ordering and overall dispersion, the essential (and often
simple) physical reasons for apparent bandstructure char-
acteristics peculiar to the four-six-enes remain obscured

behind the lid of DFT’s black box, where fundamental
symmetries in the underlying Schrödinger equation are
buried.

In the present paper, we use the mathematical lan-
guage of symmetry (group theory) to provide the an-
swers to intriguing questions posed, and yet unexplained,
by DFT band calculations of four-six-ene structures. Al-
though the concepts of symmetry and corresponding irre-
ducible representations (IRs) were previously mentioned
in the context of bandstructure in these materials13, they
were mistakenly used by attributing the properties of
salient gap-edge conduction band (CB) and valence band
(VB) states nearby the Brillouin zone (BZ)-edge to the
point group, which is only strictly relevant to the Bril-
louin zone-center Γ-point. In contrast, we utilize the full
theory of the space group and method of invariants for
nearby k-points of high symmetry to construct concise
effective Hamiltonians which not only yield correct CB
and VB band dispersion, but – more importantly – cap-
ture the spin-dependent nature of electronic states. In
addition to elucidating clear symmetry-borne band inter-
actions inducing the dispersion characteristics apparent
in DFT results, we analyze the wavefunctions to address
selection rules for interband optical transitions and re-
laxation of both momentum and spin.

The outcome of this analysis will reveal many entic-
ing qualities of four-six-enes otherwise not evident solely
from dispersion along the axes of high symmetry. In the
spin-split lowest conduction band valleys, we find that
the dominant scattering mechanism in many 2D materi-
als (carrier interaction with flexural phonons that have
quadratic dispersion14,15) is relevant here only to high-
order scattering processes, and electron mobility is lim-
ited by the presence of acoustic phonons. When con-
sidering spin relaxation, we explain that Elliott-Yafet
spin-flip mechanisms are suppressed in this band by
a fortuitous near-cancellation of contributions to spin-
mixing amplitudes in a prototypical four-six-ene. At
the spin-degenerate valence band maximum, we find that
armchair-polarized acoustic phonons limit the hole mo-
bility whereas flexural phonons are a dominant cause
of spin-flip transitions. Away from the high-symmetry
axis, a linear Dresselhaus field16 (similar to that found in
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zincblende [110] quantum wells) provides an environment
capable of supporting an in-plane persistent spin helix
for polarized holes. Direct optical transitions across the
fundamental gap between these bands (but not between
absolute extrema) induced by linearly polarized light are
controlled by momentum matrix elements, whose relative
magnitude (when nonzero) can be easily explained using
symmetry arguments.

The organization of this paper is as follows. In Sec.
II we present the DFT-calculated bandstructure includ-
ing spin-orbit interaction of a prototypical and naturally-
occurring example of a four-six-ene, tin (II) sulfide (SnS).
We identify several intriguing properties evident in the
dispersion close to the CB and VB extrema states, and
pose questions on their origins common to all four-six-
enes. In Sec. III, we discuss the geometric symmetry
of the real-space lattice and describe the point group.
We extend this to space group of the two relevant high-
symmetry k-points at the edge of the BZ that are in
close proximity to the band extrema, and derive the ef-
fective Hamiltonians in Secs. IV and V. Selection rules
for phonon- and photon-induced transitions specific to
each case are discussed within the corresponding section.
Finally, in Sec. VI we comment on the suitability of this
material’s electronic structure for potential applications
and observation of unusual phenomena, such as optical
creation of a degenerate exciton condensate.

II. BANDSTRUCTURE INTERROGATION

Using ab initio density-functional theory (DFT)
including spin-orbit interaction with the Quantum
ESPRESSO package,17 we have calculated the band-
structure of tin (II) sulfide, SnS, and obtain a dispersion
nominally identical to other reports10–12. The results
along high symmetry axes on the rectangular irreducible
Brillouin zone boundary [given in Fig. 2(b)] are shown
in Fig. 1, where the regions around band extrema close
to the Y - and Z-points are emphasized in insets (a) and
(b), respectively. These high-symmetry point labels are
chosen to be consistent with Ref. 2, Fig. 3.5.

Because these extrema are situated at points that are
not time-reversal (TR) invariant, four-six-enes are mul-
tivalley semiconductors with two equivalent extrema val-
leys in each band, ≈80% from the BZ center Γ-point. Val-
ley splitting causes the valence band maximum (VBM)
and conduction band minimum (CBM) to be on different
axes, so the fundamental gap is indirect.

Looking closer, we first notice the difference in band
degeneracy at these points of high symmetry. Clearly
these states at Y are doubly degenerate, whereas those at
Z result from the culmination of two orbital bands, each
themselves spin degenerate. We also see other details,
such as an accidental crossing of oppositely-dispersing or-
bital bands close to Y and an obvious spin-orbit-induced
splitting of the conduction band minimum. No such split-
ting occurs at the valence band maximum away from Z.
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FIG. 1. (Color online) Bandstructure of monolayer SnS
‘four-six-ene’ including spin-orbit interaction, calculated by
the Quantum ESPRESSO package17 using PBEsol func-
tional with Projector Augmented-Wave (PAW) fully relativis-
tic pseudopotentials, 40 Ry planewave cutoff, 180 Ry charge
density cutoff, and 8×8×2 Brillouin zone sampling grid. The
relaxed lattice constants are az = 4.35 Å and ay = 4.02 Å,
and the distance between isolated layers is 3.9az. The sym-
metry analysis throughout this paper is robust to variations
in these numerical details. Insets (a) and (b) zoom in on the
details of bandstructure close to the highly symmetric Y - and
Z-points and their associated conduction and valence valleys,
respectively.

What symmetries dictate these bandstructure fea-
tures? What are the wavefunctions at band extrema?
What are the selection rules for optical transitions be-
tween bands? What kind of phonon scattering is allowed,
and what effect does it have on the charge mobility and
spin relaxation? All of these questions can be answered
by analyzing the symmetry of the system to determine
the behavior of states at the high-symmetry points Y and
Z, and extending it to the extrema along the ∆ and Λ
axes. This strategy requires the appropriate use of the
method of invariants to construct effective Hamiltonians
around these high symmetry points, trivial analytic diag-
onalization of 2×2 matrices, and lowest-order perturba-
tion theory to expand to finite k and include the effects
of spin-orbit interaction. In the next section, we discuss
the geometric configuration of the atomic lattice and de-
scribe the rotation, reflection, and partial translation op-
erations that leave the lattice invariant, as our first step
in developing the group theory for four-six-ene electronic
structure.
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FIG. 2. (Color online) (a) Real-space lattice, where white and
black circles represent different group-IV and -VI atoms and
size represents out-of-page displacement. Plan-view is shown
at top of panel, whereas bottom shows the side as viewed
along the zig-zag (y) direction.; (b) Reciprocal-space lattice
showing irreducible Brillouin zone. Our coordinate system
follows the labeling convention established in Ref. [2].

III. SPATIAL SYMMETRY

A. Lattice basics

As shown in Fig. 2(a), the phosphorene-related four-
six-enes have an orthorhombic ‘distorted rocksalt’ lattice
that results from ‘puckering’ a boron nitride-like honey-
comb lattice along the zigzag y-direction. This uniaxial
warping results from the increased average atomic va-
lence of five and consequent tetragonal sp3 coordination,
in contrast to boron nitrides’s average valence of four and
planar sp2 bonding. The rectangular unit cell is then
shorter in the y-direction than in the orthogonal in-plane
z-direction, causing a rectangular BZ as shown in Fig.
2(b) and an obvious anisotropy in the bandstructure in-
cluding valley splitting. Importantly, a polar distortion
causes out-of-plane bonds to tilt along the z-direction,
which is responsible for breaking inversion symmetry oth-
erwise present in the undistorted rocksalt lattice.

B. Point-group symmetry

The four-six-ene lattice thus has a remarkably reduced
symmetry. Other than translations by integral numbers
of unit vectors, there are only four symmetry operators
that leave the atomic configuration invariant: E (the
identity operator); τC2z [rotation by 180◦ around the
z axis then translation of τ = (

ay
2 ,

az
2 )]; τRx (reflec-

tion with respect to the zy plane, then translation by
τ); and Ry (reflection with respect to the xz plane). We
make note in particular of the glide operations involving
τ , which make this group non-symmorphic.

In comparison to D18
2h phosphorene, the symmetry

group for four-six-enes is isomorphic to C7
2v in Schönflies

notation, or #31 (Pmn21) in International/Hermann-
Mauguin notation. Each of the aforementioned four
group elements forms its own class C1−4, respectively,

due to the abelian nature of the C2v point group.
If only states near the BZ center Γ-point were relevant

to our discussion (as in phosphorene7), we could present
the irreducible representations and their characters, ba-
sis functions and invariant components from the k · p̂
Hamiltonian corresponding to this closed set of symme-
try operators. Then we would classify the wavefunctions
and their symmetry-allowed interactions giving rise to
band dispersion. However, the region of reciprocal space
salient to the conduction and valence band edge states in
four-six-enes is clearly at far away from k = 0, as shown
in Fig. 1. This fact makes the point group an incomplete
catalog of symmetries for physical wavefunctions.

Although we have a tabulation of the symmetry oper-
ations for the Bloch envelope function that fully captures
the transformation properties of wavefunctions at the Γ-
point, the multiplicative planewave component eik·r also
contributes to symmetry properties at k 6= 0. As men-
tioned in a previous symmetry analysis of phosphorene18,
the nonsymmorphic nature of the lattice results in band
merging and double degeneracy at the Brillouin zone
edge. Specifically, even if a certain k-point is invariant
under all lattice symmetry operations, nonsymmorphic
elements applied to the planewave component may re-
quire an additional bare translation as a symmetry ele-
ment to close the group (see for example p. 56 of Ref. [3]).
Importantly, the character parity of this translation op-
erating on the planewave component determines whether
or not an irreducible representation is indeed physically
valid.

IV. Y -POINT

A. Hamiltonian

The Y -point at (y, z) = (± π
ay
, 0) is left invariant by all

point group operations. However, an additional trans-
lation is required to close the group of the wavevec-
tor. We can see this by considering the noncommutative
properties of two symmetry elements acting on a vec-
tor in the plane: τC2zRy(y, z) = (y +

ay
2 , z + az

2 ) but

RyτC2z(y, z) = (y − ay
2 , z + az

2 ).
A new operator is required to connect these resulting

vectors, Qy [translation by (y, z) = (ay, 0)]. Note that in
addition to the Y -point itself, the same element is also
needed for closure at any k-point along the H axis [Y −T ,
see Fig. 2(b)]. In addition to forming larger classes, i.e.
C2 → {τC2z, QyτC2z} (and similarly for C3 and C4), Qy
forms an additional new class, C5. The full character
table for the group at Y is shown in Table I.

At Y , the planewave part of the Bloch wavefunction

e
i πay y undergoes a sign change upon translation by a lat-

tice vector under the symmetry operation Qy = (ay, 0).
Thus, all valid physical IRs must have odd character in
class C5; only the two-dimensional Y1 meets this require-
ment. This situation is similar to the double orbital de-
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TABLE I. Character table at Y -point: G4
8 (see Ref. [2],

p. 228, where the IRs are denoted R1−5 and classes C2 =
C5, C3 = C3, C4 = C4, C5 = C2). Strikeout indicates terms
forbidden by time-reversal symmetry. Only Y1 is physical
(odd parity with respect to C5).

IR C1 2C2 2C3 2C4 C5 basis invariants Y1 matrices

M1(R1) 1 1 1 1 1 1, z k2y ,k2z ,��kz , kyσx ρ0 %0

M2(R4) 1 1 -1 -1 1 xy, xyz ��σz , kyσy , kzσz ρx %y

M3(R2) 1 -1 1 -1 1 y, yz ky , σx,��kzσx ρy %z

M4(R3) 1 -1 -1 1 1 x, xz ��σy , kyσz , kzσy ρz %x

Y1(R5) 2 0 0 0 -2
{cos,

sin}
e
±i πy
ay

generacy of all states at theX-point in diamond structure
crystals such as Si and Ge, due to nonsymmorphic ele-
ments of the diamond symmetry group which cause all
singly-degenerate IRs to be unphysical3,19. In analogy to
the IR nomenclature convention in that case, we label the
remaining four unphysical IRs at the Y -point by M1−4;
see Table I.

According to the matrix element theorem, all nonzero
matrix elements in the effective Hamiltonian are due
to interaction terms of symmetry Y1 ⊗ Y1 = M1 ⊕
M2 ⊕ M3 ⊕ M4. To proceed using the method of
invariants20, we choose a particular set of Y1 basis func-
tions {cos πyay , sin

πy
ay
}, and generate transformation ma-

trices Di corresponding to the symmetry operations in
classes C1−5. We find D1−5 = ρ0, ρx,−iρy, ρz,−ρ0, re-
spectively. Subscripts of these 2×2 matrix operators for
orbitals and all σ (for spin) and τ (for remote band
coupling) correspond to the usual Pauli matrices, with
subscript 0 indicating the identity. Using these matrix
operators, we then invoke the unitary transformation
D−1
i ℵDi = ξiℵ, finding that when ℵ = ρ0,x,y,z, the re-

sulting ξi are commensurate with distinct IR characters
in Table I. We can then assign ρ0 → M1, ρx → M2,
ρy →M3, ρz →M4.

Time-reversal symmetry (TRS) further restricts the
presence of some of these spatial-symmetry-allowed
terms, i.e. they do not commute with the time-reversal
operator Θ̂ = K̂(ρ0 ⊗ σy) (and k → −k due to the
planewave part of the wavefunction). We find that
Hamiltonian terms proportional to kzρ0 ⊗ σ0, ρx ⊗ σz,
kzρy ⊗ σx, and ρz ⊗ σy are all forbidden. The spin-
dependent 4× 4 Hamiltonian then has the form

HY =A1k
2
yρ0 ⊗ σ0 +Bkyρy ⊗ σ0 + Cρy ⊗ σx

+ F1kyρz ⊗ σz + F2kyρ0 ⊗ σx +G1kyρx ⊗ σy
+A2k

2
zρ0 ⊗ σ0 + F3kzρz ⊗ σy +G2kzρx ⊗ σz.

(1)

The first two lines include all ky-related terms together
with the only k-independent spin-orbit perturbation pro-
portional to constant C, while the third line accounts for
all kz-related terms. The F1−3 terms are lowest-order
k-dependent spin-orbit perturbations and likely have the
same amplitude, because spin-orbit coupling originates

from the inner core region where the potential is highly
isotropic. The G1−2 terms are from higher-order spin-
orbit coupling due to the folding of off-diagonal blocks
from remote bands21; again, their amplitudes are likely
to be similar.

The spin-independent Hamiltonian from the three σ0

related terms of Eq. 1 can be diagonalized analyti-
cally to find two doubly-degenerate eigenvalues E± =
A1k

2
y +A2k

2
z ±Bky corresponding to the eigenvectors of

ρy ⊗ σ0. In other words, the orbital wavefunctions along
the ∆-axis (Y − Γ) are equal superpositions of the basis

functions |±〉 = Y
(1)
1 ∓ iY (2)

1 . Note that, using our spe-

cific basis functions {cos πyay , sin
πy
ay
}, |±〉 = e

∓iπyay . While

these complex exponential functions are certainly consis-
tent with the spatial symmetry operations, they are not
TR invariant since they transform into each other under
the complex conjugation operator K̂. The time reversal
operator Θ̂ in this basis must be modified from its usual
form, complicating the selection of TR-allowed invari-
ants. To highlight this issue, we label the invariant ma-
trices for this natural eigenbasis in Table I as %, indicating
that while they act in the same orbital space as the ρ ma-
trices, they have unusual TRS properties. We will again
see the relevance of basis function time-reversal transfor-
mation properties in Sec. V when discussing states near
the Z-point.

We can use the |±〉 wavefunctions to evaluate the effect
of spin-orbit interaction via perturbation theory. In the
% ⊗ σ : {+ ↑,+ ↓,− ↑,− ↓} unperturbed band basis, all
six SOC-related terms of Eq. (1) are

0 C 0 0

C 0 0 0

0 0 0 −C
0 0 −C 0

 +


0 F2 F1 −G1

F2 0 G1 −F1

F1 G1 0 F2

−G1 −F1 F2 0

 ky

+


0 0 −iG2 −iF3

0 0 iF3 iG2

iG2 −iF3 0 0

iF3 −iG2 0 0

 kz. (2)

These matrix elements can now be used to analyze the
effect of SO perturbation along lines of symmetry. Of
particular importance is the case when kz = 0 along the
∆-axis (Y −Γ), since this corresponds to the conduction
band minimum (ky = ky0 ∼ 20% π

ay
) in many ‘four-six-

enes’. Because both the orbital splitting and SOC ma-
trix elements are proportional to ky along this path, the
lowest-order wavefunctions are k-independent, e.g. the
lowest conduction band is

|ψc〉 : |−, x〉 − F1 −G1

2B
|+, x̄〉 , (3)

while its spin-split partner, the second lowest conduction
band, is

|ψ′c〉 : |−, x̄〉 − F1 +G1

2B
|+, x〉 . (4)
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Here, |x〉 = 1√
2

(|↑〉+ |↓〉) and |x̄〉 = 1√
2

(|↑〉 − |↓〉). In

spin space, they are spin-eigenfunctions of σx (out of
plane) and slightly mixed since both |F1| and |G1| � |B|.
Eq. (2) also shows that around the band extrema, the
lowest order Dresselhaus field4 follows the form (C −
F2ky0)σx, pointing out of plane.

The lowest-order eigenvalues along the ∆-axis (kz = 0)
are

E∆ =A1k
2
y ± C(+/−)

√
(B ± F2)2 + (F1 ±G1)2ky

≈A1k
2
y(+/−) [B ± F2] ky ± C, (5)

as shown in Fig. 3. Here the choice (+/−) selects the
upper or lower band of a spin-split pair, whereas the
choice ± determines the majority orbital components of
a band. The absolute CBM is thus at ky0 = B−F2

2A1
away

from Y toward Γ, and the shift to upper CB minimum is
∆k = F2/A1. In the region of the local conduction band
minimum where ky0 � kz, the wavefunction acquires a

higher order spin mixing term ±i (F3±G2)kz
2Bky0

, in addition

to the lowest-order mixing given in Eqs. (3) and (4).
The lower |+〉 and upper |−〉 bands accidentally cross

at C/B away from Y . It is worth noting that there is no
avoided crossing here because, as Table I shows, there are
no spatial symmetry-allowed interactions that couple the
ρy orbital eigenstates while simultaneously commuting
with σx; these interactions coupling majority wavefunc-
tion components |+, x̄〉 and |−, x̄〉 would take the form
ρx,z ⊗ σx,0, but are forbidden by the presence of τRx.
Neither are there terms that couple majority to minority
(F1 and G1 spin-orbit induced) components with iden-
tical orbitals but opposite spin, which would be of the
form ρ0,y ⊗ σy,z.

Now we turn our attention to the situation when ky =
0 along the H-axis (Y − T ). The term F3kzρz ⊗ σy in
Eq. 1 only couples between bands of the same doubly-
degenerate subspace, causing an orbital mixing and weak
splitting. The two pairs of eigenstates are

|ψl〉 :
1√
2

(|−, x〉 ± i |+, x̄〉) , |ψu〉 :
1√
2

(|+, x〉 ± i |−, x̄〉) ,
(6)

and the lowest-order eigenvalues along the H-axis are

EH =

{
A2k

2
z − C ∓ (F3 +G2)kz, [lower]

A2k
2
z + C ∓ (F3 −G2)kz. [upper]

(7)

The ∓ here corresponds to the ± in the states of Eq.
6. Notice that the orbital splitting for the upper and
lower pairs can be inequivalent, due to constructive and
destructive interference between the F3 and G2 parame-
ters.

The fitting of the DFT calculation in Fig. 1(a)
determines the numerical values for the parameters
A1,2, B,C, F = F1,2,3, and G = G1,2 given in Table I.
Fig. 3 shows the resulting bands described by Eqs. 5 and 7
along the ∆− and H−axes, with colors red/blue indicat-
ing the spin-split nature along the former. It should be

Γ← ∆(ky) Y H(kz) → T

F2

A1

ky0 ∼ B−F2
2A1

C
B

2C−2F2ky

2C+2F2ky

(F3−G2)kz

(F3+G2)kz

with
Y1

VB

E
n
er
g
y

Y

[
∆1
α∆2

] [
α∆1
∆2

]∆
2

Yafet

∆1Elliott

FIG. 3. (Color online) Bands close to the Y -point us-
ing Eqs. (5) and (7) with conduction band parameters
from Table II. Blue(red) indicates dominant spin orientation
up(down) along the out-of-plane x direction; along the H-
axis (Y − T ), spin and orbital degrees of freedom are maxi-
mally mixed. Green arrow indicates upward repulsion from
interband k · p̂ coupling with states of lower energy. Gray
shows bands before SOI is taken into account. Compare to
DFT results in Fig. 1(a). Inset: Intervalley spin-flip scatter-
ing mechanisms and ∆-axis phonon selection rules connect-
ing x-axis spinor components, with spin-mixing coefficient
|α| = |F1−G1

2B
|.

TABLE II. Y -point Hamiltonian parameters for SnS.

A1[eVÅ2] A2[eVÅ2] B[eVÅ] C[meV] F [eVÅ] G[eVÅ]

CB 15 -8.6 4.0 53 0.15 0.14

VB -7.4 1.0 2.1 31 0.14 0.11

emphasized that the full wavevector dependence of the
four bands,

EY (ky, kz) = A1k
2
y +A2k

2
z ± C

(−/+)
√

[(B ± F2)2 + (F1 ±G1)2]k2
y + (F3 ∓G2)2k2

z .

is obtained from exact diagonalization of the lowest-order
approximate Hamiltonian, expected to be most valid
close to the Y -point and along these high symmetry axes.

B. Interband interaction

The discussion above only includes interactions be-
tween the two Y1 states that are orbitally-degenerate at
the Y -point. Coupling to nearby bands, all of which are
also of Y1 symmetry, are via off-diagonal blocks of the
matrix Hamiltonian. In addition to the terms appear-
ing on the main diagonal blocks, TRS allows otherwise-
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forbidden invariant components here. We can formally
include them by projecting into the larger Hilbert space
via direct product with the τx and τy operators, respec-
tively. The effect of SOC due to folding these interactions
into the 4×4 Hamiltonian has already been discussed,
giving rise to the terms proportional to G1 and G2. We
emphasize that, unlike the case of inversion-symmetric
lattices, the most obvious signature of SOC near Y (spin
splitting) is independent of coupling to remote bands,
similar to the case of states near the K- and K ′- points
in transition-metal dichalcogenides.22

The most important interband terms that give rise
to band dispersion are those that arise from the spin-
independent k · p̂ perturbation. In addition to a coupling
of the form τx⊗kyρy⊗σ0, there is also a term (previously
forbidden by TRS on the diagonal block) proportional to
τy ⊗ kzρ0 ⊗ σ0. Because A1 and A2 are of opposite sign,
the contribution from coupling to the valence bands via
the latter term is necessary to fully reproduce the abso-
lute global conduction band minimum (rather than a sad-
dle point) at (ky0, 0) and repel the bands upward along
kz to preserve an open bandgap.

C. Optical selection rules

The interband coupling mentioned above is also useful
in the context of analyzing optical selection rules at the
Y -point and the conduction valleys close to it. Interac-
tion of electromagnetic excitation is provided by a dipole
perturbation that transforms as a polar vector, just like
the k · p̂ terms. Among the three components of linear
polarization, the one directed out of the plane (x̂) is as-
sociated with IR M4, which behaves as the off-diagonal
%x that couples different |±〉 orbital basis functions. By
checking the numerical wavefunctions of band-edge states
at the Y − Γ valleys, we confirm that their orbital con-
stituents are identical, indicating that this x̂-polarization
is forbidden, whereas the in-plane ŷ and ẑ are allowed (as-
sociated with IR M3 and M1, respectively). This can be
contrasted with luminescence in the D3h group-III metal
monochalcogenides, whose band extrema are coupled to
lowest order only by out-of-plane polarized emission23.

The amplitude of the z-polarized dipole depends on the
parity components of the interband states with respect
to ẑ, which are not restricted by any symmetry of the
Y -point. By further examining the numerical wavefunc-
tions from DFT, we find that the two band edge states
near Y are both dominated by planewave components
even in ẑ, so that the matrix element of the odd-parity
p̂z operator between these components is strongly sup-
pressed. We can therefore straightforwardly illuminate
the reason behind a dramatic difference of optical transi-
tion rates in the Y −Γ valleys for the two orthogonal lin-
ear polarizations, a result originally obtained by empiri-
cal observation of DFT calculations and reported without
explanation13. Our further inspection of spin-dependent
wavefunctions reveals that states at the Y -valley extrema

share the same majority spin after spin-splitting, which
guarantees direct optical transition spectra starting from
the absolute band edge.

D. Momentum and spin relaxation

Conduction-band-minimum states lie on the ∆-axis,
whose symmetry group consists only of vertical reflection
Rx besides the identity. Thus, electron states are of either
∆1 (even) or ∆2 (odd) symmetry with respect to Rx, and
correspond directly to the two Y -point basis functions
|+〉 and |−〉.
Intravalley– Zone-center phonons with vanishing mo-

mentum that couple these states to themselves, and thus
drive intravalley scattering, must be even with respect
to Rx and hence are of Γ1 (z-polarized acoustic) or Γ3

(y-polarized acoustic or yz optical) symmetry, using com-
patibility M1−4 → Γ1−4 and characters in Table I. Both
of these phonons can be efficiently suppressed at low tem-
peratures because, unlike the x-polarized flexural mode
that has quadratic dispersion15, they have a vanishing
density of states (acoustic y, z) or an energy gap (optical
yz).
Intervalley– Since ∆1 and ∆2 bands cross at the Y -

point, the dominant wavefunction component for states
in the two degenerate valleys are of opposite parity with
respect to Rx. Phonon-induced transitions then have se-
lection rules reminiscent of spin-conserving g-process in-
tervalley scattering in Si, where ∆1 and ∆′2 bands cross
at the X-point so that a ∆′2 phonon is required24.

In four-six-enes, however, the absence of spatial in-
version symmetry breaks spin degeneracy along the ∆-
axis and leaves two degenerate valley minima of opposite
spin, eliminating the spin-conserving intervalley scatter-
ing channel. The remaining allowed spin-flip transitions
from the conduction-band minimum state |ψc〉 (see Eq.
3) into its time-reversed counterpart close to the absolute
conduction band edge with wavefunction

|ψ̄c〉 : |+, x̄〉 − F1 −G1

2B
|−, x〉 (8)

requires ∆1-phonon (y, z, or yz-polarized) coupling be-
tween majority and minority (spin-orbit mixed) compo-
nents in the bare Elliot mechanism25. Since F and G
coefficients are nearly the same magnitude in SnS [as can
be seen visually in Fig. 1(a) from the weak splitting of
upper states along kz], the spin mixing amplitude pro-
portional to F1 −G1 is quite small (approximately 0.1%
from our DFT result) and spin relaxation through this
otherwise dominant mechanism is relatively slow. We
note that this determination of the matrix element mag-
nitude would be impossible if only analyzing in the ∆1,2

basis without incorporating the influence of the nearby
Y -point.

Another contribution to intervalley spin relaxation
from the Yafet mechanism that couples majority compo-
nents with opposite spin26 requires phonons of ∆2 sym-
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metry, which includes the out-of-plane x-polarized and
xy or xz modes. It is of the same order of magnitude as
the Elliott term; both are indicated in an inset to Fig. 3,
where we use x-axis spinor notation to denote the wave-
functions and define |α| = |F1−G1

2B |.

V. Z-POINT

Referring to Fig. 1(b), we can see that the valence
band maximum is near the Z-point. We now modify the
approach used above for Y -point to analyze these states.

A. Hamiltonian

At the Z-point, (y, z) = (0,± π
az

), the translation oper-
ator necessary to close the group creates product opera-
tions with the point-group symmetries that form distinct
new classes, with a total of eight; see Table III. The re-
quired odd parity under Qz = (0, az) (again caused by
the planewave part of the wavefunction) constrains the
physical IRs to Z1, Z1′ , Z2, Z2′ .

Note that the pairs Z1⊕Z1′ and Z2⊕Z2′ form degener-
ate “time-reversal conjugate representations”1, i.e. they
transform into each other upon time reversal (complex
conjugation in single-group). Within a doubly degener-
ate subspace, Z∗1 ⊗Z1′ = Z∗2 ⊗Z2′ = M ′4, and coupling to
bands of the same IR always gives M ′1. We therefore only
expect terms proportional to k2

y,z and kz (both belong to
M ′1) to appear in the spin-independent Hamiltonian.

However, because spatial and time-reversal symmetries
are conflated, it is intuitive to define a time-reversal-
invariant basis Z+ = 1√

2
(Z1 + Z1′), Z− = i√

2
(Z1 − Z1′)

so that Θ̂ = K̂ρ0 as usual. Transforming into this basis,
we find that the spatial symmetry operations involving
partial translation (τC2z and τRy) have matrix represen-
tationsDi ∝ ρy, and all other operations with real-valued
characters are ±ρ0.

Inspecting the matrices satisfying the transformation
D−1
i ℵDi = ξiℵ leads us to assign ℵ = ρ0, ρy → M ′1 and

ρx, ρz →M ′4 in Table III. We then find that TRS restricts
the spin-independent lowest-order effective Hamiltonian
to (A′1k

2
z +A′2k

2
y)ρ0 +B′kzρy in the {Z+, Z−} basis, with

eigenvalues E± = A′1k
2
z +A′2k

2
y±B′kz and corresponding

eigenvectors of ρy [|±〉 = 1√
2
(Z+ ± iZ−) = Z1′,1]. As a

result, the degeneracy is broken away from the Z-point,
with the only exception being the Brillouin zone edge
B-axis (Z − T , kz = 0), where the TRS-induced double
degeneracy is preserved.

Inclusion of spin and SO coupling is straightforward.
The combination of spatial symmetry and time-reversal
symmetry (Θ̂ = K̂ρ0 ⊗ σy) excludes all k-independent
SOC as shown in Table III; as a result, the degeneracy of
both Z1 ⊕Z1′ and Z2 ⊕Z2′ bands is doubled to fourfold
at the Z-point, even though the only physically-allowed

TABLE III. Z-point character table: G2
8 (see Ref. [2], p. 227.

Characters of C4, C7 and C8 are not included). M ′1−4 share
the same basis functions accordingly with M1−4 in Table I.
Backward cancel indicates combination with the first invari-
ant matrix listed in the RHS column is forbidden by TRS;
forward indicates the second.

C1 C2 C6 C5 C3 invariants {Z+, {Z1(2),

E τC2z τRx Ry Qz Z−} Z1′(2′)}
M ′1(R1) 1 1 1 1 1 ��k

2
y,��k

2
z,ZZkz,��kyσx ρ0, ρy %0, %z

M ′2(R5) 1 1 -1 -1 1 σz, kyσy, kzσz

M ′3(R7) 1 -1 1 -1 1 ky, σx, kzσx

M ′4(R3) 1 -1 -1 1 1 ��ZZσy, kyσz, kzσy ρx, ρz %x, %y

Z1(R2) 1 i i 1 -1

Z1′ (R4) 1 -i -i 1 -1

Z2(R6) 1 i -i -1 -1

Z2′ (R8) 1 -i i -1 -1

TABLE IV. Z-point Hamiltonian parameters for SnS.

A′1 [eVÅ2] A′2 [eVÅ2] B′ [eVÅ] F ′[eVÅ]

CB 13.8 -8.9 4.0 0.40

VB -11.0 15.0 -3.3 −0.09

IR is two dimensional in the Z-point double group G8
16

(see Ref. [2], p. 233).
The only TRS-allowed SO term of M ′1 symmetry

is kyρ0 ⊗ σx, whose strength we parameterize in the
Hamiltonian by the constant F ′1. There are four TRS-
allowed SO terms of M ′4 symmetry: ky{ρx, ρz}⊗σz, and
kz{ρx, ρz} ⊗ σy. However, only two parameters F ′2 and
F ′3 are required to obtain the eigenvalue spectrum; the
coefficients weighting each ρx, ρz term are merely orbital
basis-dependent quantities and hence are only necessary
to determine the exact details of the wavefunctions be-
yond symmetry. The full Hamiltonian expressed in the
{Z+, Z−} basis is then

HZ =A′1k
2
zρ0 ⊗ σ0 +A′2k

2
yρ0 ⊗ σ0 +B′kzρy ⊗ σ0

+ F ′1kyρ0 ⊗ σx + F ′2kyρz,x ⊗ σz + F ′3kzρz,x ⊗ σy.

In the natural (but not TR invariant) {Z1, Z1′} eigenba-
sis, it becomes

HZ =A′1k
2
z%0 ⊗ σ0 +A′2k

2
y%0 ⊗ σ0 +B′kz%z ⊗ σ0

+ F ′1ky%0 ⊗ σx + F ′2ky%y,x ⊗ σz + F ′3kz%y,x ⊗ σy.
(9)

Note that we can repeat the above analysis with Z2⊕Z2′

and obtain the same result.
The spectrum along the Brillouin zone edge B-axis

(Z − T ) is given by exact diagonalization of Eq. (9)

EB = A′2k
2
y(+/−)ky

√
F ′21 + F ′22 , (10)

where (+/−) selects between the two spin states. The
corresponding wavefunctions are both orbitally and
spin mixed, with amplitudes depending on the relative
strength of F ′1 and F ′2.
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T ← (ky) Z Λ(kz) → Γ

2
√

2kyF
′
1,2

2B′kz

kz0∼ B′

2A′

|Z1′(1)〉

|Z1(1′)〉

with
Z2 ⊕ Z2′
upper

CB

E
n
er
g
y

Z

[
Λ1
βΛ4

] [
βΛ1
Λ4

]Λ4
Yafet

Λ1Elliott

FIG. 4. (Color online) Bands close to the Z-point using
Eqs. (10) and (13) with SnS valence band parameters from
Table IV. Along the Λ-axis (Z − Γ), bands remain spin-
degenerate. Gray shows bands before SOI is taken into ac-
count and is visible along the B axis (Z − T ). Green arrow
indicates downward repulsion from interband k · p̂ coupling
with states of higher energy. Compare to DFT results in
Fig. 1(b). Inset: Intervalley spin-flip scattering mechanisms
and Λ-axis phonon selection rules connecting x-axis spinor
components.

Along the Λ-axis (Z − Γ, ky = 0), spin degeneracy is
preserved; the last term in Eq. (9) clearly only couples
between states of opposite spin in different orbital bands.
Thus, the degenerate wavefunctions can be expressed as
spin- and orbitally-mixed, i.e.

|ψv,⇑〉 = |Z1(1′), x〉 −
F ′3
2B′
|Z1′(1), x̄〉 , (11)

|ψv,⇓〉 = |Z1(1′), x̄〉+
F ′3
2B′
|Z1′(1), x〉 , (12)

where we have indicated that the orbital functions swap
roles between the two equivalent valleys. The energy
spectrum is

EΛ = A′1k
2
z ± kz

√
B′2 + F ′23 ,

≈ A′1k2
z ± (B′ +

F ′23

2B′
)kz (13)

where ± selects between orbital states. Away from the
Λ-axis in the ky direction, the fourth term in Eq. (9)
causes a lowest order linear Dresselhaus splitting of the
two states in Eqs. (11) and (12), similar in form to the
case of [110] zincblende quantum wells27–30. Our analytic
dispersion near the valence band Z-point can then be
plotted using Eqs. (10) and (13), and the parameters in
Table III taken from fitting the DFT results in Fig. 1(b).

B. Interband interaction

Coupling to other bands of opposite single-group sym-
metry gives different invariant matrices ρ0, ρy →M ′2 and
ρx, ρz → M ′3. Once again, TRS is no longer an absolute
constraint on these coupling matrices as long as the full
Hamiltonian remains TR invariant. We thus have many
symmetry-allowed terms in the (Z1 ⊕ Z1′)↔ (Z2 ⊕ Z2′)
block:

τx ⊗ {%z ⊗ σz, kz%x,y ⊗ σx} (14)

and

τy ⊗ {%0 ⊗ σz, %x,y ⊗ σx, ky%x,y ⊗ σ0}. (15)

When ky = 0, this perturbation only couples each band
to two other remote states, all of which are the same spin.
The two matrix elements have squared magnitude α2+δ2

for the same orbital, and (φ± βkz)2 + (η∓ χkz)2 for the
opposite orbital, where α, β, χ, δ, η, φ are coefficients of
the above ky-independent SOC terms, respectively. Al-
though the ± causes this shift to take on different kz-
dependent values for the two orbitals within a given band,
they are spin independent and thus twofold degeneracy
is maintained along the Λ-axis (Z − Γ). Importantly,
the last ky-related k · p̂ terms in Eq. (15) induced from
Z2 ⊕ Z2′ upper conduction band states are responsible
for the downward repulsion of the valence band maxi-
mum along ky, which opens a bandgap.

For coupling to remote bands of the same symmetry,
we have off-diagonal terms τx⊗

{k2
y,z%0 ⊗ σ0, kz%z ⊗ σ0, ky%0 ⊗ σx, ky%x,y ⊗ σz}, (16)

and τy⊗

{k2
y,z%z ⊗ σ0, kz%0 ⊗ σ0, ky%z ⊗ σx, %x,y ⊗ σy}, (17)

for (Z1 ⊕ Z1′)↔ (Z1 ⊕ Z1′), or (Z2 ⊕ Z2′)↔ (Z2 ⊕ Z2′)
matrix blocks. A similar analysis as in the previous
case leads us to the same result, i.e. no additional spin
splitting. This is confirmed by examination of the only
physically-allowed IR in the double-group character ta-
ble for the Λ-axis (G5

8, see Ref. [2], p. 228), which is of
dimension two.

By examining the numerical wavefunctions from our
DFT calculation, we find that both the lowest conduc-
tion bands and the highest valence bands at the Z point
belong to the (Z1 ⊕ Z1′) pair, which is even under Ry
and favored by states with relatively low energy (com-
pared with the Z2⊕Z2′ pair that is odd under Ry). At a
fixed k point along the Λ axis, the conduction and valence
valleys belong to the same IR (both Z1 or Z1′), which is
evident by their identical parity under the operation of
τRx. We can then see from Eqs. (16) and (17) that the
two kz-dependent terms are those responsible for band-
to-band repulsion and the opening of a bandgap along
the Λ-axis (Z − Γ).
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C. Optical selection rules

Because both the upper valence and lowest conduc-
tion bands pairs at the Z-point are of Z1 ⊕ Z1′ sym-
metry, we can use the same expressions to gain insight
into the optical selection rules for direct excitation from
the Z − Γ valence valleys. In particular, we see that the
ky component of the k · p̂ perturbation is forbidden by
spatial symmetries, so ŷ-polarized light does not induce
lowest order optical transitions requiring nonzero p̂y ma-
trix elements. On the other hand, direct gap ẑ-polarized
optical excitation is allowed due to the same symmetry
behavior of the Z − Γ conduction and valence valleys
(Z∗1(1′) ⊗ Z1(1′) = M ′1, with z as a basis function).

D. Momentum and spin relaxation

The Λ-axis has point-group symmetry identical to that
at Γ. However, since the Z1(1′) basis states that form
valence band wavefunctions are both even with respect
to reflection operator Ry, they correspond only to either
Λ1 (transforms like 1, z) or Λ4 (transforms like x, xz). Of
course, spin-orbit interaction injects weak admixtures of
opposite spin and spatial symmetry into these otherwise
pure states (see Eqs. 11 and 12).

Intravalley– Once again, spin-preserving intravalley
scattering within a band of definite Λ1 or Λ4 symmetry
is driven by z-polarized Γ1 zone-center acoustic phonons.
This phonon is thus the primary source of intrinsic hole-
transport mobility limitation in the valence band.

Both the out-of-plane x-polarized flexural phonon and
the xz optical phonon of Γ4 symmetry will drive intraval-
ley spin-flips by coupling majority to minority wavefunc-
tion components with squared matrix element propor-
tional to β2, where β = F ′3/2B

′. Although the opti-
cal phonon branch is gapped and can be suppressed by
reducing thermal energy temperature, flexural phonons
have a constant density of states so are present in high
densities even at low temperatures15. They are thus the
primary source of spin relaxation for states along the Λ-
axis.

The valence band valley effective mass is nearly
isotropic, however, so we must consider states off the
primary Λ-axis. Due to linear Dresselhaus splitting
for states in the ky direction away from the band ex-
tremum, we expect the total spin relaxation to be highly
anisotropic, providing a means to control the spin life-
time via interplay of the intrinsic Dresselhaus field and a
gate-induced Rashba field31. Although in-plane polarized
spins with ky 6= 0 will rapidly precess,32 the quadratic dis-
persion and linear spin splitting give rise to a ‘persistent
spin helix’33–35 during the process of lateral diffusion. Us-
ing our nomenclature for the spin-orbit parameters and
assuming an isotropic valence-band effective mass, this

helix will have a wavelength ≈ 2π
A′1√

F ′21 +F ′22
≈50 nm in

SnS.

Intervalley– Λ-axis phonons will drive intervalley scat-
tering across the Z-point. Unlike the previous case of
intervalley scattering across the Y -point, both spin-flip
and spin-preserving scattering are allowed to lowest or-
der because of spin degeneracy on the Λ-axis, similar to
the g-process in Si.19,24

Spin-preserving intervalley transitions are induced by
phonons with Λ4 symmetry, polarized either in the out of
plane x-direction or of xz symmetry; the same phonons
drive the intervalley Yafet spin-flip mechanism because
it similarly couples majority wavefunction components.
The intervalley Elliott mechanism is instead driven by
Λ1 phonons with in-plane z polarization. The matrix el-
ement is similar to that for intravalley Elliott spin flips
with squared magnitude β2. Both intervalley spin-flip
processes are indicated in an inset to Fig. 4, where we
use x-axis spinor notation to denote the band-edge wave-
functions.

VI. CONCLUSIONS

We began this paper by interrogating several salient
features of the first-principles bandstructure. We then
used the full theory of space groups and method of invari-
ants relevant to the Y - and Z-points to not only uncover
the symmetries explaining the origins of these eigenvalue
dispersion peculiarities, but also to predict selection rules
for wavefunction transitions.

We explained why the states at the Y -point are split
by spin-orbit coupling but those at the Z-point are not.
We identified Hamiltonian terms forbidden by symme-
try which preserve accidental band crossings near Y ,
and spin degeneracy near Z. We showed that flexural
phonons are not the primary source of either intraval-
ley momentum or spin scattering near Y , but that they
cause efficient spin-flip Elliott scattering near Z. We re-
vealed the cause for a weak direct optical dipole along ẑ
at the Y valleys and the complete absence of transitions
induced by ŷ-polarized light in the Z valleys.

Some final comments are intended to guide future
research on this material, especially with experimental
techniques:

Investigation of spin-related properties in semiconduc-
tors often begins with efforts to generate polarized carri-
ers via optical orientation36. This approach is fruitful for
materials whose electronic structure contains band-edge
states where an orbital degeneracy is broken by SOC, as
in the valence-band split-off gap in cubic semiconductors.
Four-six-enes have a spin-orbit-induced broken degener-
acy in the Y valleys, but two symmetry-related effects
preclude optical orientation by direct electromagnetic
transitions: First, the in-plane y and z directions are
inequivalent (which otherwise allows circularly-polarized
photoexcitation in the cubic system to generate spin).
Second, time-reversal symmetry inverts the spin split-
ting in the two equivalent Y valleys, with no way to
create an imbalance in excitation rates. As is the case
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in phosphorene7, electrical injection from ferromagnetic
tunnel contacts are thus required to study spin relaxation
effects we have predicted.

It has been suggested that the valley-dependent sen-
sitivity of interband transitions crossing the bandgap in
four-six-enes to linear optical polarization can be used to
create a so-called ‘valleytronics’ device in which informa-
tion is encoded in valley population. However, f -type
intervalley scattering37,38 that couples band minima on
orthogonal axes will of course interfere with this applica-
tion. In fact, if it is fast enough, this relaxation can pop-
ulate the band extrema to create large numbers of crystal
momentum-indirect excitons under strong pumping con-
ditions. Because the lifetime of such excitons is typically

very long, this material may be a host for creating a
degenerate Bose gas of excitons with substantial conden-
sate fraction39. Other indirect-gap few-layer semiconduc-
tors, such as strained TMDCs40, TM-trichalcogenides41

or arsenene42 may also be an option for this research di-
rection, assuming their optical properties are amenable.

ACKNOWLEDGMENTS

We thank Prof. J.D. Sau for illuminating discussions.
This work was supported by the Office of Naval Research
under contract N000141410317, and the Defense Threat
Reduction Agency under contract HDTRA1-13-1-0013.

∗ appelbaum@physics.umd.edu
† pengke@umd.edu
1 M. Dresselhaus, G. Dresselhaus, and A. Jorio, Group

Theory: Application to the Physics of Condensed Matter
(Springer, Berlin, 2008).

2 C. Bradley and A. Cracknell, The Mathematical Theory of
Symmetry in Solids (Oxford, New York, 2010).

3 P. Y. Yu and M. Cardona, Fundamentals of Semiconduc-
tors (Springer, Berlin, 2010).

4 G. Dresselhaus, Phys. Rev. 100, 580 (1955).
5 C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956).
6 L. F. Mattheiss, Phys. Rev. B 6, 4740 (1972).
7 P. Li and I. Appelbaum, Phys. Rev. B 90, 115439 (2014).
8 R. Fei, W. Li, J. Li, and L. Yang, Appl. Phys. Lett. 107,

173104 (2015).
9 L. C. Gomes, A. Carvalho, and A. H. Castro Neto, Phys.

Rev. B 92, 214103 (2015).
10 L. C. Gomes and A. Carvalho, Phys. Rev. B 92, 085406

(2015).
11 Y. Hu, S. Zhang, S. Sun, M. Xie, B. Cai, and H. Zeng,

Appl. Phys. Lett. 107, 122107 (2015).
12 C. Kamal, A. Chakrabarti, and M. Ezawa, Phys. Rev. B

93, 125428 (2016).
13 A. S. Rodin, L. C. Gomes, A. Carvalho, and A. H. Cas-

tro Neto, Phys. Rev. B 93, 045431 (2016).
14 E. Mariani and F. von Oppen, Phys. Rev. Lett. 100,

076801 (2008).
15 Y. Song and H. Dery, Phys. Rev. Lett. 111, 026601 (2013).
16 E. I. Rashba and V. I. Sheka, Fiz. Tverd. Tela: Collected

Papers 2, 162 (1959).
17 P. Giannozzi et al., J. Phys.: Cond. Mat. 21, 395502

(2009).
18 L. C. Lew Yan Voon, A. Lopez-Bezanilla, J. Wang,

Y. Zhang, and M. Willatzen, New J. Phys. 17, 025004
(2015).

19 P. Li and H. Dery, Phys. Rev. Lett. 107, 107203 (2011).
20 G. L. Bir and G. E. Pikus, Symmetry and Strain-Induced

Effects in Semiconductors (New York, Wiley, 1974).
21 P. Löwdin, J. Chem. Phys. 19, 1396 (1951).
22 K. F. Mak and J. Shan, Nat. Photon. 10, 216 (2016).
23 P. Li and I. Appelbaum, Phys. Rev. B 92, 195129 (2015).
24 H. W. Streitwolf, Phys. Status Solidi 37, K47 (1970).
25 R. Elliott, Phys. Rev. 96, 266 (1954).
26 Y. Yafet, in Solid State Phys., Vol. 14, edited by F. Seitz

and D. Turnbull (Academic Press, New York, 1963) p. 1.
27 Y. Ohno, R. Terauchi, T. Adachi, F. Matsukura, and

H. Ohno, Phys. Rev. Lett. 83, 4196 (1999).
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