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We present a path integral Monte Carlo study of the global superfluid fraction and local superfluid
density in cylindrically-symmetric reservoirs of liquid 4He separated by nanoaperture arrays. The
superfluid response to both translations along the axis of symmetry (longitudinal response) and
rotations about the cylinder axis (transverse response) are computed, together with radial and
axial density distributions that reveal the microscopic inhomogeneity arising from the combined
effects of the confining external potential and the 4He-4He interatomic potentials. We make a
microscopic determination of the length-scale of decay of superfluidity at the radial boundaries of the
system by analyzing the local superfluid density distribution to extract a displacement length that
quantifies the superfluid mass displacement away from the boundary. We find that the longitudinal
superfluid response is reduced in reservoirs separated by a septum containing sufficiently small
apertures compared to a cylinder with no intervening aperture array, for all temperatures below
Tλ. For a single aperture in the septum, a significant drop in the longitudinal superfluid response is
seen when the aperture diameter is made smaller than twice the empirical temperature-dependent
4He healing length, consistent with formation of a weak link between the reservoirs. Increasing the
diameter of a single aperture or the number of apertures in the array results in an increase of the
superfluid density toward the expected bulk value.

I. INTRODUCTION

Unlike the case of normal-metal weak links between su-
perconductors or weak links between reservoirs of liquid
3He, the construction of nanoscale superfluid weak links
with engineered geometry supporting a robust Josephson
current between reservoirs of liquid 4He remains a con-
siderable engineering challenge.1 The relative difficulty in
4He is due to the much smaller value, by orders of mag-
nitude, of the healing length ξ in liquid 4He relative to
that in BCS-type systems when both are deep in their
respective condensed phases. For example, the measured
value of ξ(T = 0) is on the order of 1.0 µm for a type-
II BCS superconductor2 and 64 nm for 3He (at 0 bar of
pressure), compared with only 0.3 nm for 4He.3 A weak
link, which generically consists of two condensed fluids
separated by a junction consisting of noncondensed mat-
ter, e.g., the same fluid in a noncondensed phase, requires
that the mass supercurrent through the connection in re-
sponse to an external field (e.g., mechanical driving in
neutral superfluids, voltage bias in superconductors) is
much smaller than the response of the bulk supercur-
rent. If two reservoirs of liquid helium are separated by
an array of nanoapertures with average cross-sectional
diameter 10 nm, experimental studies have shown that
such an array supports a weak link only at temperatures
T very close to the lambda transition, Tλ ≈ 2.17K, specif-
ically, at temperatures T such that Tλ − T . 0.05 mK.4

This is consistent with filling of the apertures by normal
fluid as the lambda transition is approached from below.

Engineering of aperture arrays with apertures having
much smaller diameter (e.g., O(10 Å)) would allow exper-
imenters to probe phenomena associated with 4He weak

link formation, e.g., Josephson oscillations deep in the
superfluid phase, and strongly-interacting quasi-2D and
quasi-1D liquid 4He in precisely controlled geometries.
For example, it has been shown theoretically using both
mean-field methods and the classical pendulum analogy
for the d.c. Josephson equation that the presence of mul-
tiple apertures in an array can lead to reduction of deco-
herence in the macroscopic phase differences across the
array.5,6 In addition, quantum field theoretical analysis of
tunnel-coupled reservoirs of interacting bosons predicts a
linear scaling of the amplitude of Josephson oscillations
with the number of apertures in an array.7 An under-
standing of superfluidity in engineered nanoaperture ar-
rays is central to exploring and generalizing these predic-
tions. Nanoaperture arrays separating reservoirs of liq-
uid 4He are also an essential component of proposals for
highly sensitive rotation sensing devices based on matter
wave Sagnac interferometry.8–10

By revealing the distribution of superfluidity for liq-
uid 4He confined in nanoscale and atomic scale poten-
tials, numerical simulation of confined liquid 4He below
the lambda transition temperature aids the design and
implementation of aperture arrays for superfluidity ex-
periments. In this work, we use a path-integral Monte
Carlo (PIMC) algorithm to compute the global super-
fluid response and local superfluid density of a 4He reser-
voir consisting of N = 35 − 123 4He atoms confined by
a cylindrically symmetric tube potential with diameter
16−20 Å and length 18−24 Å. We then introduce a sep-
tum containing one or more nanoscale apertures, thereby
breaking the translational invariance of the potential, and
use PIMC to calculate the global and local superfluid re-
sponse in the resulting system of connected reservoirs.
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We present a detailed analysis of the longitudinal and
transverse superfluid responses for a single aperture as a
function of temperature, aperture size and location, and
then study aperture arrays with up to Na = 5 apertures
under conditions where the single aperture shows behav-
ior consistent with a weak link.

In addition to analyzing the superfluid responses of
these reservoirs connected by nanoscale apertures, we un-
dertake a microscopic analysis of the length scale charac-
terizing decay of superfluid density at the radial bound-
ary of the cylindrical reservoirs. This length scale might
be considered to coincide with the boundary-induced
decay length for superfluid density that appears in
the Ginzburg-Pitaevskii (GP) theory of superfluidity11,
which is one of a number of measures of the length scale
over which the superfluid response drops to zero at a
boundary. Any such measure is commonly referred to as
a “healing length”. Experimental studies on bulk 4He
generally measure the healing of a superfluid with the
empirical temperature dependent expression first deter-
mined from measurements of superfluid density in 4He
films flowing through a slit of ∼ 3900 Å spacing formed
by two concentric cylinders.12 This empirical healing
length ξ is given by

ξ(t) = 0.34 nm/t0.67 (1)

with t = (1−T/Tλ) the reduced temperature.4,12,13 With
some modifications to approximately reproduce the cor-
rect critical exponents for the empirical healing length
and the superfluid density14,15, GP theory may be ap-
plied to such bulk systems when the fluid density is as-
sumed to be homogeneous and the superfluid assumed
to decay over macroscopic length scales. However, a GP
approach is not applicable when the fluid density shows
atomic scale microscopic variations. Indeed, even in the
bulk, the healing length of a spatially inhomogeneous su-
perfluid is not uniquely defined16, creating a challenge
for measurement and quantification of the decay of su-
perfluid density in nanoscale confined systems.

In this work, we show that the temperature T at which
the empirical ξ(T ) equals the aperture radius is qualita-
tively a predictor of the formation of a weak link between
reservoirs of liquid 4He separated by a nanoscale aper-
ture. Since ξ(T ) is not defined microscopically and GP
theory does not apply to the atomic scale superfluid den-
sity oscillations observed in these nanoscale confined sys-
tems, we quantify the “healing” of the superfluid instead
by a local displacement length that measures the su-
perfluid mass displacement by the boundary.7,17 In par-
ticular, the displacement length that we introduce can
be computed directly from PIMC data and is unequiv-
ocally defined for non-translationally invariant, cylindri-
cally symmetric confined superfluids. We further show
that this local displacement length can be applied to gen-
erate a “healing surface,” which is a useful notion for
visualizing the displacement of superfluidity from high-
potential regions in generic symmetric or irregularly-
shaped systems.

A brief outline of the paper is as follows: in Sec-
tion II, we analyze the radial and axial atomic density
distribution, the temperature dependence of the super-
fluid response, and the displacement length at the system
boundary in longitudinally translation-invariant cylin-
ders. This allows a comparison with previous calcula-
tions on the radial distribution of superfluidity of liq-
uid 4He confined by nanopores.18 In Section III, we then
present our results for the global superfluid fraction and
local distribution of superfluidity of liquid 4He in a tube
which is partitioned by a septum containing nanoscale
apertures into two communicating reservoirs. We focus
first on a single aperture, characterizing the effect of this
in detail and then present results for nanoaperture arrays
containing up to five apertures of cross-sectional diameter
5 Å that are arranged in various spatial configurations in
the plane of the bipartition. Section IV summarizes and
discusses the implications for analysis and design of ex-
periments with helium superfluid flow through nanoscale
aperture arrays.

The numerical simulations in this work are carried out
at specified temperatures (0.25 K ≤ T ≤ 2.0 K) and cal-
culated pressures (∼ 3.5 bar, calculated with the estima-
tor of Ref.19) that lie well within the bulk He II superfluid
phase. For all simulations, a periodic boundary condition
is imposed along the longitudinal direction, i.e., along
the tube axis, to minimize finite size effects and allow for
simulation of estimators of certain physical observables
which depend on the longitudinal winding number of the
imaginary time paths of the 4He atoms in the PIMC cal-
culations.

II. PIMC CALCULATIONS FOR
TRANSLATION-INVARIANT, CYLINDRICALLY

SYMMETRIC POTENTIAL

For our PIMC study of 4He atoms contained in a
nanoscale tube, we define the following potential:

Vtube(R,φ, z) =
V0
2

[
1 + tanh

(R−Rt
σR

)]
, (2)

where the cylindrical coordinates R, φ, and z represent
the distance from the tube center, the azimuthal angle,
and the coordinate along the tube axis, respectively, and
Rt is the radius defining the onset of a large “wall”
potential. In terms of Cartesian coordinates (x, y, z),

R =
√
x2 + y2 and φ = tan−1

(
y
x

)
. In Eq.(2), V0 (poten-

tial strength) and σR (steepness of potential) are taken
to be 150 K and 0.25 Å, respectively. Vtube(R,φ, z) is
independent of z and so it is invariant under transla-
tions along the tube axis. For the 4He-4He interaction,
we use a well-known Aziz potential.20 In the path inte-
gral representation, the thermal density matrix at a low
temperature T is expressed as a convolution of M high-
temperature density matrices with an imaginary time
step τ = (MkBT )−1. In the high-temperature density
matrix the 4He-4He potentials are incorporated with the
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pair-product form of the exact two-body density matrices
while the external potential defined by Eq.(2) is analyzed
within the primitive approximation.19 We use a time step
of τ−1/kB = 40 K and periodic boundary conditions are
imposed in the z direction to minimize finite size effects.

We first computed the density distributions of N = 123
4He atoms contained by the potential of Eq. (2) with the
tube radius Rt set to be 10 Å and length L = 18 Å. Note
that the lowest value of the tube potential of Eq. (2) oc-
curs at the center of the tube (R = 0) and that Vtube in-
creases monotonically as R increases. Figure 1 a) shows
a contour plot of the density distribution at T = 1.25K
averaged over the azimuthal angle φ. One can observe
a layering structure around the tube axis (R = 0). This
layering is due to the interplay between the 4He-4He in-
terparticle interaction and the atomic confinement due to
the nanoscale confining potential of Eq. (2). It is to be
contrasted with the layering observed in PIMC calcula-
tions for 4He atoms inside an amorphous Si3N4 nanopore
that included attractive van der Waals interactions of 4He
with the pore wall.18 While that work also found lay-
ered structures for 4He inside the nanopore, the layering
there was primarily due to the interplay of the repul-
sive 4He-4He interaction and the attractive component
of the 4He-wall interaction. The latter provided attrac-
tive adsorption sites for 4He in the vicinity of the wall
that caused the two outermost 4He layers to be solidi-
fied without making any contribution to superfluidity at
low temperatures. The fact that our calculations do not
assume an attractive van der Waals interaction between
the 4He atoms and an atomically-structured wall implies
that the layering of the 4He density shown is then due
solely to the interplay of the 4He-4He interaction with
the external confining potential. As a consequence, no
solidified layers are observed. The absence of solidified
layers allows an unambiguous characterization of the su-
perfluid healing behavior at the boundary of a nanoscale
container (see Section II A). Figure 1 b) shows the one-
dimensional density distributions computed as a function
of radius R, for several temperatures between 0.625 K
and 2 K. It is evident that there is no thermal effect on
the 4He density distribution at temperatures below 2 K.

The global superfluid response to translations of the
system along the tube axis, i.e., the z-axis, may be com-
puted by using the following winding number estimator
for the global superfluid fraction19:(

ρs
ρ

)
z

=
mL2〈W 2

z 〉
~2βN

, (3)

where m, L, and N are the bare mass of a 4He atom, the
length of the tube, and the number of helium atoms inside
the tube, respectively. Here the winding number Wz is

defined by Wz = 1/L
∑N
i=1

∑M
k=1(zi,k+1−zi,k), where M

is the number of time slices in the discrete path-integral
representation, the sums are over particle index i and
imaginary-time slice index k, and zi,k is the projection of
the single particle imaginary time configuration ~ri,k onto
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FIG. 1. a) 2-D density distribution of 4He atoms at T =
1.25K contained inside a tube of radius Rt = 10 Å and length
L = 18 Å, with periodic boundary conditions along z. The
atomic density distribution ρ(R,φ, z) is averaged over the az-
imuthal angle φ to given ρ(R, z) in units of Å−3 (red: high
density, blue: low density). b) One-dimensional density dis-
tributions in (units of Å−3) computed as a function of R for
a range of temperatures below the bulk Tλ ≈ 2.17 K.

the cylinder axis. Therefore, a nonzero average winding
number indicates the onset of superfluidity.

Figure 2 shows the global superfluid fractions of liquid
4He inside tubes with two different diameters (Dt = 2Rt)
as a function of temperature. Recommended values for
the expected superfluid fraction in bulk liquid 4He at and
below Tλ are also shown for comparison.21 For temper-
atures below 1 K, both 4He systems are seen to exhibit
complete superfluid response, similar to bulk liquid 4He.
In contrast, the PIMC calculations of Ref. 18 for 4He
atoms in a Si3N4 nanopore show a saturated superfluid
fraction of only ρs/ρ ∼ 0.2 for T . 1 K, as a result of the
inert solid 4He layers adsorbed on the pore wall. From
a microscopic perspective, the fact that our calculations
show complete superfluid response for the present 4He-
nanotube system in this temperature range is due to the
fact that the tube potential of Eq. (2) does not adsorb
layers of solid 4He. This may also be interpreted within a
hydrodynamic perspective, where the lack of short-range
van der Waals attraction between the 4He atoms and the
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FIG. 2. Global superfluid fraction of liquid 4He contained
inside tubes of diameter Dt = 16 Å (red circles) and Dt =
20 Å (black circles) as a function of temperature. The calcu-
lations were made for N = 80 atoms (red circles) or N = 123
atoms (black circles) in a cylinder of length L = 18 Å, with
periodic boundary conditions in z. Blue dots show recom-
mended values for the global superfluid fraction of bulk liquid
4He below Tλ at saturated vapor pressure.21

wall means that a longitudinal translation of the wall
does not result in entrainment of any part of the liquid
helium-4 as a solid layer; therefore, the mass fraction of
the liquid that exhibits a superfluid response is higher
in our calculations relative to Ref. 18. Reduction of su-
perfluid fraction also occurs in the first layer of liquid
4He adsorbed on a molecular dopant embedded in a liq-
uid 4He nanocluster.22 In general, an attractive van der
Waals interaction of helium atoms with an atomically-
structured container or with an embedded dopant pins
the imaginary-time paths at the surface-liquid or dopant-
liquid interface and thereby renders unlikely the accep-
tance (in the Metropolis algorithm employed in PIMC)
of a permutation move combining paths of two or more
4He atoms to create an extended path which makes a
non-zero contribution to the total winding number in
Eq. (3). This effectively removes helium density from
the superfluid component, resulting in a molecular scale
non-superfluid density as first described in Ref.22. Cal-
culations of the global superfluid fraction of nanoscale
liquid 4He confined by parametrized external potentials
modelling adbsorption at a system boundary have also
been performed in spherical23 and cylindrical24 geome-
tries.

In Figure 2, the superfluid fraction is observed to de-
crease for T ≥ 1 K in both Dt = 16 Å and Dt =
20 Å tubes, similar to the decrease observed in bulk 4He
in Ref.19, except with comparatively lower values and
broader transition to zero value, as is typical of finite size
systems. The quantum statistical explanation of this de-
crease in superfluidity inside the nanotube is the same as
in the bulk, namely that as the temperature is increased
toward the lambda transition, fewer winding paths con-
tribute to the bosonic partition function, as the thermal
de Broglie wavelength and hence the exchange probabil-

ities of the 4He atoms decrease. Therefore, the value of
the winding number estimator in Eq.(3) also decreases.

For the nanotube it is then interesting to analyze the
temperature at which the largest depression of ρS/ρ oc-
curs in terms of the relationship between the correspond-
ing healing length and the tube diameter. We find that
for both values of tube diameter studied here, the tem-
perature marking the onset of a large depression of global
superfluid fraction is remarkably similar to the tem-
perature at which the empirical healing length ξ(T ) of
the superfluid approaches the tube radius Rt. Specifi-
cally, the empirical formula Eq. (1) yields the following
two temperature/healing length combinations for which
the healing lengths are equal to half the tube diame-
ters employed in Fig. 2 : ξ(T = 1.56 K) = 8 Å, and
ξ(T = 1.74 K) = 10 Å. Hence, for T & 1.5 K, the super-
fluid density inside the tube does not reach its maximal
possible value and so the global superfluidity is further
reduced below the bulk value in this regime.

However, while ξ(T ) gives a consistent prediction of
the temperature range at which the superfluid fraction
falls significantly below 1, this empirical estimate of
healing of the superfluid is not clearly related to the
Ginzburg-Pitaevskii notion of decay of superfluidity near
a boundary. Moreover, as noted already above, within its
domain of applicability the Ginzburg-Pitaevskii theory
of superfluidity predicts monotonic decay of the super-
fluid density from its maximum value to zero, within a
temperature-dependent distance from a flat boundary.11

In Section II A below, we show that the radial super-
fluid density in a nanoscale cylindrically symmetric sys-
tem does not decay monotonically from the axis of sym-
metry. We then provide a general method for quantifying
the decay of superfluidity at such a boundary that, un-
like the Ginzburg-Pitaevskii theory which is only valid
for length scales much greater than the atomic scale, is
now valid on all length scales.

A. Spatial distribution of superfluidity

To analyze the spatial distribution of the superfluid
density, we employ an estimator for the local longitu-
dinal superfluid density, i.e., the superfluid response to
translation in the z direction, that is based on the follow-
ing local decomposition of the winding number estimator
in Eq. (3):

ρs(~r)z =
mL2

~2β

〈 Nw∑
i=1

M∑
k=1

W 2
z

NwM
δ(~r − ~ri,k)

〉
, (4)

where Nw is the number of 4He atoms comprising wind-
ing paths. This estimator of local superfluid den-
sity is similar to the local estimator of Khairallah and
Ceperley25 in the sense that all “beads” (represented by
the coordinates ~ri,k) on the imaginary time “polymers”
constituting the winding paths are assumed to contribute
equally to superfluidity. Although the local estimator
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FIG. 3. a) One-dimensional radial superfluid density distributions in a cylindrically symmetric potential for four temperatures
below bulk Tλ. Calculations were made for N = 123 atoms in a tube of length L = 18 Å and diameter Dt = 20 Å with
periodic boundary conditions imposed in the z direction. The error bar at a given radial coordinate represents the sample
standard deviation from the average superfluid density at that coordinate computed from statistically independent data blocks.
b) Healing surfaces for T = 0.625 K (purple) and T = 2.00K (orange) computed using a local version of the superfluid mass
displacement length (see text). The outer cylinder with radius 10 Å is a guide to the eye.

employed by Kulchytskyy et al.18 and the one used in this
work give the same proper value when integrated over
space, that is, the global superfluid fraction multiplied
by the total number of 4He atoms, the two estimators
for the local superfluidity are based on different local de-
compositions of the winding number estimator (compare
Eq. (4) of the present paper with Eq. (3) of Ref.18). In
particular, Eq. (4) is locally positive semidefinite, which
makes interpretation of regions of negative local super-
fluid density unnecessary, and also exhibits less statistical
noise, making the PIMC estimation more robust.

In Figure 3, we show the radial superfluid density,
ρs(R), computed using the local estimator of ρs(~r)z in
Eq. (4), and subsequently averaging over the axial coor-
dinate z and angular coordinate φ of ~r. The reported
Monte Carlo error at each radial coordinate is the sam-
ple standard deviation from the local average value of the

superfluid density. As the temperature increases, ρs(R)
is seen to decrease below the temperature-independent
total density ρ(R) in Fig. 1 at all values of R. However,
whereas the height of the peaks of ρ(R) decreases only
slightly as R increases toward the boundary (see Fig.1
b)), the peaks of ρs(R) in Fig.3 are noticeably reduced
as R increases, corresponding to a decrease in the super-
fluid fraction near the boundary. The cause of this ra-
dial decrease of superfluid response is the fact that atoms
distributed near the tube wall interact with fewer neigh-
boring atoms, so that a bosonic permutation move is less
likely to be accepted near the wall than in central regions
of the cylinder. This suggests that the decrease in super-
fluid fraction near the tube wall is a quantum statistical
effect and is not caused by solidification of atomic layers
at the wall due to an attractive potential.

For engineering nanoscale channels supporting super-
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fluid helium flow, it is useful to quantify the length scale
characterizing the decay of superfluid density at a region
of large potential energy or a system boundary. Because
the empirical healing length ξ(T ) of Ref. 12 is not directly
computable from the local superfluid density distribu-
tion, one must identify a length scale that captures the
same underlying physical features while at the same time
satisfying three conditions: i) being extractable from the
local superfluid density distribution, ii) increasing with
increasing temperature, and iii) being applicable to non-
translationally invariant potentials. There is no unique
definition of such a length scale. Several local and global
quantifiers of the displacement of superfluid density from
the walls of a confined bosonic system were formulated
from the local superfluid density distribution data and
compared in Ref.26. In the present work we adapt the
notion of displacement length defined in Ref. 17 to define
a local displacement length that is easily applied to the
cylindrically symmetric systems considered here.

In a system of stationary liquid 4He occupying a half
space z ≥ 0 of R3 and satisfying the boundary conditions
ρs(z = 0) = 0 and ρs(~r) → c = const. as z → ∞,
the displacement length d that quantifies the effective
superfluid mass displacement at a planar interface z = 0
is defined as∫

R3

cθ(z − d)dxdydz =

∫
R3

ρs(~r)θ(z)dxdydz. (5)

where θ(z) = 1 (z ≥ 0) and θ(z) = 0 (z < 0) is the step
function. The displacement length d was shown in Ref.17
to scale near Tλ as the reciprocal of the (roton) energy
gap. To formulate a local version of the displacement
length for cylindrically symmetric containers, we seek for
each coordinate z the distance d(z) such that(

max
0≤R≤Rt(z)

ρs(R, z)

)
· (Rt(z)− d(z)) =∫ Rt(z)

0

dR ρs(R, z) (6)

is satisfied, where the tube radius at axis coordinate z
is defined by Rt(z). In practice, the right hand side of
Eq.(6) is evaluated by trapezoid rule integration of the
spatially discrete ρs(R, z) numerical data which is in turn
obtained by integrating the full numerical distribution
ρs(~r) over φ. ρs(R, z) is defined to be the mean longi-
tudinal superfluid density at the coordinate (R, z). In
the present work, we consider only the simplest case of
Rt(z) = Rt for all z.

In the more general context of liquid 4He in a compact,
connected space defined by an irregular external poten-
tial, the definition of the length scale characterizing the
decay of superfluid density at the boundaries may be gen-
eralized by introducing the notion of a “healing surface.”
For example, in a cylindrically symmetric system param-
eterized by height z and radius 0 ≤ R(z) ≤ Rt such as we
consider in this work (where R(z) is the radial coordinate
from the central guiding axis of the cylinder), the local

TABLE I. Global displacement lengths d (Å) of liquid 4He
subject to the one-body potential in Eq.(2) for a uniform
cylinder of radius 10 Å, calculated from radial local superfluid
density according to Eq.(6). The empirical healing length
ξ(T ) is shown for comparison. Parameters of the simulations
are the same as in Fig.3. Errors are estimated by calculating
the displacement lengths d± corresponding to ρs(R) ± σ(R)
in Fig.3, where σ(R) is the local Monte Carlo error.

T (K) d (Å) ξ(T ) (Å)
0.625 3.84+0.02

−0.03 4.27

1.25 3.98+0.03
−0.03 6.04

1.60 4.13+0.03
−0.03 8.33

2.00 4.27+0.06
−0.05 18.73

displacement length d(z) in Eq.(6) can be used to define a
cylindrically symmetric healing surface. In this case, the
healing surface is a surface of revolution defined by the
rotating the coordinates (z,Rt − d(z)) about the z-axis.
This healing surface is shown in Fig. 3 b) for the potential
in Eq.(2) at two different temperatures. Note that the
healing surfaces exhibit fluctuations at the single-atom
length scale O(1 Å) even for well-converged numerical
calculations. These fluctuations reflect the numerical er-
ror in the radial location of maximal superfluid density
at each z-coordinate. If max0≤R≤Rt(z) ρs(R, z) = 0 for a
given z, the displacement length is locally undefined at
that z coordinate. The local displacement length can be
further generalized to quantify the decay of elements of
the locally-defined superfluid response tensor ρijs (~r) near
other types of boundaries and inhomogeneities.

In order to define a global displacement length d in
a cylindrically symmetric system, the distance d(z) is
averaged over z. The temperature dependence of the
global displacement length for the potential in Eq.(2) is
shown in Table I. The increase of d with temperature
demonstrates the increasing length scale of the decay of
superfluidity at a nonadsorbing boundary of a nanoscale
system. Although data showing the T → Tλ critical scal-
ing of d is lacking, we nevertheless observe a smaller rate
of increase of d with temperature than is expected from
Eq.(1) for ξ(T ). We note that the displacement length
from a planar boundary calculated from the free energy
of the Hills-Roberts theory27 also increases more slowly
with temperature than the empirical healing length. The
displacement length data of Table I and Table II (see
Sec. III) indicate that the length scale characterizing the
decay of superfluidity at a boundary of a nanoscale con-
tainer is less sensitive to the phase transition than the
empirical healing length ξ(T ), which has a critical expo-
nent that depends on the scaling of the bulk superfluid
density as T → Tλ.28 In section III, we show that at a
given temperature T , ξ(T ) is a qualitative lower bound
for the radius of a nanoscale aperture connecting two su-
perfluid reservoirs that allows the expected bulk value of
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the global superfluid fraction to be attained. Therefore,
whereas the theoretical displacement length estimator d
quantifies the average displacement of the superfluid from
the wall at a given temperature, the empirical healing
length quantifies the characteristic radius below which a
nanoscale aperture becomes a weak link.

In the next section we describe the results of calcula-
tions of superfluid observables for cylinders interrupted
by a septum containing one or more nanoscale aper-
tures. We first use the estimator of displacement length
in Eq.(6) together with the local and global superfluidity
estimators to study the effect of a single nanoaperture in-
terrupting a superfluid reservoir. Subsequently, we inves-
tigate the effect of an array of multiple nanoapertures on
the global superfluid fraction of the bipartitioned reser-
voir system.

III. PIMC CALCULATIONS FOR
CYLINDRICAL 4HE RESERVOIRS SEPARATED

BY NANOSCALE APERTURES

An analysis of global superfluid fraction and local su-
perfluid density may be undertaken for reservoirs of liq-
uid 4He separated by a septum pierced with one or more
apertures; a cross-sectional view of such a septum with a
single aperture centered on the cylinder axis is shown in
Fig. 4 a). To explore the distribution of superfluidity in
reservoirs containing such aperture arrays, we consider
an external potential given by:

V
(Na)

wall (R,φ, z) =
V0

2

[
1 + tanh

(
R−Rt
σR

)]
+

[
V0

4

[
1 + tanh

(
z + δ

σZ

)]
·
[
1 − tanh

(
z − δ

σZ

)]
·
(

1

2

)Na Na∏
j=1

[
1 + tanh

(
Rj − Da

2

σR

)]]
(7)

which represents a septum of length 2δ located between
z = +δ and z = −δ, pierced by Na circular apertures
of radius Ra = Da/2 and thickness 2δ. The apertures
are located at variable positions Rj , j = 1, ..., Na, where

Rj =
√

(R cosφ− xj)2 + (R sinφ− yj)2 is the radial dis-
tance from the center of the j-th aperture located at co-
ordinates (xj , yj) to the point of interest. The remaining
potential parameters (set equal to the specified fixed val-
ues if they are held constant in the simulations) are given
as follows:

1. maximum potential strength: V0 = 150 K

2. tube radius: Rt

3. steepness of potential at cylinder boundary: σR =
0.2 Å,

4. septum thickness: 2δ = 3.0 Å,
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FIG. 4. a) Cross-sectional view of a single aperture in a sep-
tum separating cylindrical reservoirs of liquid 4He. 2δ is the
thickness of the septum, Rt is the radius of the container,
Ra = Da/2 is the radius of the aperture allowing for trans-
port of fluid between the reservoirs. b) Superfluid fraction
of reservoirs (N = 35, Dt = 13 Å, L = 24 Å) of liquid 4He
connected by a single atomic-scale to nanoscale aperture as a
function of aperture diameter at temperatures T = 0.625 K
(black squares) and 1.25 K (red squares). In each case, the
aperture has thickness 2δ = 3 Å and all calculations use pe-
riodic boundary conditions in z.

5. steepness of potential at septum boundary: σZ =
0.2 Å,

6. number of apertures: Na

7. aperture radius: Ra = Da/2.

In addition, we denote the length of the tube along the
z-axis by L (periodic boundary conditions are imposed
in this direction). The potential in Eq.(7) may in general
break the cylindrical symmetry of the system.

We first computed the superfluid fraction in a cylin-
drical reservoir (Dt = 13 Å, L = 24 Å) of N = 35 atoms
with a single intervening aperture of various diameters
Da (Fig. 4 b) ). In this case, the aperture center coincides
with the center of the septum (both on the cylinder axis)
so that cylindrical symmetry is maintained. At both
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T = 0.625 K and T = 1.25 K, no superflow is observed
through apertures with diameters less than 3 Å. As the
aperture diameter is increased, the superfluid fraction
increases to reach the values corresponding to those of
reservoirs without a septum (see Fig. 2). At T = 0.625 K
and T = 1.25 K, the simulations show non-negligible
superflow through the hole with diameter larger than
5 Å. The empirical healing length of superfluid 4He at
T = 0.625 K and T = 1.25 K is calculated from Eq.(1)
to be 4.27 Å and 6.04 Å, respectively. For Da larger
than 2ξ(T = 0.625 K), the superfluid fraction reaches
unity (within statistical error). Conversely, ρs/ρ falls be-
low unity for both T = 0.625 K and T = 1.25 K when
the aperture diameter satisfies Da . 2ξ(T ). Therefore,
these data are consistent with the formation of a super-
fluid 4He weak link in a cylindrically symmetric nanoscale
channel at a temperature T such that 2ξ(T ) ≈ Da. One
implication of this result is that in order to decrease the
temperature at which an array of nanoscale apertures be-
haves as a weak link from T = 1.25 K to T = 0.625 K, Da

must be reduced by ∼ 4 Å, indicating that atomic-scale
imperfections in the fabrication of the nanoscale aperture
array can affect the sharpness of the critical temperature
for weak link formation.

We proceed to analyze the reduction of the longitudinal
superfluid fraction due to the presence of the septum by
comparing it to the transverse superfluid fraction, which
represents the superfluid response to rotation of the cylin-
der about its axis of symmetry. Whereas the longitudinal
superfluid fraction is quantified by the winding number
estimator in Eq.(3), the transverse superfluid fraction is
written in terms of the mean squared projected areas of
imaginary-time polymers on the plane perpendicular to
the cylinder axis19:(

ρs
ρ

)
⊥

=
2mT 〈A2

z〉
λIc

. (8)

In Eq.(8), Az is the z-component of the area vector, hav-
ing magnitude equal to the area of an imaginary time
polymer projected onto the (R,φ) plane, λ := ~2/2m,
and Ic is the classical moment of inertia of the poly-
mer. Figure 5 a) presents a comparison of the trans-
verse superfluid fraction and the longitudinal superfluid
fraction as functions of temperature for a system with a
single aperture with radius Da = 6 Å and cylinder diam-
eter Dt = 20 Å. The upper traces in Fig. 5 a) (square
symbols) show (ρs/ρ)⊥, and the lower traces (triangular
symbols) show the (ρs/ρ)z. It is evident that, regardless
of the aperture location, the transverse superfluid frac-
tion is consistently larger than the longitudinal super-
fluid fraction and that the former also shows saturation
for low T , whereas the latter shows only a small increase
at lower temperatures and remains less than 0.4 for all
temperatures studied. In the present case, this difference
reflects the fact that the transverse superfluid flow is not
obstructed by any potential which breaks the rotation
invariance of the cylinder. In contrast, the longitudinal
superfluid fraction is determined by imaginary time paths

TABLE II. Average displacement lengths d (Å) of liquid 4He
in a bipartitioned reservoir subject to the one-body potential
in Eq.(7) with a single aperture, Na = 1, located on-axis
with aperture center at (0, 0, 0). d is calculated from d =

(2(L/2− δ))−1
(∫ −δ
−L/2 dz d(z) +

∫ L/2
δ

dz d(z)
)

. Parameters of

the simulations are the same as for Fig.5 a).

T (K) 0.250 0.417 0.625 0.833 1.000 1.250 1.430 1.600 2.000

d (Å) 4.39 4.62 4.78 4.95 4.98 5.34 5.42 5.93 6.38

with nonzero winding number that must pass through the
aperture, whatever its location. This constraint severely
decreases superfluid response to translations along the
cylinder axis.

To gain insight into this difference, we show in Fig. 5
a) calculations for two locations of the aperture in the
septum (red symbols for the aperture center on the axis
of symmetry; black symbols for the aperture center situ-
ated 4 Å off the axis of symmetry). Within statistical er-
ror, we see that neither the transverse superfluid fraction
(upper traces) nor the longitudinal superfluid fraction
(lower traces) are significantly affected by the position of
the aperture in the septum. However, we observe (Fig.5
b)) that the local distribution of superfluidity in the pres-
ence of an off-center aperture is shifted radially relative
to the nanotube axis compared to the local distribution
of superfluidity both for an on-axis aperture center and
for a cylinder with no intervening aperture array. This
asymmetric distribution of superfluidity has the conse-
quence that the liquid 4He would be expected to exhibit
an asymmetric response to, e.g., shear motions of the
boundary. In general, given information about the shape
of a nanoscale container, one can therefore use the calcu-
lated local distribution of superfluidity to determine the
optimal configuration of the aperture array for a partic-
ular quantum nanofluidic experiment. Therefore, knowl-
edge of the asymmetry in the local superfluid density
is useful for experimental realization and applications of
nanoaperture arrays in liquid 4He.

For a single intervening aperture with center on the
cylinder axis we may apply the displacement length def-
inition of Eq.(6) to extract an averaged displacement
length for the entire bipartitioned reservoir. In Table
II, we show the cylinder-averaged displacement length d
in a system containing a single aperture with center on
the cylinder axis. d is calculated by averaging the val-
ues of dL(z) and dR(z) obtained by applying Eq.(6) to
regions of the cylinder to the immediate left and right
of the septum, respectively. Similar to the displacement
lengths calculated for a system without an aperture ar-
ray (Table I), d is observed to increase with temperature.
The larger values in Table II compared to Table I are due
to the fact that, for a given tube radius Rt, the local dis-
placement length d(z) computed for z near a septum is
larger on average than d(z) computed for z far from the
septum or in the same tube without a septum.
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FIG. 5. a) Comparison of global transverse superfluid fraction, computed by the projected path area estimator in Eq. (8)
(squares), with the longitudinal superfluid fraction, computed by the winding number estimator (inverted triangles), for reser-
voirs of 4He (N = 100, Dt = 20 Å, L = 18 Å) separated by a septum containing a single aperture with Da = 6 Å. Red symbols
denote results with the aperture center on the axis of symmetry; black symbols denote results with the aperture off the axis of
symmetry by 4 Å. b) Local longitudinal superfluid densities ρs(z,R) (obtained by averaging Eq.(4) over the angular coordinate
φ), shown as functions of (z,R) in cylinders (L = 18 Å, Dt = 20 Å) with a single off-center aperture having δ = 1.5 and
Da = 6 Å at T = 0.25 K (left) and T = 1.00 K (right).

It is clear that the definitions of local and global dis-
placement lengths become ambiguous when the poten-
tial is no longer cylindrically-symmetric. For example, in
Fig. 5 b) the local superfluid density distribution is dis-
placed from the wall with a smaller characteristic length
in the half-cylinder containing the aperture compared to
the half-cylinder without it. This result indicates that
the superfluid mass density is displaced asymmetrically
from the boundaries in a manner which depends on the
geometry of the confining potential. Global estimates of
healing behavior or superfluid density cannot account for
the asymmetry; this is why the introduction of the notion
of a healing surface, which reveals the local structure of
healing, is necessary.

Calculations for multi-aperture arrays are more chal-
lenging on account of the increased statistical error in
all estimators, particularly the local estimators. How-
ever the global longitudinal superfluid fraction, Eq.(3),
is sufficiently stable to allow a systematic study with re-
spect to temperature for a range of aperture numbers.
In Figure 6, we now show the global superfluid fraction
computed by the winding number estimator for reser-
voirs separated by arrays containing Na = 2, 3, 4 or 5
apertures, with radius Da = 5 Å in all cases. The aper-
tures are arranged in each calculation so that the cylin-
drical symmetry of the reservoir is decreased to C2, C3,
C4 and C5 symmetry, respectively. Several trends are
apparent from these results. First, the global superfluid
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response is less than the value for the cylinder without
any aperture and the superfluid fraction also decreases
with temperature, as expected. Second, it is evident
that in general, for a given temperature the superfluid
response increases as the number of apertures Na in-
creases. It is interesting that this increase with aperture
number occurs despite the fact that the aperture radius
is smaller than the healing length in these calculations
(the empirical healing length values at these tempera-
tures are ξ(T = 0.25) = 3.69 Å, ξ(T = 0.625) = 4.1 Å,
ξ(T = 1.25) = 6.0 Å). Thus the critical factor for the in-
creased longitudinal superfluid response with increasing
aperture number Na is that the individual aperture radii
are greater than the helium atomic dimension of length
(Da & 4 Å), and not whether the helium flow is outside
the weak link regime.

IV. SUMMARY AND CONCLUSIONS

We have used path integral Monte Carlo numerical
simulations to analyze the global and local superfluid re-
sponse of cylindrically-symmetric reservoirs of liquid 4He
with and without a bisecting array of nanoscale aper-
tures, using external potentials for the 4He reservoirs that
preclude adsorption at the boundary. Global superfluid
fractions quantifying the superfluid response to transla-
tional motion along the cylinder axis (i.e., longitudinal
superfluidity) and rotational motion about the cylinder
axis (i.e., transverse superfluidity) were calculated for
these systems by using estimators that are based, respec-
tively, on the longitudinal winding number of imaginary-
time polymers representing indistinguishable 4He atoms,
and the projected areas of these imaginary time poly-
mers. We found that the presence of a septum with a
single aperture significantly reduces the global longitu-
dinal superfluid response but has a smaller effect on the
superfluid response to rotational motion of the aperture,
with both of these reductions being approximately inde-
pendent of the location of the aperture center in the sep-
tum. Furthermore, the longitudinal superfluid response
decreases as the aperture diameter decreases, with a sig-
nificant drop when the diameter satisfies 2ξ(T ) ≈ Da,
consistent with formation of a superfluid 4He weak link
in a cylindrically symmetric nanoscale channel. For an
aperture array with Na > 1 apertures, we found that the
longitudinal superfluid fraction increases when the num-
ber of apertures Na is increased, regardless of whether in-
dividual apertures are operating in the weak link regime
or in the temperature regime in which 2ξ(T )� Da.

We also calculated the local distribution of superfluid
density in these nanoaperture array systems by using
a positive-definite estimator of local superfluid density
(Eq.(4)) that weights equally all beads participating in
imaginary time polymers with nonzero winding number.
In contrast to the prediction of Ginzburg-Pitaevskii the-
ory for bulk liquid helium that the superfluid density de-
crease monotonically near the boundary of a system, we

find that, as a consequence of the confining potential, the
radial superfluid density does not decay monotonically as
R→ Rt in a nanoscale cylinder. Instead, it shows radial
oscillations reflecting the effect of the interatomic interac-
tions. In systems containing an off-axis intervening aper-
ture, asymmetrical displacement lengths are observed in
the upper and lower halves of the cylinder. This asym-
metry could be exploited in the design of aperture arrays
for experiments in superfluid hydrodynamics.

We analyzed two temperature-dependent length scales
related to the global superfluid response and local su-
perfluid density distributions, the empirical temperature-
dependent healing length ξ(T ) and the theoretical
temperature-dependent displacement length d. Our re-
sults indicate that the empirical healing length ξ(T ) is
qualitatively useful for predicting the temperatures and
aperture radius at which superfluidity decreases below
the expected bulk value and a weak link can form. How-
ever, for a detailed picture of the length scale charac-
terizing the decay of superfluidity at a boundary of a
non-translationally invariant system, rather than making
empirical estimates, a microscopic estimator is required
that can be calculated from the ρS(R, z) data. The lo-
cal and averaged displacement length estimators given
by d(z) and d (d in the case of reservoirs separated by
a septum), respectively, accurately quantify the decay of
superfluidity at a boundary of a cylindrically symmetric
container, and also exhibit an increase with temperature
over the range T = 0.25 − 2.0 K. A study of the criti-
cal scaling of the displacement length d as T → Tλ that
takes into account finite-size effects in various confined
geometries is an important avenue for future research.

In this work we have considered only static proper-
ties of the constrained superfluid. In order to analyze
the effects of externally imposed flow on the local super-
fluid density and displacement lengths with the PIMC
method, local estimators of velocity and vorticity and
their correlations must be calculated. We have derived
an estimator for the local vorticity in the system that will
divulge information about the equilibrium structure of
line-like defects in superfluid density in cylindrically con-
fined systems.26 Results in this direction will be reported
in a future publication. We expect that the construction
of nanoscale aperture arrays similar to those analyzed
in this work could lead to experimental observation of
Josephson oscillations between phase coherent reservoirs
of liquid 4He deep in the superfluid phase, which may be
be exploited in superfluid-based technologies.8
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