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Abstract

A few self-consistent schemes to solve the Hedin equations are presented. They include vertex

corrections of different complexity. Commonly used quasiparticle approximation for the Green

function and static approximation for the screened interaction are avoided altogether. Using alkali

metals Na and K as well as semiconductor Si and wide gap insulator LiF as examples, it is shown

that both the vertex corrections in the polarizability P and in the self energy Σ are important.

Particularly, vertex corrections in Σ with proper treatment of frequency dependence of the screened

interaction always reduce calculated band widths/gaps, improving the agreement with experiment.

The complexity of the vertex included in P and in Σ can be different. Whereas in the case of

polarizability one generally has to solve the Bethe-Salpeter equation for the corresponding vertex

function, it is enough (for the materials in this study) to include the vertex of the first order in

the self energy. The calculations with appropriate vertices show remarkable improvement in the

calculated band widths and band gaps as compared to the self-consistent GW approximation as

well as to the self-consistent quasiparticle GW approximation.
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Introduction

Since its first implementation by Hybertsen and Louie1 and by Godby et al2 the so called

G0W0 method (with G0 being the Green function in the local density approximation (LDA)

for the density functional theory, and W0 being the screened interaction in the random

phase approximation (RPA)) has become a method of choice for relatively inexpensive and

accurate calculations of the electronic structure of weakly correlated materials.3–22 As a

disadvantage of the approach one can point out its dependence on the starting point. Elec-

tronic spectra obtained in LDA should already be sufficiently accurate in order to ensure

that G0W0 provides results close to the experiment. Obviously, it is not always the case.

One of the remedies is to switch from the LDA to another starting point which suits better

for the specific material. For example Jiang et al.23 used LDA+U method24 to study the

electronic structure of lanthanide oxides. By adjusting the U parameter one can construct

the LDA+U spectra in decent agreement with experiment and correspondingly the G0W0

approach performed on top of LDA+U may work pretty well. One can use other starting

points together with the G0W0 approach: exact exchange approximation (EXX)25,26 or hy-

brid functional27,28. Generally one can say that the success of the G0W0 approach is based

on the cancellation of error stemming for the lack of self-consistency on the one hand and

the absense of the vertex corrections on the other hand. Whereas different starting points

followed by G0W0 iteration may reproduce the experimental spectra with good accuracy for

variety of materials, the approach can hardly be considered as a satisfactory one.

A logical way to eliminate the dependence on the starting point is to perform GW cal-

culations self consistently (sc). However, fully self consistent GW approach without vertex

corrections has certain theoretical problems29 and corresponding calculations overestimate

band gaps in semiconductors and insulators, and band widths in metals.30 It seems to be

better justified for applications in the physics of atoms and molecules, as one can judge from

the noticeable progress in the field.31–43 In the physics of solids, however, considerable re-

quirements of the fully scGW method to the computer resources as well as intrinsic problems

of the method itself29 have made it quite common to use partially scGW schemes. Among

such partially scGW approaches one can mention GW0 scheme16,44–47 where W is fixed at

RPA level (usually calculated with LDA Green’s function) and only G is iterated till conver-

gence. Another popular approach is the so called energy-only self-consistent GW1,48–53 where
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one-electron wave functions are fixed (again, usually at LDA level) and only one-electron

energies are renewed till consistency. The success of these partially sc schemes is based on

the same cancellation of errors as in the case of G0W0. Partial sc usually makes the spectral

features (band widths/gaps) a little wider and, thus, often improves the agreement with ex-

periment. Authors of the Refs.[54] and [55] propose to apply diagonal (in LDA band states

basis) approximation for the self energy and Green’s function which makes the calculations

much faster. In this case the success is based on the cancellation of error stemming from

the neglect of non-diagonal terms in G and Σ on the one hand and the neglect of vertex

corrections on the other hand.

Considerable progress has been made by Kotani et al.56 in their QSGW approach which

essentially is equivalent to the fully scGW method but with special (quasi-particle (QP))

construction for the Green function, which replaces the need to solve the Dyson equation.

The success of QSGW method relies on the fact that QP approximation cancels out in

considerable degree the error associated with the absence of higher order diagrams in the

self energy Σ and the polarizability P , as it has been explained in Ref.[56] in terms of Z-

factor cancelation. QSGW approach is computationally more expensive than G0W0 but it

doesn’t depend on a starting point. It usually gives the results similar to the LDA-based

G0W0 results for simple metals and semiconductors, but often shows improvements for the

materials where LDA doesn’t provide a good starting point for the G0W0 iteration (NiO is

a good example, as it has been shown by Faleev et al.57).

Presently, QSGW approach is a very popular ab-initio method which provides reasonable

one electron spectra for a wide class of materials.45,57–67 However, even for relatively weakly

correlated materials, there is still enough room for improvements. Looking at the results

obtained with the QSGW method44,45,56 one can conclude that calculated band gaps are

overestimated by about 5-15% for sp-semiconductots and insulators. For the materials with

d- and f-electrons (SrTiO3, TiO2, CeO2) the error grows up to about 25%.60 Similar error

has been found in the calculated exchange splitting in Gadolinium60, whereas the calculated

exchange splitting in Nickel is almost twice too large as compared to the experimental one.60

Besides, with QP construction for the Green function the method is not diagrammatic

anymore, which renders its improvement more complicated.

An alternative way to improve the accuracy of the scGW method is to include skeleton

diagrams of higher order (vertex corrections) in the self energy and the polarizability. How-
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ever, direct diagrammatic extensions of this kind represent an extremely difficult problem

in practice and, as a result, were not explored actively for solids. Ummels et al.68 have ap-

plied first order vertex corrections to P and Σ combined with second order self-consistence

diagrams for silicon and diamond. Calculations have been performed with LDA Green’s

function and within plasmon pole approximation69. It has been shown that vertex correc-

tions and self-consistence diagrams cancel out to a high degree (especially the correction to

P) which can be considered as a justification for the one-shot G0W0 approach. Bechstedt et

al70 iterated the Dyson equation for G and the Bethe-Salpeter equation for the irreducible

polarizability simultaneously. Certain approximations (such as keeping only diagonal terms

in bloch integrals and neglect of the local field effect) have been made in the study. The

principal conclusion of the work is that vertex correction in polarizability widely compen-

sates the GW quasiparticle peaks renormalization, which can be considered as a support in

favor of the QSGW approximation.

Considerable progress has been achieved, however, in studying the effect of vertex cor-

rections following the ideas borrowed from the Time Dependent Density Functional Theory

(TDDFT)71–73, where the central role is played by the so called exchange-correlation kernel

fxc. The research along this line began in Refs.[74–77] where LDA-based 2-point vertex

function was proposed. Model exchange-correlation kernels have also been introduced44,78–81

with improved (as compared to LDA-derived kernel) properties. A very successful approach

has been developed which recasts diagrammatically obtained polarizability (usually of low

order) into an effective exchange-correlation kernel fxc.
82–87 The kernel fxc is a two-point

object (as opposed to the many-body kernel which is a four-point object). So the above re-

casting brings in a great efficiency. Shishkin et al.45 have applied this approach to calculate

the band gaps for a wide class of materials. The results obtained in Ref.45 look promising.

However, there were many simplifications involved in the calculations. First of all, the vertex

correction has been included only in the polarizability, but not in the self energy. Second,

it was static, i.e. W in the diagrams has been approximated by its value at zero frequency.

But may be most important of all is the fact that authors applied the vertex correction com-

bined with quasi-particle self-consistence. The problem with this kind of approach is that

the quasi-particle approximation itself can be considered as an effective vertex correction

(due to Z-factor cancellation). If one applies the same arguments, as the authors of Ref.[56]

did, to the approach which combines the QSGW and the vertex corrections one will realize
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that there is a double counting. The problems of combining the QSGW approach with ver-

tex corrections have been studied for the two-site Hubbard model recently.88 Based on the

above consideration, one can speculate that the static approximation for W was actually

needed to cancel out the error stemming from that double counting, because zero-frequency

interaction is well enough screened and, correspondingly, its effect is much weaker than it

would be had the authors of Ref.45 applied full frequency-dependent interaction. As for the

absence of the vertex correction in the self energy, authors say that their inclusion ”turned

out to be numerically rather unstable and tended to bring the band gaps back to those

obtained without vertex corrections”, which can also be considered as a sign of inherent

problems with the approach. A similar approach (combination of QSGW with static fxc)

has been used recently by Gruneis et al.89 to study the ionization potentials and band gaps

of solids. In addition, authors of Ref.[89] have considered the correction to the self energy of

the second order, but again, evaluated with static interaction. Their observation was that

vertex correction in the self energy actually increases the band gaps, making them worse

than the ones with the vertex correction only in the polarizability.

In the present work the above simplifications in dealing with the vertex corrections are

avoided. The approach is based on the Hedin exact theory90 and approximations are intro-

duced purely diagrammatically, without connection with TDDFT. Also, there is no quasi-

particle approximation involved. Instead the Green function is renewed on every iteration

from Dyson’s equation. All diagrams take into account full frequency-dependence of the

screened interaction, which also is updated on every iteration. Third, the vertex corrections

are studied for both the polarizability and the self energy.

The principal goal of this study is to elucidate the effect of vertex corrections in fully

self-consistent calculations. To make this research as clean as possible, one has to avoid the

schemes which are based on the cancellation of errors. This makes the direct comparison

of the methods being developed in this work with previous studies (based on G0W0, GW0,

QSGW, QSGW + vertex evaluated with static W) not very useful for answering the main

question of this research. Comparison with earlier studies is very useful, however, to check

the accuracy of numerical implementation of the code.

The paper begins with a formal presentation of Hedin’s equations (subsection IA). The

self-consistent schemes of solving them together with numerical approximations comprise

the subsections IB, IC, and II. Section III provides the results obtained and a discussion.

5



The conclusions are given afterwords. Finally, the details of the practical solution of Hedin’s

equations for solids are presented in the Appendix.

I. METHOD

A. Hedin’s equations

The approach which is used in this work is based on the Hedin equations.90 For conve-

nience, we remind the reader about how Hedin’s equations could be solved self-consistently

in practice. Matsubara’s formalism is used throughout the work.

Suppose one has a certain initial approach for the green function G and the screened

interaction W . Then one calculates the following quantities:

three-point vertex function from the Bethe-Salpeter equation

Γα(123) = δ(12)δ(13)

+
∑

β

δΣα(12)

δGβ(45)
Gβ(46)Γβ(673)Gβ(75), (1)

where α and β are spin indexes, and the digits in the brackets represent space-Matsubara’s

time arguments,

polarizability

P (12) =
∑

α

Gα(13)Γα(342)Gα(41), (2)

screened interaction

W (12) = V (12) + V (13)P (34)W (42), (3)

and the self energy

Σα(12) = −Gα(14)Γα(425)W (51). (4)

In the equation (3) V stands for the bare Coulomb interaction. New approximation for

the Green function is obtained from Dyson’s equation
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Gα(12) = Gα
0 (12) +Gα

0 (13)Σ
α(34)Gα(42), (5)

where G0 is the Green function in Hartree approximation. Eqn. (1-5) comprise one iteration.

If convergence is not yet reached one can go back to the equation (1) to start the next

iteration with renewed G and W .

The system of Hedin’s equations formally is exact, but one has to introduce certain

approximations when solving (1) for the vertex function Γα(123) in order to make the system

manageable in practice.

B. Approximations for the vertex function

A convenient way to generate approximations for the vertex Γ is to calculate the kernel

Θ = δΣ
δG

in Eqn.(1) using a diagrammatic representation of the self energy up to a specific

order in the screened interaction W . The simplest non-trivial approach in this case is to

use the famous GW approximation (Σ = GW ) where W is obtained from the polarizability

(W = V + V PW ) which in turn is represented by the one-loop approximation (P = GG).

Adapting this approach one gets for the kernel:

δΣα(12)

δGβ(34)
= −δαβδ(13)δ(24)W (21)

−Gα(12)Gβ(43) [W (23)W (41) +W (24)W (31)] , (6)

which is shown diagrammatically in Fig.1.

Approximation (6) results in the following equation for the vertex function:

Θ = + +

FIG. 1: The GW approximation for the irreducible 4-point kernel Θ. Direct lines represent Green’s

function and wavy lines represent screened interaction W.
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Γ1 = +

FIG. 2: First order approximation for the 3-point vertex function.

Γα(123) = δ(12)δ(13)−W (21)Gα(14)Γα(453)Gα(52)

−Gα(12)
∑

β

Gβ(54)[W (24)W (51) +W (25)W (41)]

×Gβ(46)Γβ(673)Gβ(75). (7)

It is convenient to split the vertex into a trivial part and a correction (Γ = 1 +△Γ). In

this case one obtains an equation for the correction which might be solved iteratively:

△Γα(123) =−W (2, 1)Gα(13)Gα(32)

−W (2, 1)Gα(14)△Γα(453)Gα(52)

−Gα(12)
∑

β

Gβ(54)[W (24)W (51) +W (25)W (41)]

×[Gβ(43)Gβ(35) +Gβ(46)△Γβ(673)Gβ(75)]. (8)

In this work the following non-trivial approximations for the vertex are used: i) first order

approximation (Γ1) is obtained when one keeps only the first term on the right hand side

of (8) (schematically ∆Γ1 = −WGG), ii) the vertex in ”GW” approximation (ΓGW ) when

all terms on the rhs of (8) are kept intact, and iii) the vertex Γ0
GW , which is similar to the

approximation ΓGW , but corresponds to an additional approximation where one neglects

the diagrams with possible spin flips (i.e. the terms with
∑

β in (8) are not included).

ΓGW = + Θ + +...Θ Θ

FIG. 3: Ladder sequence for the 3-point vertex function with Θ as the rung of the ladder.
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Γ0

GW
= + + +...

FIG. 4: Ladder sequence for the 3-point vertex function with W as the rung of the ladder.

Diagrammatic representations of the approximations i)-iii) are shown in Figures 2, 3, and 4

correspondingly. The abbreviation ΓGW is particularly meaningful when the corresponding

vertex is calculated with G and W from scGW calculation. The polarizability evaluated

with this vertex (and with G in (2) also taken from scGW) is ”physical” in a sense that it is

an exact functional derivative of the electronic density (calculated in scGW approximation)

with respect to the total electric field (external plus induced) and, as a result, respects the

charge preservation. In the present work another variant of ΓGW is used - with G and W

being fully self-consistent (with vertex corrections included). In this case the corresponding

polarizability is no more physical because the self energy and the polarizability include

more diagrams than the approximation (Σ = GW , P = GG) assumed here in the Bethe-

Salpeter equation. Thus, in fully self-consistent calculations one has to trade between the

improvements in spectra resulting from higher order diagrams on the one hand and the

degree of charge preservation on the other hand.

In this study the vertex ΓGW is calculated from Eq.(8) iteratively, i.e. the calculation of

the vertex function is achieved through a ”small” loop of iterations as compared to the ”big”

loop of iterations of the self-consistent scheme depicted in the Eqs.(1-5). Corresponding steps

of the ”small” loop of iterations are sketched below. Full details are given in Appendix.

To simplify the formulae the following notations are introduced

K0α(123) = −Gα(13)Gα(32), (9)

△Kα(123) = −Gα(14)△Γα(453)Gα(52), (10)

Kα(123) = K0α(123) +△Kα(123), (11)

9



so that the equation (8) for the correction to the vertex takes the following form

△Γα(123) = W (21)Kα(123) +Gα(12)

×
∑

β

W (24)
[
Gβ(54)Kβ(453) +Gβ(45)Kβ(543)

]
W (51). (12)

Introducing yet more of notations

Q(123) =
∑

β

[
Gβ(21)Kβ(123) +Gβ(12)Kβ(213)

]
, (13)

and

T (213) = W (24)Q(453)W (51), (14)

one reduces the equation for the vertex correction to a formally very simple form

△Γα(123) = W (21)Kα(123) + Gα(12)T (213). (15)

The iterations for the ΓGW are performed as the following. One takes K = K0 (Eqn.

9) as an initial approach, then calculates Q (Eqn. 13), T (Eqn. 14), and △Γ (Eqn. 15).

Then a correction to K0 (Eqn. 10) is evaluated and the process is repeated with a new

K = K0 +△K. The iterations for the Γ0
GW are simpler. They follow the same scheme but

without Q and T evaluation. Finally, the approximation Γ1 is obtained with just one step:

△Γ1 = WK0.

Some of the above equations are easier to handle in the reciprocal space (band repre-

sentation) and frequency, whereas other are simpler in the real space and imaginary time

representation. So one switches from one to another representation and back on every iter-

ation. The details about how it is done can be found in Appendix.

C. Definitions of self-consistent schemes

Having defined the approximations for the vertex function one can proceed with the

construction of iterative schemes of solving the Hedin equations (1-5). The schemes differ
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by which approximation for the vertex function is used in the expression for the polarizability

(2) and in the expression for the self energy (4). In this work seven sc schemes are studied.

They have been collected in Table I which explains their diagrammatic representations.

Scheme A is scGW approach. It is conserving in Baym-Kadanoff definition,91 but gen-

erally its accuracy is poor when one considers spectral properties of solids.30,92,93 Another

conserving sc scheme is the scheme B. It uses the same first order vertex in both P and

Σ. Scheme C is based on ”physical” polarizability as it was explained in the subsection IB.

We perform scGW calculation first. Underlined G and W in Table I mean that the cor-

responding quantities are taken from scGW run. Then the vertex ΓGW [G;W ] is evaluated

and it is used to calculate the polarizability and the corresponding screened interaction W .

We use a bar above the W to indicate that this quantity is evaluated using G and W from

scGW calculation, but it is not equal to W because it includes vertex corrections through

the polarizability. This W is fixed (in the scheme C) during the following iterations where

only the self energy Σ = GW and G are renewed. So, the scheme C doesn’t include vertex in

Σ explicitly but only through W . The scheme D is similar to the scheme C. It also is based

on the physical polarizability but it uses the first order vertex in the self energy explicitly

(skeleton diagram). In the scheme D the screened interaction W is fixed at the same level as

in the scheme C, but the final iterations involve the renewal of not only G and Σ, but also Γ1.

TABLE I: Diagrammatic representations of the polarizability and the self energy in sc schemes of

solving the Hedin equations. Arguments in square brackets specify G and W which are used to

evaluate the vertex function. Other details are explained in the main text.

Scheme P Σ

A GG GW

B GΓ1[G;W ]G GΓ1[G;W ]W

C GΓGW [G;W ]G GW

D GΓGW [G;W ]G GΓ1[G;W ]W

E GΓGW [G;W ]G GΓ1[G;W ]W

F GΓGW [G;W ]G GΓGW [G;W ]W

G GΓ0
GW [G;W ]G GΓ1[G;W ]W
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TABLE II: Properties of the sc schemes studied in this work.

Property A B C D E F G

Conserving yes yes no no no no no

P is physical no no yes yes no no no

Same vertex in P and Σ yes yes no no no yes no

Self-consistency full full partial partial full full full

The schemes E and F are fully self-consistent (both G and W are renewed on every iteration

till the end). They differ only in the diagrammatic representation of the self energy. As it

was pointed out in the previous section, the schemes E and F do not preserve the charge ex-

actly with the scheme F being potentially more problematic because the imbalance between

the kernel of the Bethe-Salpeter equation and the diagrammatic representation of Σ in the

scheme F is larger. Scheme G is similar to the scheme E, but with simplified Bethe-Salpeter

equation for the corresponding vertex Γ0
GW (the diagrams with spin-flips are neglected in

the kernel of the Bethe-Salpeter equation).

Table II collects the features of the above schemes for convenience.

II. NUMERICAL APPROXIMATIONS

Vertex corrected calculations generally are very computationally expensive as compared

to scGW calculations. If one implements higher order diagrams using the same basis set, and

the same number of k-points as for the evaluation of GW diagram, the evaluation of them

(higher order diagrams) will be prohibitively expensive. However, what makes this kind of

calculations feasible is the fact that vertex part is effective on the lower energy scale (i.e.

only near Fermi level) as compared to the GW part. This fact allows us to use smaller basis

sets in the vertex part, which in its own turn allows to use coarser time/frequency meshes

to represent vertex-dependent functions. Also, the diagrams beyond GW are generally more

localized in real space (see discussions in Refs.[94,95]), which allows one to use coarser k-mesh

for their evaluation.

In this work only one of the above three possible optimizations has been explored. Namely,
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FIG. 5: (Color online) Convergence of the band width (Na) with respect to the size of LAPW basis

set. Different lines correspond to the addition of more and more local orbitals (LO) to the pure

LAPW basis as indicated in legends.

the number of bands which were used to represent Green’s function and self energy in GW

part and in the vertex part were different. Thus, the tests of convergence with respect to

the basis set size have been performed separately for the GW part and for the vertex part.

These tests and all other convergence tests have been conducted for one metal (Na) and for

one material with a gap (Si). Figures 5 and 6 show the convergence of the band width (Na)

and the band gap (Si) in scGW (scheme A). In this work the number of band states used as

a basis set for GW part was equal to the size of FLAPW+LO basis set. So the figures 5 and

6 show essentially the convergence of scGW results with respect to the number of linearized

augmented plane waves and local orbitals. k-meshes 12 × 12 × 12 and 8× 8 × 8 have been

used for Na and Si correspondingly in getting the data for plots.

As one can see the convergence is very fast for Na, but slow enough for Si. However it

posed no problem for the present research as the really time consuming part was the vertex

part. Thus, in all presented below results the FLAPW+LO basis set in GW part was well

converged for all four materials. The size of product basis set (PB) for the GW part was not

independent and was adjusted for every change in the size of FLAPW+LO basis set. The

criterium for this adjustment was the requirement that the convolution of G and Σ (they

are represented in band states basis) and the convolution of P and W (they are represented

in PB) were the same within given tolerance (10−4 Ry in this work).

The convergence of the band width for Na and the band gap for Si with respect to the
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number of bands included in the vertex-related part of calculations is shown in Fig.7. Here

too one can see a striking difference between the convergence rate for the alkali metal on

the one hand and the semiconductor on the other. Whereas just 3-4 states closest to the

chemical potential were enough to get the right band width in Sodium, the convergence in

Si happens only when one includes at least 30 band states (which still is almost 10 times
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FIG. 7: (Color online) Convergence of the band width (Na) and Γ−X band gap (Si) with respect

to the number of band states included in the vertex correction part of the calculation (scheme D).

Horizontal lines represent sc GW results for comparison (do not depend on the basis set size for

vertex). k-meshes 4× 4× 4 have been used in both cases.
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smaller than the number of bands needed for GW part). It is important to mention, however,

that not all properties of Na show the same rate of convergence as the band width does.

For example, the uniform polarizability, which was used to test how close the calculated

polarizability is to the physical one, was well converged only after inclusion of 15-20 bands

in the case of Na.

As it can become clear from the formulae presented in the Appendix, the considerable

(actually the most computationally expensive) part of the calculations is performed in the

real space. So it is important not only to take a certain number of bands into account for

the vertex part, but also to represent them accurately with the smallest number of orbitals

(as compared to the full FLAPW+LO representation) inside muffin-tin spheres and with

the smallest number of the real space mesh points in the interstitial region.

In case of Na and K the spd-basis was used in the MT-spheres for the vertex-related part

of the calculations, i.e. 18 functions (both the solutions of radial equations ϕ and their energy

derivatives ϕ̇ were always included in the basis set). In case of Si the sp-basis was used for

both Si-atoms and empty-spheres (i.e. 32 functions in MT spheres altogether), which was

good because Si structure is poorly packed and MT-spheres are small. In case of LiF the spd-

basis was used for F, and the sp-basis for Li (26 functions totally). In all cases the uniform

real-space mesh 4× 4× 4 in the unit cell was used to represent functions in the interstitial

region. It was checked that the above parameters of the real-space representation are good

enough if one retains up to 25-30 bands in the vertex-related part of the calculation (with

an estimated uncertainty 0.03÷0.05 eV in the calculated spectra). If one wants to increase

the number of bands included in the vertex part it would be necessary also to increase the

accuracy of their real space representation. For comparison, the real space representation

of the band states in the GW part of the calculations included orbitals up to Lmax = 6

inside MT spheres and the regular meshes 10 × 10 × 10 (12 × 12 × 12 for Si) to represent

the functions in the interstitial region.

The convergence with respect to the number of imaginary time/frequency points is pre-

sented in Figs.8 and 9. The details about the meshes can be found in Ref.[30]. The number of

imaginary time points and the number of frequency points was the same in the calculations,

so only one variable is used in the figures. As it was already stated above, this number could

be different in the GW part and in the vertex part. But this opportunity for optimization

has not been implemented yet. As one can see, very good convergence is obtained beginning
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with approximately 60 points, which was used in all calculations presented in this work.

Dependence of the results with respect to the electronic temperature is shown in Figs. 10

and 11. As one can see, it is sufficiently weak for both materials. Corresponding uncertainty

can be estimated to be not more than 0.002eV. In all presented below results the temperature

was fixed at 1000K.

One more opportunity to optimize the vertex part which has not been explored in this

work is to use different meshes of points in the Brillouin zone for the GW part and for the

vertex part.99 All results presented in this work (if not specified) have been obtained using

k-mesh 4×4×4 in the Brillouin zone. Whereas this kind of mesh is not always good enough

for GW part, it should be sufficient for the vertex part.99 The convergence of the GW part

has been checked by performing scGW calculations with larger number of k-points (Figs. 12

and 13). One point related to the band gap of Si should be clarified here. Fundamental gap

in Si is measured between the highest occupied band at Γ point in the Brillouin zone and

the lowest unoccupied band at a certain point along Γ − X line. However, when one uses

coarse k-meshes (such as 4 × 4 × 4 or 6 × 6 × 6), it so happens that the lowest unoccupied

band is exactly at X point. It is easy to perform scGW calculations with sufficiently fine

k-meshes and, thus, distinguish the fundamental gap and a gap between Γ and X points

(from now on it will be called Γ − X band gap). However, it is hard to take k-mesh finer

than 4× 4× 4 in vertex corrected calculations (at least presently). The values of both gaps

are known from the experiment.100,101 So it is natural to compare the results from vertex-
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FIG. 8: Convergence of the band width (Na) with respect to the number of points on imaginary

time/frequency mesh in scGW calculation. The temperature is 1000K. k-mesh is 12× 12× 12.
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FIG. 9: Convergence of the band gap (Si) with respect to the number of points on imaginary

time/frequency mesh in scGW calculation. The temperature is 1000K. k-mesh is 8× 8× 8.

corrected calculations with experimental Γ − X band gap, as it is done below in the table

VI. In the Fig. 13, however, both gaps are shown, and their difference converges to 0.09eV

which is very close to the experimental difference 0.08eV. Having this said, one can now look

at Figures 12 and 13 and estimate, that by using 4×4×4 k-mesh one brings an uncertainty

about 0.04eV in the band width of Na, and an uncertainty about 0.01eV in the calculated

Γ − X band gap of Si. Corresponding uncertainties for K and LiF were estimated to be

0.03eV and 0.05eV correspondingly. They are much smaller than the difference between the

band widths/gaps obtained in the scGW and in vertex-corrected calculations and can be
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FIG. 10: Convergence of the band width (Na) with respect to the temperature in scGW calculation.

k-mesh is 12× 12× 12.
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FIG. 11: Convergence of the band gap (Si) with respect to the temperature in scGW calculation.

k-mesh is 8× 8× 8.

safely neglected in this study.

The analytic continuation of the correlation part of the self energy needed for the spec-

tral function evaluation has been performed following the scheme described before in the

Appendix D of the Ref.[30]. The values of the small positive shift from the real frequency

axis were 2÷ 5 · 10−3eV for the materials studied.

In vertex-corrected cases the scGW calculation (12-20 iterations till convergence) was

performed before the vertex-related part of the calculation. In the vertex part, six iterations

in the small loop (Eqs. 9-15) were sufficient to converge within 1% in △Γ in the cases
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FIG. 12: Convergence of the band width (Na) with respect to nk = N
1/3
k with Nk being the number

of points in the Brillouin zone. The data are shown for scGW calculation.
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FIG. 13: (Color online) Convergence of the fundamental gap and band gap Γ − X for Si with

respect to nk = N
1/3
k with Nk being the number of points in the Brillouin zone. The data are

shown for scGW calculation.

of Si and LiF, which resulted in very good convergence of the band gaps. Slightly slower

convergence was noticed in Na (8 iterations to reach similar convergence) and in K (12

iterations). The number of iterations in the big loop (Eqs. 1-5) of the vertex part of the

calculation was 5-8 depending on the material, which provided good convergence of the band

widths/gaps.

As a further test to check the performance of the code, the G0W0 (based on LDA)

calculation of the electronic structure of Si has been performed. Results are shown in Table

III where they are compared with earlier calculations and experiment. One shot (G0W0)

includes all ingredients of scGW calculation and, thus, is useful to check the implementation

of GW part. The difference between one-electron energies from present work and earlier

calculations is, generally, very small, testifying the adequacy of numerical approximations

made in this study.

It is interesting how the computer time increases when one includes vertex corrections of

different complexity. Table IV provides the time per one iteration. k-mesh 4 × 4 × 4 has

been used, so GW shows a good performance. As one can see, inclusion of higher order

diagrams makes calculations a lot more time consuming. However, the vertex part of the

code has not yet been totally optimized. With the optimizations mentioned earlier and other

improvements in the code the times should be reduced by the factor of 10 or more.
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TABLE III: Calculated one-electron energies at points of high symmetry for Si (in eV), together

with available theoretical and experimental results. All theoretical results have been obtained in

G0W0 approximation.

Γ1v Γ′

25c Γ15c Γ′

2c X1v X4v X1c L′

2v L1v L′

3v L1c L3c

Ref.[96] -11.57 0.0 3.24 3.94 -7.67 -2.80 1.34 -9.39 -6.86 -1.17 2.14 4.05

Ref.[97] -11.57 0.0 3.23 3.96 -7.57 -2.83 1.35 -9.35 -6.78 -1.20 2.18 4.06

Ref.[98] -11.85 0.0 3.09 4.05 -7.74 -2.90 1.01 -9.57 -6.97 -1.16 2.05 3.83

Ref.[56] -11.89 0.0 3.13 4.02 -2.96 1.11 -1.25 2.05 3.89

Ref.[11] -11.64 0.0 3.25 3.92 -7.75 -2.88 1.36 -9.38 -6.93 -1.23 2.21 4.00

Ref.[14] -11.82 0.0 3.21 -2.86 1.22 -1.21 2.06

Ref.[18] 0.0 3.24 -2.86 1.25 -1.22 2.09

This work -11.88 0.0 3.08 3.96 -7.73 -2.93 1.08 -9.51 -6.94 -1.24 2.01 3.86

Exp.[96] -12.5±0.6 0.0 3.40 4.23 -2.90 1.25 -9.3±0.4 -6.7±0.2 -1.2±0.2 2.1 4.15±0.1

3.05 4.1 -3.3±0.2 2.4±0.1

III. RESULTS

In this section the results from self consistent calculations are presented. They are com-

pared with earlier self consistent calculations and with experimental data. In order to

make comparison with earlier calculations more meaningful, present fully self-consistent cal-

culations have been supplemented with QSGW and QSGW0 calculations using the same

computer code. Partially self-consistented GW have also been included (GWLDA in the

TABLE IV: Average time per one iteration. 96 MPI processes were used.

Scheme Na/K Si LiF

A 16 seconds 530 seconds 33 seconds

B 12 hours 3.5 hours 13 hours

E 20 hours 18 hours 50 hours
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Table V below). In case of Na and K, G0W0 calculations have also been performed for

comparison with previous works. Whenever G0 was needed it was evaluated within LDA

with parametrization from Ref.[102]. The details of the implementation of quasi-particle self

consistence on imaginary axis have been described before.30

In metallic cases (Na and K) the calculations based on the scheme F appeared to be

unstable (because of the above mentioned inconsistency between the kernel of the Bethe-

Salpeter equation and diagrammatic representation of the self energy). So the corresponding

results are missing below. For the insulating materials scheme F seems to be acceptable,

which, however, might be just because the higher order diagrams in the self energy are less

essential for Si and LiF.

A. Na and K

Before presenting results of fully sc calculations (without and with vertex corrections) let

us look at the results for Na and K obtained with simplified GW schemes. The results from

G0W0 and QSGW calculations are included in Table V where they are compared to the

similar calculations performed with the code being presented in this work. The band widths

obtained in different G0W0 calculations are pretty close to each other and are in reasonable

agreement with experiment.

QSGW study by Schilfgaarde et al60 for Na shows 15% too wide band width, and similar
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FIG. 14: (Color online) Spectral function of Na at Γ point in the Brillouin zone. Chemical potantial

corresponds to zero frequency.
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TABLE V: Band widths of Na and K (eV).

Method Ref. Na K

G0W0 [103] 2.887

[104] 3.00

This work 3.02 1.90

QSGW [60] 3.0

This work 3.17 1.95

QSGW0 This work 2.87 1.72

GWLDA [50] 2.5

[105] 1.58±0.1

[104] 2.83

[103] 2.673

GWΓLDA [103] 2.958

A This work 3.47 2.38

B This work 3.03 2.04

C This work 3.24 2.16

D This work 2.73 1.69

E This work 2.71 1.71

G This work 2.82 1.84

Exp. [106,107] 2.65 1.60±0.05

calculation of this work gives even slightly larger deviation from experiment. Two results

are slightly different from each other, which most likely is because of the linearization of

self energy in QSGW approach of the present work. The best results among simplified GW

schemes without vertex corrections provides QSGW0 method. However, similar to the G0W0

approach, it depends on the starting point which makes its predictive power questionable.

Band widths obtained with simplified two-point LDA vertex50,103–105 are also included in

Table V, where GWLDA means that LDA vertex included only in W and GWΓLDA includes

LDA vertex also in self energy. Good agreement with experimental band width is obtained
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in GWLDA approach, whereas the inclusion of vertex correction in self energy deteriorates

the results.

Opposite to the studies based on the quasi-particle sc, where band width can easily be

found by looking at the corresponding quasi-particle energies, in fully sc approaches one has

to analyze corresponding spectral functions. The band width of alkali metals is defined by

the position of the valence band bottom at the Γ-point in the Brillouin zone relative to the

chemical potential. So, in this work it was found from the position of the peak of the spectral

function corresponding to the Γ-point. As an example, the spectral function of Sodium is

shown in Figure 14. Let us now look at the results of fully sc calculations also presented

in Table V. As one can see, for both metals the vertex corrected schemes (D, E, and G)

provide 5 ÷ 10 times better accuracy than scGW approach. The schemes B (vertex Γ1 in

both P and Σ) and C (vertex from Bethe-Salpeter equation in P , but no vertex correction

in Σ) show worse performance and correct only 30 − 50% of the scGW error. The small

remaining error in D, E, and G schemes most likely could be reduced farther if the basis

set was better in the vertex-related part of the calculations (i.e. if the representation of the

bands in the real space could be better). For example the band width of Na obtained with

only the sp-basis inside MT spheres (vertex-related part of the calculation) was 2.85eV in

the scheme D, i.e. the extension to the spd-basis resulted in 0.12eV improvement. Higher

order diagrams not included in this study can also be a reason for the remaining errors.

As it can be seen from the Table V, schemes D, E, and G are superior in accuracy if one

compares them with QSGW approximation.

Potassium is the next (after Sodium) alkali metal in the Periodic table and, naturally,

the calculations show similar tendencies in its properties. However, K is slightly more

correlated than Na, as one can understand drawing the parallel between these two metals

and the electron gas with two corresponding densities. Valence electron density in Potassium

is lower than in Sodium, and the electron gas with lower density is more correlated. It is

also seen from the row A in the Table V: in the case of Na the error of scGW approach is

∼30% whereas it is ∼48% in the case of K. Stronger correlations in K can also be seen from

the comparison of the rows E and G in the same Table: the neglect of spin-flip diagrams

has larger effect in K than in Na. Also, iterative solution of the Bethe-Salpeter equation

converges slower in case of K. Nevertheless, vertex corrected schemes D and E allow to reach

good accuracy in the calculated band width of Potassium as well as of Sodium.

23



-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

 0

 2  4  6  8  10 12 14 16 18 20

P
 
(
1
/
R
y
)

Matsubara’s frequency (eV)

A

B

C

D

E

G

FIG. 15: (Color online) Uniform polarizability (Pq=0
G=G′=0(ν)) of Na as a function of Matsubara’s

frequency.

Thus, one can conclude that in both alkali metals it is imperative to include vertex

corrections both in the polarizability (Bethe-Salpeter equation has to be solved) and in the

self energy (with the first order vertex). However, an additional care should be taken if

one wants to include higher order vertex corrections in the self energy: the kernel in the

Bethe-Salpeter equation should also be modified in this case.

A few technical details are presented below, which can be useful for future development

of the method. They are quite similar for all four materials, so Na is used as an example.
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FIG. 16: (Color online) Polarizability (Pq
G=G′=0(ν = 2π

β )) of Na for the smallest positive Matsub-

ara’s frequency as a function of q = |q| along the Γ-N line in the Brillouin zone. β stands for the

inverse temperature.
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FIG. 17: (Color online) Imaginary part of self energy of Na at k = (0; 0; 0) as a function of

Matsubara’s frequency.

Figure 15 shows the homogeneous (P q=0
G=G′=0(ν)) component of the polarizability of Na

as a function of positive Matsubara’s frequencies ν. If the polarizability is exact or if it is

not exact but ”physical”, this function should be zero for all ν 6= 0 (for metals). There are

two approaches (C and D) in this study where the polarizability is physical (it is actually

the same in C and D by construction). Thus Fig.15 provides an indication that numerical

approximations are good enough making the lines C and D almost identically zero. First

order conserving scheme B shows steady improvement as compared to the scGW for all

frequencies but the first two, where it is even slightly worse than scGW result. Similar

behavior shows the scheme E, which is only slightly better than scheme B at intermediate

frequencies. But considerable improvement in the spectral function obtained with the scheme

E compared to the spectral function in the scheme B tells us that the long wave limit of the

polarizability is not very important for the one-electron spectral properties. More important

is the behavior of the polarizability in the whole Brillouin zone, as it follows from the next

paragraph.

In the Figure 16 the polarizability P q

G=G′=0(ν = 2π/β) for the smallest positive Matsub-

ara’s frequency is presented as a function of |q| along the Γ-N line in the Brillouin zone.

As one can see, there is a certain correlation between the average amplitude of the polariz-

ability in the Brillouin zone and the band width. Namely, among the schemes with similar

diagrammatic representation of the self energy (B, D, E, and G) the tendency in the average
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amplitude of the polarizability (PB < PG < PE < PD) follows the opposite tendency in the

calculated band width error ε (εB > εG > εE ≈ εD). If, however, one compares the band

widths in the schemes C and D (which have identical polarizabilities but scheme C doesn’t

include vertex correction to the self energy) one will realize the importance of the vertex

correction in the self energy.

Imaginary part of the self energy at the Γ point in the Brillouin zone (diagonal matrix

element corresponding to the bottom of the valence band) is presented in the Figure 17.

Self energy includes the vertex corrections indirectly (through W ) and directly through the

skeleton diagrams in the self energy itself. As a result it correlates with the final band width

stronger than the polarizability. As one can see from the figure and from the Table V, the

larger amplitude of the self energy corresponds to the smaller band width and vice versa.

Figure 18 presents different components of the imaginary part of Σ obtained in the scheme

D. Corresponding skeleton diagram can be written schematically as △Σ = WWGGG. As

it is explained in more details in the Appendix C, the separation of W into bare Coulomb

(V) and screening W̃ interactions (W = V + W̃ ) results in three components of △Σ: static

(△Σstatic = V V GGG), semidynamic (△Σsemidynamic = [W̃V + V W̃ ]GGG), and dynamic

(△Σdynamic = W̃ W̃GGG). The line marked as ’Skeleton △Σ + sc’ in Fig.18 represents the

sum of these three contributions. The addition ’+ sc’ means that the skeleton △Σ diagram

has been evaluated with fully sc G and W. ΣA line (GW diagram in the scheme A) is given
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FIG. 18: (Color online) Components of the self energy (scheme D, bottom of the valence band) for

Na. ’Skeleton △Σ + sc’ is obtained as a sum △Σstatic +△Σsemidynamic +△Σdynamic (see text for

the details). ΣA stands for the self energy in the scheme A.
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for comparison.

First of all one has to stress the importance of full dynamical treatment of W (frequency

dependence). As it is seen, the individual components of the skeleton △Σ diagram are of

the same magnitude as ΣA. However, their sum is much smaller (about 4 times smaller than

ΣA) and is very localized in frequency space (it is almost negligible for ω > 20eV whereas

ΣA is pretty large up to a few hundred of eV’s). A few calculations have been performed

with only the static △Σ included, which was evaluated using the static interaction equal

to i)the bare Coulomb V, ii)W (ν = 0), and iii)a few W ’s at intermediate ν’s. Im△Σ in

the calculations with reduced static interaction (as compared to the V) was qualitatively

similar as △Σstatic presented in the figure, but with reduced amplitude. All curves were

positive, whereas the right one (shown as ’Skeleton △Σ + sc’ in the Figure) obtained with

proper dynamic W is negative. Corresponding effect on the band width was also positive: all

calculations with static W’s resulted in increased band width, whereas the proper treatment

of frequency dependence in W results in the reduced band width. Similar findings were

discovered in other materials studied in this work. This essentially explains why the authors

of Ref.[89] were obtaining the increase in band gaps when they applied vertex correction to

the self energy evaluated with static W .

B. Si and LiF

Spectral functions of Si and LiF are presented in Figures 19 and 20 correspondingly. As

it was explained before, for the k-mesh 4×4×4 the band gap in Silicon is measured between

the highest occupied state at the Γ-point in the Brillouin zone and the lowest unoccupied

state at the X-point. Correspondingly, the spectral function at these two k-points have been

combined in the figure 19. The band gap in LiF corresponds to the direct transition between

the highest occupied and the lowest unoccupied band at the Γ-point in the Brillouin zone.

Tables VI and VII present numerical data for the band gaps in Si and LiF compared with

the experiment and with earlier calculations. First of all, one can check that for QSGW

and QSGW0 methods the band gaps of Si obtained in this study are within the range of

results obtained in earlier studies. This confirms that numerical accuracy of the GW part

of the code is sufficiently good. Slight increase in the band gap of LiF relative to the earlier

results most likely is attributed to the fact that quasiparticle approach in this work involves
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FIG. 19: (Color online) Spectral function of Si at Γ (lines below zero) and X (lines above zero)

points in the Brillouin zone. For convenience, all lines have been shifted to place the highest

occupied state energy at -0.5eV for all approaches.

linearization of self energy.30 This linearization is not a part of the fully sc methods (A-

G), studied in this work. Comparison with experimental data shows that, similar to alkali

metals, QSGW0 is superior in accuracy among quasiparticle-based sc schemes.

Considering fully sc approximations, one can conclude from Tables VI and VII that

fully scGW is not very successful approach (the deviation from experiment in this case

is more than 30% for Si and more than 10% for LiF). However, this error can be reduced

practically to zero (within uncertainty of experiment) in both cases if one applies appropriate

vertex corrections (schemes D, E, and G). It is interesting, that in case of LiF (wide gap
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FIG. 20: (Color online) Spectral function of LiF at the Γ point in the Brillouin zone.
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TABLE VI: Γ-X band gap and fundamental gap (Eg) of Si (eV). Screened interaction W was

fixed at RPA level (calculated with G from LDA or PBE) in QSGW0 approach. PBE stands for

Perdew-Burke-Ernzerhof functional108. Vertex corrections were included in W (through effective

kernel fxc) in QSGWe−h. Calculations with the scheme A have been performed for k-mesh 8×8×8

to show the difference between Γ-X band gap and fundamental gap in scGW method.

Method Ref. Γ-X gap Eg

QSGW [56] 1.37 1.23

[45] 1.41

[44] 1.47

This work 1.50 1.41

QSGW0,(PBE) [45] 1.28

(LDA) [14] 1.22

(PBE) [14] 1.28

(PBE) [44] 1.28

(PBE) [16] 1.19

(LDA) This work 1.24 1.15

QSGWe−h [45] 1.24

[44] 1.30

A This work 1.63

A,8× 8× 8 This work 1.64 1.55

B This work 1.38

C This work 1.41

D This work 1.27

E This work 1.24

F This work 1.27

G This work 1.25

Exp. [100,101] 1.25 1.17
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TABLE VII: Band gap of LiF (eV). Screened interaction W was fixed at RPA level (calculated

with G from LDA or PBE108) in QSGW0 approach.

Method Ref. Band gap

QSGW [53] 15.10

[109] 16.17

This work 16.57

QSGW0, (PBE) [53] 13.96

(PBE) [109] 14.29

[110] 13.62

(LDA) This work 14.76

A This work 15.85

B This work 15.06

C This work 14.25

D This work 14.21

E This work 14.12

F This work 14.56

G This work 14.32

Exp. [111] 14.2±0.2

insulator) the vertex corrections to the self energy are not very important (scheme C results

in essentially the same band gap as the schemes D, E, and G). At the same time, the first

order vertex correction in Polarizability (scheme B) is not sufficient: it is essential to solve

Bethe-Salpeter equation for the polarizability. As for the scheme F which includes higher

order diagrams in the self energy, the calculation was stable (as compared to alkali metals)

but the band gap obtained shows worse accuracy for LiF than the results from D, E, and G

schemes.
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Conclusions

In conclusion, a few self-consistent schemes of solving the Hedin equations have been in-

troduced. The combination of features which distinguishes these schemes from the previously

published works on the subject is the following: they are diagrammatic and self-consistent,

they do not apply the quasi-particle approximation for the Green function, they threat full

frequency dependence of the interaction W.

For the materials studied in this work (Na, K, Si, and LiF) one can conclude that the

vertex corrections both in the polarizability and in the self energy are important. However,

the vertex function which should be used in P has to be found from the Bethe-Salpeter

equation, whereas it is enough for the vertex function to be of the first order (in W) to

make proper corrections in Σ. Inclusion of higher order diagrams in the self energy has to

be supplemented with the corresponding increase in the complexity of kernel of the Bethe-

Salpeter equation. Otherways their inclusion can make the whole scheme unstable which

was the case for Na and K in this study.

The importance of proper treatment of the frequency dependence of W in the vertex

correction diagrams for the self energy has been revealed. It explained the increase in the

calculated band gaps obtained in earlier works where static W was used to evaluate the

second order diagrams for the self energy.

The best schemes in this work allow to considerably improve the accuracy of the calculated

band widths and band gaps: the error becomes 10 times (or more) smaller than in the self-

consistent GW approximation. Moreover, they show superior accuracy as compared to the

commonly used nowadays QSGW approximation.

From the computational point of view, a few possible technical optimizations have been

pointed out (different k/time/frequency-meshes for GW and vertex parts). In addition, one

can take an advantage of the fact that the scheme D is one of the best in this study, and, as

compared to another successful scheme (E), is far more efficient, because Bethe-Salpeter’s

equation should be solved only once in the scheme D, whereas in the scheme E it should

be solved on every iteration. Another simplification, which worked sufficiently well in this

study for Si and LiF, is to neglect spin-flips diagrams in the kernel of the Bethe-Salpeter

equation. It also saves computation time considerably.
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Appendix A: Details of the vertex corrections evaluation

In this Appendix the details of the formulae are given in a form close to the implemen-

tation in the code. One notion should be mentioned here before proceeding. The functions

(K0,△K,△Γ, Q, T ) which are evaluated in the course of iterations (9-15) are three-point

functions. One of the three points can be considered as independent. In the representation

accepted in this work, the independent point corresponds to the indexes s,q, ν, which are

the reduced product basis index, the point in the Brillouin zone, and Matsubara’s frequency

(see below for the specifications). The calculations for every triplet of these indexes are to-

tally independent, which is used to perform the calculations in parallel. Besides, one needs

to do the calculations only for the irreducible set of q-points. Having the iterations (9-15)

converged, one can proceed with the corrections to the polarizability and to the self energy.

For the evaluation of the latter, however, one needs to combine the information from the

above triplets of indexes.

1. Notations

In order to make the reading of the following sections easier, the notations have been

collected here:

• α - spin index

• λ, λ′, λ′′, λ′′′ - band indexes. Bands obtained in the effective Hartree-Fock problem30

are used in the vertex part. See the section I in Ref.[30] for the details.

• k,q - points in the Brillouin zone
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• s, s′, s′′, s1, s2 - reduced product basis (RPB) index. When it is used together with

vector q in the Brillouin zone (corresponding RPB function is Πq
s ), it runs over all

RPB (muffin-tins plus interstitial). When it is used together with atomic index t

(corresponding RPB function in this case is Πt
s) it runs over the part of full RPB

belonging to the given atom.

• ω, ω′ - fermionic Matsubara’s frequency

• ν - bosonic Matsubara’s frequency

• τ, τ ′ - Matsubara’s time

• µ - chemical potential

• ǫαkλ - band energies

• Ψαk
λ - band wave functions

• β - inverse temperature

• R - vectors of translations in real space

• t, t′ - coordinates (or indexes) of atoms in unit cell

• L, L′, L′′, L′′′ - indexes combining orbital moment l, its projection m, and other quan-

tum numbers distinguishing the orbitals φα
tL for given spin α and atom t (L-indexes

also distinguish between φ and φ̇)

• Nk - full number of k-points in the Brillouin zone

• ωq - geometrical weight of the q-point in the Brillouin zone, i.e. the ratio of the number

of vectors in the star of q and the full number of points in the Brillouin zone

• r, r′ - the points on the regular real space mesh in the unit cell

• G - reciprocal lattice vectors

• Gs - reciprocal lattice vector associated with reduced product basis index s.
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2. K0 calculation

Expanding G in (9) in the band states, one gets the formulae

K0αk
λλ′ (sq;ω; ν) =

−
∑

λ′′λ′′′

Gαk
λλ′′(ω)〈Ψαk

λ′′ |Ψαk−q

λ′′′ Πq
s 〉Gα,k−q

λ′′′λ′ (ω − ν), (A1)

and

K0αk
λλ′ (sq;−ω + ν; ν) =

−
∑

λ′′λ′′′

G
∗αk
λ′′λ(ω − ν)〈Ψαk

λ′′ |Ψαk−q

λ′′′ Πq
s 〉G

∗α,k−q

λ′λ′′′ (ω), (A2)

with Πq
s representing the product basis functions defined on the reduced set of band states.

As it will be clear from the equations below, one needs to evaluate (A1) and (A2) for

ω > ν/2, ν > 0 only. Two functions are needed to handle strong oscillations in τ -dependence

of K(τ, ν) (see Eqn. (A6) below).

Equation (15) is convenient to evaluate in real space and (τ ; ν)-representation. Before

transforming K to the (τ ; ν)-representation, the Hartree-Fock contributions are subtracted

K0,HF,αk
λλ′ (sq;ω; ν) =

− 〈Ψαk
λ |Ψαk−q

λ′ Πq
s 〉

(iω + µ− ǫαkλ )(i(ω − ν) + µ− ǫαk−q

λ′ )
, (A3)

and

K0,HF,αk
λλ′ (sq;−ω + ν; ν) =

− 〈Ψαk
λ |Ψαk−q

λ′ Πq
s 〉

(−i(ω − ν) + µ− ǫαkλ )(−iω + µ− ǫαk−q

λ′ )
. (A4)

After subtraction one uses (D5):

K0αk
λλ′ (sq; τ ; ν) =

1

β

∑

ω6ν/2

e−iωτ K0αk
λλ′ (sq;ω; ν)︸ ︷︷ ︸
large at ω=0

+
1

β

∑

ω>ν/2

e−iωτ K0αk
λλ′ (sq;ω; ν)︸ ︷︷ ︸
large at ω=ν

(A5)
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In the first term strong oscillations in K as a function of τ originating from ω ∼ 0 are

damped by exponential factor which has weak τ -dependence near ω = 0. In the second

term the oscillations come from ω ∼ ν, so one has to ensure the damping by rearranging

the exponential factors as the following

K0αk
λλ′ (sq; τ ; ν) =

1

β

∑

ω6ν/2

e−iωτK0αk
λλ′ (sq;ω; ν)

︸ ︷︷ ︸
smooth function of τ

+ e−iντ 1

β

∑

ω>ν/2

e−i(ω−ν)τK0αk
λλ′ (sq;ω; ν)

︸ ︷︷ ︸
smooth function of τ

. (A6)

At this point, it is convenient to introduce two functions

K10αkλλ′ (sq; τ ; ν)

=
{ 1

β

∑

ω>ν/2

e−i(ω−ν)τK
∗0αk
λλ′ (sq;−ω + ν; ν)

}
∗

, (A7)

and

K20αkλλ′ (sq; τ ; ν) =
1

β

∑

ω>ν/2

e−i(ω−ν)τK0αk
λλ′ (sq;ω; ν). (A8)

Now the following Hartree-Fock contribution in (τ, ν)-representation which was sub-

tracted earlier in (ω, ν)-representation is added (what is to be added to K1(K2) is clear

from the structure of the formula (A9))

K0,HF,αk
λλ′ (sq; τ ; ν) =

〈Ψαk
λ |Ψαk−q

λ′ Πq
s 〉

iν + ǫαk−q

λ′ − ǫαkλ

×
{
GHF,α,k

λ (τ)− e−iντGHF,α,k−q

λ′ (τ)
}
. (A9)

In case ν = 0 and ǫαk−q

λ′ = ǫαkλ the expression is different

K0,HF,αk
λλ′ (sq; τ ; ν) = 〈Ψαk

λ |Ψαk−q

λ′ Πq
s 〉GHF,α,k

λ (τ)

×
{
τ + βGHF,α,k

λ (β)
}
. (A10)
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3. K-function in real space

Specific formula to be used to transform the K-function to the real space depends on

where its two space arguments belong (MT-sphere or the interstitial region). Correspond-

ingly there are four different cases shown below:

Mt-Mt

KαR
tL;t′L′(sq; τ ; ν) =

1

Nk

∑

k

eikR
∑

λλ′

Zαk
tL;λK

αk
λλ′(sq; τ ; ν)Z

∗αk−q

t′L′;λ′ , (A11)

Int-Mt

KαR
r;t′L′(sq; τ ; ν) =

1

Nk

∑

k

eikR
∑

λλ′

Aαk
r;λK

αk
λλ′(sq; τ ; ν)Z

∗αk−q

t′L′;λ′ , (A12)

Mt-Int

KαR
tL;r′(sq; τ ; ν) =

1

Nk

∑

k

eikR
∑

λλ′

Zαk
tL;λK

αk
λλ′(sq; τ ; ν)A

∗αk−q

r′;λ′ , (A13)

Int-Int

KαR
r;r′ (sq; τ ; ν) =

1

Nk

∑

k

eikR
∑

λλ′

Aαk
r;λK

αk
λλ′(sq; τ ; ν)A

∗αk−q

r′;λ′ , (A14)

with

Aαk
r;λ =

1√
Ω0

∑

G

ei(k+G)rAαk
G;λ. (A15)

The coefficients Aαk
G;λ represent the expansion of band states in plane waves in the intersti-

tial region Ψαk
λ (r) = 1

Ω0

∑
GAαk

G;λe
i(k+G)r, and the coefficients Zαk

tL;λ represent the expansion

of the band states in the orbital basis inside MT spheres Ψαk
λ (r)|t =

∑
L Z

αk
tL;λφ

αt
L (r).

4. Evaluation of W (21)K(123)

The first term on the right hand side of the formula (15) can be rewritten with explicit

τ - and frequency-dependencies as the following
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△Γα(123; τ ; ν) = W (12; τ)Kα(123; τ ; ν). (A16)

For both K1- and K2-components one obtains the following formulae in the real space

(distinguishing again MT and the interstitial region):

Mt-Mt

△ΓαR
tL;t′L′(sq; τ ; ν) =

∑

s′L′′

∑

s′′

∑

L′′′

KαR
tL′′;t′L′′′(sq; τ ; ν)〈φαt′

L′ |φαt′

L′′′Πt′

s′′〉∗

×WR
ts′;t′s′′(τ)〈φαt

L |φαt
L′′Πt

s′〉, (A17)

Int-Mt

△ΓαR
r;t′L′(sq; τ ; ν) =

∑

L′′′

∑

s′′

〈φαt′

L′ |φαt′

L′′′Πt′

s′′〉∗

×WR
r;t′s′′(τ)K

αR
r;t′L′′′(sq; τ ; ν), (A18)

Mt-Int

△ΓαR
tL;r′(sq; τ ; ν) =

∑

L′′

∑

s′

〈φαt
L |φαt

L′′Πt
s′〉WR

ts′;r′(τ)

×KαR
tL′′;r′(sq; τ ; ν), (A19)

Int-Int

△ΓαR
r;r′(sq; τ ; ν) = WR

r;r′(τ)K
αR
r;r′ (sq; τ ; ν). (A20)

In practical calculations one has to separate static and dynamic parts of the interac-

tion W = V + W̃ . Correspondingly, static and dynamic parts of the vertex correction are

considered separately. Particularly, there is no τ -dependence in the static part. Formu-

lae (A17-A20) are the same for dynamic parts △Γ1 (K1 is used instead of K) and △Γ2

(K2 is used instead of K). For the static part △Γstat(ν), one replaces W (τ) with V and,

correspondingly, K1(τ = 0, ν) +K2(τ = 0, ν) is used instead of K(τ, ν).

Equation (10) can be used most efficiently with quantities in band/frequency represen-

tation. Thus, △Γ1, △Γ2, and △Γstat are transformed into the band representation first
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△Γαk
λλ′(sq; τ ; ν) =

∑

tL

∑

t′L′

Z
∗αkλ
tL

∑

R

e−ikR△ΓαR
tL;t′L′(sq; τ ; ν)Z

αk−qλ′

t′L′

+
∑

r

∑

t′L′

X
∗αk
rλ

∑

R

e−ikR△ΓαR
r;t′L′(sq; τ ; ν)Z

αk−qλ′

t′L′

+
∑

tL

∑

r′

Z
∗αkλ
tL

∑

R

e−ikR△ΓαR
tL;r′(sq; τ ; ν)X

αk−q

r′λ′

+
∑

r

∑

r′

X
∗αk
rλ

∑

R

e−ikR△ΓαR
r;r′(sq; τ ; ν)X

αk−q

r′λ′ , (A21)

with

Xαk
rλ =

1

Nr

∑

G

ei(k+G)r
{∫

ΩInt

drΨ
∗αk
λ (r)ei(k+G)r

}
∗

. (A22)

Formula (A21) is used for △Γ1, △Γ2, and △Γstat with τ = 0 for the latter.

Then one transforms dynamic functions △Γ1αkλλ′(sq; τ ; ν) and △Γ2αkλλ′(sq; τ ; ν) into

△Γαk
λλ′(sq;ω; ν) and △Γαk

λλ′(sq;−ω + ν; ν) using the formula (D4)

△Γαk
λλ′(sq;ω; ν) =

∫ β/2

0

dτ
{
cos(ωτ)

× [△Γ1αkλλ′(sq; τ ; ν)−△Γ1αkλλ′(sq; β − τ ; ν)]

+ i sin(ωτ)

× [△Γ1αkλλ′(sq; τ ; ν) +△Γ1αkλλ′(sq; β − τ ; ν)]

+ cos((ω − ν)τ)

× [△Γ2αkλλ′(sq; τ ; ν)−△Γ2αkλλ′(sq; β − τ ; ν)]

+ i sin((ω − ν)τ)

× [△Γ2αkλλ′(sq; τ ; ν) +△Γ20αkλλ′ (sq; β − τ ; ν)]
}
, (A23)
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and

△Γαk
λλ′(sq;−ω + ν; ν) =

∫ β/2

0

dτ
{
cos(ωτ)

× [△Γ2αkλλ′(sq; τ ; ν)−△Γ2αkλλ′(sq; β − τ ; ν)]

− i sin(ωτ)

× [△Γ2αkλλ′(sq; τ ; ν) +△Γ2αkλλ′(sq; β − τ ; ν)]

+ cos((ω − ν)τ)

× [△Γ1αkλλ′(sq; τ ; ν)−△Γ1αkλλ′(sq; β − τ ; ν)]

− i sin((ω − ν)τ)

× [△Γ1αkλλ′(sq; τ ; ν) +△Γ10αkλλ′ (sq; β − τ ; ν)]
}
. (A24)

5. ∆K calculation

Equation (10) can be rewritten with explicit τ -dependence as the following

△Kα(123; τ ; τ ′) = −
∫ ∫

d(45)dτ ′′dτ ′′′Gα(14; τ − τ ′′)

×△Γα(453; τ ′′; τ ′′′)Gα(52; τ ′′′ − τ ′), (A25)

or, in frequency representation

△Kα(123;ω; ν) = −
∫ ∫

d(45)Gα(14;ω)

×△Γα(453;ω; ν)Gα(52;ω − ν). (A26)

It is also convenient to evaluate it in the band representation

△K0αk
λλ′ (sq;ω; ν) = −

∑

λ′′λ′′′

Gαk
λλ′′(ω)

×△Γαk
λ′′λ′′′(sq;ω; ν)G

α,k−q

λ′′′λ′ (ω − ν), (A27)

and

△K0αk
λλ′ (sq;−ω + ν; ν) = −

∑

λ′′λ′′′

G
∗αk
λ′′λ(ω − ν)

×△Γαk
λ′′λ′′′(sq;−ω + ν; ν)G

∗α,k−q

λ′λ′′′ (ω). (A28)
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The vertex in the Eqs. (A27) and (A28) represents the sum of dynamic △Γ(ω, ν) and

static △Γstat(ν) parts.

6. Q calculation

It is convenient to evaluate Eq.(13) in real space and (τ, ν)-representation. Considering

again four cases according to the MT geometry, one obtains:

Mt-Mt

Q1Rts′;t′s′′(sq; τ ; ν) =
∑

α

∑

LL′

∑

L′′L′′′{
〈φαt

L′′|φαt
L Πt

s′〉∗Gα,−R

t′L′;tL(−τ)

× 〈φαt′

L′′′ |φαt′

L′ Πt′

s′′〉K1αRtL′′;t′L′′′(sq; τ ; ν)

+ eiqR〈φαt
L′′|φαt

L Πt
s′〉∗GαR

tL;t′L′(τ)

× 〈φαt′

L′′′ |φαt′

L′ Πt′

s′′〉K2α,−R

t′L′′′;tL′′(sq;−τ ; ν)
}
, (A29)

Mt-Int

Q1Rts′;r′(sq; τ ; ν) =
∑

α

∑

LL′′

{
〈φαt

L′′|φαt
L Πt

s′〉∗Gα,−R

r′;tL (−τ)K1αRtL′′;r′(sq; τ ; ν)

+ eiqR〈φαt
L |φαt

L′′Πt
s′〉∗GαR

tL;r′(τ)K2α,−R

r′;tL′′(sq;−τ ; ν)
}
, (A30)

Int-Mt

Q1Rr;t′s′′(sq; τ ; ν) =
∑

α

∑

L′L′′′{
〈φαt′

L′′′ |φαt′

L′ Πt′

s′′〉Gα,−R

t′L′;r(−τ)K1αRr;t′L′′′(sq; τ ; ν)

+ eiqR〈φαt′

L′ |φαt′

L′′′Πt′

s′′〉GαR
r;t′L′(τ)K2α,−R

t′L′′′;r(sq;−τ ; ν)
}
, (A31)

Int-Int

Q1Rr;r′(sq; τ ; ν) =
∑

α

{
Gα,−R

r′;r (−τ)K1αRr;r′(sq; τ ; ν)

+ eiqRGαR
r;r′(τ)K2α,−R

r′;r (sq;−τ ; ν)
}
. (A32)
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To evaluate Q2, the same expression is used with replacement K1 ↔ K2. Then follows

the transformation to the q-space:

Mt-Mt

Qq′

ts′;t′s′′(sq; τ ; ν) =
∑

R

e−iq′RQR
ts′;t′s′′(sq; τ ; ν), (A33)

Int-Mt

Qq′

s′;t′s′′(sq; τ ; ν) =
∑

r

Y
∗q′

r;s′

∑

R

e−iq′RQR
r;t′s′′(sq; τ ; ν), (A34)

Mt-Int

Qq′

ts′;s′′(sq; τ ; ν) =
∑

r′

Y q′

r′;s′′

∑

R

e−iq′RQR
ts′;r′(sq; τ ; ν), (A35)

Int-Int

Qq′

s′;s′′(sq; τ ; ν) =
∑

rr′

Y
∗q′

r;s′ Y
q′

r′;s′′

∑

R

e−iq′RQR
r;r′(sq; τ ; ν), (A36)

with

Y q
r;s =

1

Nr

∑

G

ei(q+G)r

∫

ΩInt

drei(G−Gs)r. (A37)

Finally, Q-function is transformed to (ν ′, ν)-representation in order to be used in T -

evaluation (next subsection):

Qq′

ns′s′′(sq; ν
′; ν) =

∫ β/2

0

dτ
{
cos(ν ′τ)

×
[
Q1q

′

s′s′′(sq; τ ; ν) +Q1q
′

s′s′′(sq;−τ ; ν)
]

+ i sin(ν ′τ)

×
[
Q1q

′

s′s′′(sq; τ ; ν)−Q1q
′

s′s′′(sq;−τ ; ν)
]

+ cos(ν ′ − ν)τ

×
[
Q2q

′

s′s′′(sq; τ ; ν) +Q2q
′

s′s′′(sq;−τ ; ν)
]

+ i sin(ν ′ − ν)τ

×
[
Q2q

′

s′s′′(sq; τ ; ν)−Q2q
′

s′s′′(sq;−τ ; ν)
]}

, (A38)
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and

Qq′

ns′s′′(sq;−ν ′ + ν; ν) =

∫ β/2

0

dτ
{
cos(ν ′τ)

×
[
Q2q

′

s′s′′(sq; τ ; ν) +Q2q
′

s′s′′(sq;−τ ; ν)
]

− i sin(ν ′τ)

×
[
Q2q

′

s′s′′(sq; τ ; ν)−Q2q
′

s′s′′(sq;−τ ; ν)
]

+ cos(ν ′ − ν)τ

×
[
Q1q

′

s′s′′(sq; τ ; ν) +Q1q
′

s′s′′(sq;−τ ; ν)
]

− i sin(ν ′ − ν)τ

×
[
Q1q

′

s′s′′(sq; τ ; ν)−Q1q
′

s′s′′(sq;−τ ; ν)
]}

. (A39)

7. T calculation

From the equation (14) one obtains the T-function in the RPB representation

T q′

s′s′′(sq; ν
′; ν) =

∑

s1s2

W q′

s′s1
(ν ′)

×Qq′

s1s2(sq; ν
′; ν)W q′

−q

s2s′′
(ν ′ − ν), (A40)

and

T q′

s′s′′(sq;−ν ′ + ν; ν) =
∑

s1s2

W q′

s′s1
(ν ′ − ν)

×Qq′

s1s2
(sq;−ν ′ + ν; ν)W q′

−q

s2s′′
(ν ′). (A41)

In order to perform the transform ν ′ → τ the static contribution is subtracted first

T q′

s′s′′(sq; ν
′; ν) = T q′

s′s′′(sq; ν
′; ν)

−
∑

s1s2

V q′

s′s1
Qq′

s1s2
(sq; ν ′; ν)V q′

−q

s2s′′
, (A42)

and

T q′

s′s′′(sq;−ν ′ + ν; ν) = T q′

s′s′′(sq;−ν ′ + ν; ν)

−
∑

s1s2

V q′

s′s1
Qq′

s1s2
(sq;−ν ′ + ν; ν)V q′

−q

s2s′′
. (A43)
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After that the transformation is accomplished straightforwardly:

T q′

s′s′′(sq; τ ; ν) =
1

β

∑

ν′6ν/2

e−iν′τT q′

s′s′′(sq; ν
′; ν)

+
1

β

∑

ν′>ν/2

e−iν′τT q′

s′s′′(sq; ν
′; ν)

= T1q
′

s′s′′(sq; τ ; ν) + e−iντT2q
′

s′s′′(sq; τ ; ν), (A44)

where the following notations have been defined

T1q
′

s′s′′(sq; τ ; ν) =
1

β

∑

ν′6ν/2

e−iν′τT q′

s′s′′(sq; ν
′; ν)

=
1

β

∑

ν′>ν/2

ei(ν
′
−ν)τT q′

s′s′′(sq;−ν ′ + ν; ν)

=
{ 1

β

∑

ν′>ν/2

e−i(ν′−ν)τT
∗q′

s′s′′(sq;−ν ′ + ν; ν)
}

∗

, (A45)

and

T2q
′

s′s′′(sq; τ ; ν) =
1

β

∑

ν′>ν/2

e−i(ν′−ν)τT q′

s′s′′(sq; ν
′; ν). (A46)

Now one adds the static contribution which was subtracted before

T2q
′

s′s′′(sq; τ ; ν) = T2q
′

s′s′′(sq; τ ; ν)

+
∑

s1s2

V q′

s′s1
Q2q

′

s1s2(sq; τ ; ν)V
q′
−q

s2s′′
, (A47)

and

T1q
′

s′s′′(sq; τ ; ν) = T1q
′

s′s′′(sq; τ ; ν)

+
∑

s1s2

V q′

s′s1
Q1q

′

s1s2(sq; τ ; ν)V
q′
−q

s2s′′
. (A48)

Finally, the T -function is transformed in the real space-representation to be used in (15):

Mt-Mt

TR
ts′;t′s′′(sq; τ ; ν) =

1

Nk

∑

q′

eiq
′RT q′

ts′;t′s′′(sq; τ ; ν), (A49)
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Int-Mt

TR
r;t′s′′(sq; τ ; ν) =

1

Nk

∑

q′

eiq
′R

∑

s′

Bq′

r;s′T
q′

s′;t′s′′(sq; τ ; ν), (A50)

Mt-Int

TR
ts′;r′(sq; τ ; ν) =

1

Nk

∑

q′

eiq
′R

∑

s′′

B
∗q′

r′;s′′T
q′

ts′;s′′(sq; τ ; ν), (A51)

Int-Int

TR
r;r′(sq; τ ; ν) =

1

Nk

∑

q′

eiq
′R

∑

s′s′′

Bq′

r;s′B
∗q′

r′;s′′T
q′

s′s′′(sq; τ ; ν), (A52)

with

Bq

r;s′ = ei(q+G
s′
)r. (A53)

8. G(12)T (213) calculation

Second term on the rhs of (15) is evaluated in the real space and (τ, ν)-representation.

Again, there are four different cases according to the MT-geometry:

Mt-Mt

△Γ1αRtL;t′L′(sq; τ ; ν) = eiqR
∑

L′′L′′′

GαR
tL′′;t′L′′′(τ)×

∑

s′s′′

〈φαt
L′′|φαt

L Πt
s′〉∗T2−R

t′s′′;ts′(sq;−τ ; ν)〈φαt′

L′′′ |φαt′

L′ Πt′

s′′〉, (A54)

Mt-Int

△Γ1αRr;t′L′(sq; τ ; ν) = eiqR
∑

L′′′

GαR
r;t′L′′′(τ)

∑

s′′

T2−R
t′s′′;r(sq;−τ ; ν)〈φαt′

L′′′ |φαt′′LΠt′

s′′〉, (A55)

Int-Mt

△Γ1αRtL;r′(sq; τ ; ν) = eiqR
∑

L′′

GαR
tL′′;r′(τ)

∑

s′

〈φαt
L′′ |φαt

L Πt
s′〉∗T2−R

r′;ts′(sq;−τ ; ν), (A56)

Int-Int

△Γ1αRr;r′(sq; τ ; ν) = eiqRGαR
r;r′(τ)T2

−R
r′;r(sq;−τ ; ν). (A57)

△Γ2 is evaluated similarly with the replacement T2 → T1 in the formulae above.
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Appendix B: Correction to the Polarizability

According to the Eqs. (2) and (10) the correction to the polarizability can be written as

the following

△P (12) =
∑

α

Gα(13)△Γα(342)Gα(41) = −
∑

α

△Kα(112). (B1)

It is represented in the RPB

△P (12; ν) =
1

Nk

∑

q

∑

ss′

Π̃q
s (1)△P q

ss′(ν)Π̃
∗q

s′ (2), (B2)

where the coefficients are found from the band representation of △K

△P q

ss′(ν) = − 1

Nk

∑

αk

∑

λλ′

〈Ψαk
λ |Ψαk−q

λ′ Πq
s 〉∗

×△Kαk
λλ′(s′q; τ = 0; ν). (B3)

After that the correction expressed in the full product basis (Mi(j)) can be found

△P q
ij(ν) =

∑

ss′

〈Mi|Πs〉△P q

ss′(ν)〈Πs′|Mj〉. (B4)

Appendix C: Correction to the Self Energy

In order to find the correction to the self energy, one can use general expression

△Σα(12) = −Gα(13)△Γα(324)W (41), (C1)

and, according to the separation of the vertex into dynamic △Γdyn = △Γ(ω, ν) and static

△Γstat(ν) parts, and the separation of the screened interaction into Coulomb V and dynamic

W̃ parts, one can divide the correction to the self-energy into dynamic, semi-dynamic, and

static. They are considered below in this section.

In all cases the non-symmetrized self energy △Σ̃ is evaluated first. It is obtained when the

summation runs only over irreducible q-points with weights wq. In the end, the correction

to the self energy is obtained according to the symmetrization procedure
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△Σαk(r, r′; τ) =
1

NA

∑

A

△Σ̃αA−1k(A−1r, A−1r′; τ), (C2)

where A represents the symmetry operation, and NA is the number of symmetry operations.

1. Correction to the Dynamic Self Energy

The formulae of this subsection are applied when Eq.(C1) is used with dynamic vertex and

dynamic part of the interaction W̃ . In this case the expression (C1) reads as the following

△Σdyn,α(12; τ) = − 1

β

∑

ν

eiντ
1

β

∑

ω

e−iωτ

×
∫

d(34)Gα(13;ω)△Γα(324;ω; ν)W̃ (41; ν), (C3)

where digits are used as space coordinates.

Introducing △Σ̃αk
12 (τ ; ν) through the relation

△Σ̃dyn,αk
12 (τ) = − 1

β

∑

ν

eiντ△Σ̃αk
12 (τ ; ν), (C4)

one obtains

△Σ̃αk
12 (τ ; ν) =

1

β

∑

ω

e−iωτ
∑

q

wq

∑

sλ

Gαk+q

1;λ (ω)

×△Γαk+q

λ;2 (sq;ω; ν)W̃ q
s;1(ν). (C5)

For the different locations of arguments 1 and 2 one gets:
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Mt-Mt

△Σ̃αk
tL;t′L′(τ ; ν) =

∑

q

wq

∑

s

∑

L′′

{ 1

β

∑

ω

e−iωτ
∑

λ

Gαk+q

tL′′;λ(ω)△Γαk+q

λ;t′L′(sq;ω; ν)
}

×
∑

s′

W̃ q

s;ts′(ν)〈φαt
L′′ |φαt

L Πt
s′〉∗

=
∑

q

wq

∑

s

∑

L′′

{
A1αktL′′;t′L′(sq; τ ; ν)

+ e−iντA2αktL′′;t′L′(sq; τ ; ν)
}
W̃ αq

s;tL′′L(ν)

=
∑

q

wq

∑

s

{
B1αktL;t′L′(sq; τ ; ν)

+ e−iντB2αktL;t′L′(sq; τ ; ν)
}

= C1αktL;t′L′(τ ; ν) + e−iντC2αktL;t′L′(τ ; ν), (C6)

with obvious notations,

Int-Mt

△Σ̃αk
r;t′L′(τ ; ν) =

∑

q

wq

∑

s
{ 1

β

∑

ω

e−iωτ
∑

λ

Gαk+q

r;λ (ω)△Γαk+q

λ;t′L′(sq;ω; ν)
}
W̃ q

s;r(ν)

=
∑

q

wq

∑

s{
A1αkr;t′L′(sq; τ ; ν) + e−iντA2αkr;t′L′(sq; τ ; ν)

}
W̃ αq

s;r (ν)

=
∑

q

wq

∑

s

{
B1αkr;t′L′(sq; τ ; ν) + e−iντB2αkr;t′L′(sq; τ ; ν)

}

= C1αkr;t′L′(τ ; ν) + e−iντC2αkr;t′L′(τ ; ν), (C7)
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Mt-Int

△Σ̃αk
tL;r′(τ ; ν) =

∑

q

wq

∑

s

∑

L′′

{ 1

β

∑

ω

e−iωτ
∑

λ

Gαk+q

tL′′;λ(ω)△Γαk+q

λ;r′ (sq;ω; ν)
}

×
∑

s′

W̃ q

s;ts′(ν)〈φαt
L′′ |φαt

L Πt
s′〉∗

=
∑

q

wq

∑

s

∑

L′′

{
A1αktL′′;r′(sq; τ ; ν) + e−iντA2αktL′′;r′(sq; τ ; ν)

}
W̃ αq

s;tL′′L(ν)

=
∑

q

wq

∑

s

{
B1αktL;r′(sq; τ ; ν) + e−iντB2αktL;r′(sq; τ ; ν)

}

= C1αktL;r′(τ ; ν) + e−iντC2αktL;r′(τ ; ν), (C8)

Int-Int

△Σ̃αk
r;r′(τ ; ν) =

∑

q

wq

∑

s
{ 1

β

∑

ω

e−iωτ
∑

λ

Gαk+q

r;λ (ω)△Γαk+q

λ;r′ (sq;ω; ν)
}
W̃ q

s;r(ν)

=
∑

q

wq

∑

s

{
A1αkr;r′(sq; τ ; ν) + e−iντA2αkr;r′(sq; τ ; ν)

}
W̃ αq

s;r (ν)

=
∑

q

wq

∑

s

{
B1αkr;r′(sq; τ ; ν) + e−iντB2αkr;r′(sq; τ ; ν)

}

= C1αkr;r′(τ ; ν) + e−iντC2αkr;r′(τ ; ν). (C9)

After that one has generally

△Σ̃dyn,αk
12 (τ) = − 1

β

∑

ν

{
eiντC1αk12 (τ ; ν) + C2αk12 (τ ; ν)

}

= − 1

β

∑

ν>0

{
cos(ντ)

{
C1αk12 (τ ; ν) + C1

∗α,−k
12 (τ ; ν)

}

+ i sin(ντ)
{
C1αk12 (τ ; ν)− C1

∗α,−k
12 (τ ; ν)

}

+ C2αk12 (τ ; ν) + C2
∗α,−k
12 (τ ; ν)

}
. (C10)
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2. Correction to the Semi-Dynamic Self Energy

Semi-dynamic part of the self energy is divided as the following

△Σ̃semi = G
{
△ΓdynV +△ΓstatW̃

}

= G
{
△Γdyn

1 V +△Γstat
1 W̃ +△Γdyn

>2 V +△Γstat
>2 W̃

}
, (C11)

where the vertex function was divided into the first order and the higher orders.

In the above expression the term G△Γdyn
1 V is just the transposed of the term G△Γstat

1 W̃ ,

so one needs to calculate only the term △Σ̂ = G△Γstat
1 W̃ :

△Σ̂αk
12 (τ) =−

∑

q

wq

∑

λ

Gαk+q

1;λ (τ)

× 1

β

∑

ν

eiντ
∑

s

△Γαk+q

λ;2 (sq; ν)W̃ q
s;1(ν). (C12)

For the different locations of arguments 1 and 2 one gets:

Mt-Mt

△Σ̂αk
tL;t′L′(τ) = −

∑

q

wq

∑

L′′

∑

λ

Gαk+q

tL′′;λ(τ)
1

β

∑

ν

eiντ
∑

s

×△Γ
statαk+q

λ;t′L′ (sq; ν)
∑

s′

W̃ q

s;ts′(ν)〈φαt
L′′|φαt

L Πt
s′〉∗

= −
∑

q

wq

∑

L′′

∑

λ

Gαk+q

tL′′;λ(τ)

× 1

β

∑

ν

eiντ
∑

s

△Γ
statαk+q

λ;t′L′ (sq; ν)W̃ αq
s;tL′′L(ν), (C13)

Int-Mt

△Σ̂αk
r;t′L′(τ) = −

∑

q

wq

∑

λ

Gαk+q

r;λ (τ)

× 1

β

∑

ν

eiντ
∑

s

△Γ
statαk+q

λ;t′L′ (sq; ν)W̃ q
s;r(ν), (C14)

Mt-Int

△Σ̂αk
tL;r′(τ) = −

∑

q

wq

∑

L′′

∑

λ

Gαk+q

tL′′;λ(τ)

× 1

β

∑

ν

eiντ
∑

s

△Γ
statαk+q

λ;r′ (sq; ν)W̃ αq
s;tL′′L(ν), (C15)
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Int-Int

△Σ̂αk
r;r′(τ) = −

∑

q

wq

∑

λ

Gαk+q

r;λ (τ)

× 1

β

∑

ν

eiντ
∑

s

△Γ
statαk+q

λ;r′ (sq; ν)W̃ q
s;r(ν). (C16)

The term G△Γdyn
>2 V in (C11) is calculated using (C6-C9) similarly to the totally dynam-

ical part but with V instead of W̃ .

The term G△Γstat
>2 W̃ in (C11) is calculated using (C13-C16) similarly to the semi-

dynamical part of the first order.

3. Correction to the Static Self Energy

Totally static part of the self energy is evaluated as the following

△Σ̃stat,αk
12 (τ) =−

∑

q

wq

∑

λ

Gαk+q

1;λ (τ)

×
∑

s

△Γ
statαk+q

λ;2 (sq;−τ)V q
s;1. (C17)

Again, for the different locations of arguments 1 and 2 one gets:

Mt-Mt

△Σ̃stat,αk
tL;t′L′ (τ) = −

∑

q

wq

∑

L′′

∑

λ

Gαk+q

tL′′;λ(τ)

×
∑

s

△Γ
statαk+q

λ;t′L′ (sq;−τ)
∑

s′

V q

s;ts′〈φαt
L′′|φαt

L Πt
s′〉∗

= −
∑

q

wq

∑

L′′

∑

λ

Gαk+q

tL′′;λ(τ)

×
∑

s

△Γ
statαk+q

λ;t′L′ (sq;−τ)V αq
s;tL′′L, (C18)

Int-Mt

△Σ̃stat,αk
r;t′L′ (τ) =−

∑

q

wq

∑

λ

Gαk+q

r;λ (τ)

×
∑

s

△Γ
statαk+q

λ;t′L′ (sq;−τ)V q
s;r, (C19)
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Mt-Int

△Σ̃stat,αk
tL;r′ (τ) = −

∑

q

wq

∑

L′′

∑

λ

Gαk+q

tL′′;λ(τ)

×
∑

s

△Γ
statαk+q

λ;r′ (sq;−τ)V αq
s;tL′′L, (C20)

Int-Int

△Σ̃stat,αk
r;r′ (τ) =−

∑

q

wq

∑

λ

Gαk+q

r;λ (τ)

×
∑

s

△Γ
statαk+q

λ;r′ (sq;−τ)V q
s;r. (C21)

4. Static vertex of the first order

Vertex of the first order as a function of τ (△Γstat
1 (τ)) should be calculated independently,

because, as a function of ν, it is a slow decreasing function, and direct transform △Γstat
1 (τ) =

1
β

∑
ν e

−iντ△Γstat
1 (ν) is not easy. Corresponding formulae are obtained straightforwardly:

Mt-Mt

△Γ
statαk
1,tL;t′L′(sq; τ) =

∑

R

e−ikR
∑

L′′L′′′

V ααR
tLL′′;t′L′L′′′

× 1

Nk

∑

k′

eik
′RK0αk′

tL′′;t′L′′′(sq; τ), (C22)

Int-Mt

△Γ
statαk
1,r;t′L′(sq; τ) =

∑

R

e−ikR
∑

L′′′

V αR
r;t′L′L′′′

× 1

Nk

∑

k′

eik
′RK0αk′

r;t′L′′′(sq; τ), (C23)

Mt-Int

△Γ
statαk
1,tL;r′(sq; τ) =

∑

R

e−ikR
∑

L′′

V αR
tLL′′;r′

× 1

Nk

∑

k′

eik
′RK0αk′

tL′′;r′(sq; τ), (C24)

Int-Int

△Γ
statαk
1,r;r′ (sq; τ) =

∑

R

e−ikRV R
r;r′

× 1

Nk

∑

k′

eik
′RK0αk′

r;r′ (sq; τ), (C25)
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with

K0αk
λλ′ (sq; τ) =
∑

λ′′λ′′′

Gαk
λλ′′(τ)〈Ψαk

λ′′ |Ψαk−q

λ′′′ Πq
s 〉Gα,k−q

λ′′′λ′ (β − τ). (C26)

Appendix D: Definitions of the Matsubara time-frequency transforms

For convenience, the definitions of the time-frequency transforms for the functions of two

imaginary time arguments, accepted in this work, are collected below.

One starts with general transformations

K(ω;ω′) =

∫ ∫
dτdτ ′eiωτe−iω′τ ′K(τ ; τ ′)

=

∫ ∫
dτdτ ′eiωτei(ω−ω′)τ ′K(τ + τ ′; τ ′). (D1)

Introducing ν = ω − ω′ one has

K(ω;ω − ν) = K(ω; ν)

=

∫ ∫
dτdτ ′eiωτeiντ

′

K(τ + τ ′; τ ′). (D2)

From (D2) other relations follow:

K(τ ; ν) =

∫
dτ ′eiντ

′

K(τ + τ ′; τ ′), (D3)

K(ω; ν) =

∫
dτeiωτ

′

K(τ ; ν), (D4)

K(τ ; ν) =
1

β

∑

ω

e−iωτK(ω; ν). (D5)
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