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We present a method for calculating the energy levels of superconducting circuits that contain
highly anharmonic, inductively-shunted modes with arbitrarily strong coupling. Our method starts
by calculating the normal modes of the linearized circuit and proceeds with numerical diagonalization
in this basis. As an example, we analyze the Hamiltonian of a fluxonium qubit inductively coupled
to a readout resonator. While elementary, this simple example is nontrivial because it cannot be
efficiently treated by the method known as “black-box quantization,” numerical diagonalization in
the bare harmonic oscillator basis, or perturbation theory. Calculated spectra are compared to
measured spectroscopy data, demonstrating excellent quantitative agreement between theory and
experiment.

I. INTRODUCTION

Superconducting qubits provide a promising platform
for building a quantum computer, but experimental de-
sign requires highly accurate relationships between fab-
rication parameters and Hamiltonian parameters.1 Suc-
cessful approaches to this problem have involved finding
effective superconducting circuit Hamiltonians with suf-
ficient detail to accurately predict device behavior that
are still simple enough for efficient diagonalization.2–12

The method known as “black-box quantization,” in
particular, decomposes a distributed microwave envi-
ronment containing weakly anharmonic superconducting
qubits into a few-body effective Hamiltonian.13 It then
numerically calculates the normal modes of the system
in the limit that the Josephson junctions become lin-
ear inductors, writes the Hamiltonian in these normal
coordinates, and truncates the Taylor expansions of the
cosine terms. This method removes arbitrarily strong
coupling terms, but with two caveats: (i) a finite Foster
equivalent circuit, used to write a Hamiltonian from the
normal modes, is not always accurate and (ii) truncating
the cosine expansions is invalid for highly anharmonic
qubits (Fig. 1a), by definition. The first issue has been
resolved14 using a Brune equivalent circuit.15 In this ar-
ticle, we propose and experimentally confirm a solution
to the second issue.

Highly anharmonic qubits are prized for their in situ
tunability and rich energy level structure, but the nu-
merical diagonalization of their Hamiltonians is costly.
A proper choice of basis for numerical diagonalization,
which reflects the underlying physics of the system, is
paramount to avoid disastrous convergence problems.
For example, charge bases capture the band structure
of capacitively-shunted qubits like the Cooper pair box,
while bound states in inductively-shunted qubits like the
fluxonium are conveniently described by harmonic os-
cillator bases.16 Restricting our attention to the latter
class, an early approach was to numerically diagonalize
the full Hamiltonian, describing the qubit and the envi-
ronment, in the bare harmonic oscillator basis.12 An al-

ternative method involves numerically diagonalizing the
qubit Hamiltonian and treating its coupling to environ-
mental normal modes perturbatively, which has limited
applicability when this coupling is strong.17 Our strategy
is to use the second quantized Fock basis for numerical
diagonalization of the full Hamiltonian, after a transfor-
mation to the first quantized dressed mode basis. Our
central result is that this method is advantageous when
the coupling is sufficiently large.

This article demonstrates the application of this strat-
egy to a fluxonium qubit inductively coupled to a read-
out resonator (Sec. II), and it is organized as follows. In
Sec. III, we linearize an effective electrical circuit of the
system, transform into normal coordinates, and numeri-
cally diagonalize the Hamiltonian in this basis. Sec. IV
examines the agreement between the calculated energy
levels and experimental results.

II. PHYSICAL DEVICE

Experimentally, the fluxonium qubit is realized as one
small Josephson junction in parallel with a series array of
∼ 100 larger Josephson junctions.12 In the limit of large
size difference between these two types of junctions, the
capacitances and nonlinear inductances across the array
junctions may be neglected, and they form a collective,
linear superinductance of up to ∼ 300 nH.18 If an external
magnetic flux is threaded through this loop with mag-
nitude Φext = 0.5Φ0 (with Φ0 the magnetic flux quan-
tum), the two lowest energy quantum states are approxi-
mately the symmetric and antisymmetric superpositions
of counter-circulating persistent-current states, similar to
the flux qubit.5,12 This feature of the low-energy manifold
motivates our use of inductive coupling as the link be-
tween the fluxonium qubit and readout resonator. This
additional resonator is required for dispersive measure-
ment and, in our system, is an LC oscillator whose ca-
pacitance and inductance are formed by an electric dipole
antenna and another Josephson junction array, respec-
tively. The inductive coupling is achieved by sharing
junctions between the arrays of both oscillators. The
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FIG. 1. (a) Schematic diagram of cQED systems involving
a multi-mode microwave environment on the left and var-
ious highly anharmonic, inductively-shunted qubits on the
right. (b) Schematic diagram of the fluxonium-resonator sys-
tem. The fluxonium qubit (blue) is threaded by an external
magnetic flux Φext and coupled to a dipole antenna used as
a readout resonator (red) via an array of shared Josephson
junctions (purple). (c) Circuit model of the system, obtained
by replacing junction arrays with linear inductors.

resulting fluxonium-resonator system is depicted by the
schematic diagram in Fig. 1bb.

To analyze this system, we (i) replace the distributed
dipole antenna capacitance by a lumped element capaci-
tor, and (ii) replace the large Josephson junction arrays
by linear inductors. Approximation (i) is justified by the
antenna length (∼ 1−2 mm) being much smaller than the
wavelength of the resonator (∼ 3−6 cm).19 On the other
hand, (ii) is permitted when all array junctions are much
larger than the small junction of the qubit and the rele-
vant frequencies are below the fundamental mode of the
array.18,20 Figure 1c shows the resulting electrical circuit.

III. THEORY

A. Linearization

Having obtained a circuit with five elements, we may
use Kirchoff’s laws to write the Lagrangian in terms of
two degrees of freedom: the flux across the capacitance
of the readout resonator, Φr, and that across the small
junction of the qubit, Φq. In the limit that Lq � Lr ∼
Ls, i.e. the unshared inductance of the qubit is much

larger than either the unshared inductance of the readout
resonator or the shared inductance, the circuit is well-
described by the Lagrangian

L =
1

2
CrΦ̇

2
r −

1

2(Lr + Ls)
Φ2
r +

Ls
Lq(Lr + Ls)

ΦrΦq

+
1

2
CqΦ̇

2
q −

1

2Lq
Φ2
q + EJ cos (ϕq − ϕext) , (1)

upon Φq −→ Φq − Φext. Here, Cq and EJ denote
the capacitance and Josephson tunneling energy of the
small junction, while Cr represents the dipole capaci-
tance of the readout mode. We have also introduced ϕq ≡
2πΦq/Φ0 as the difference in arguments of the supercon-
ducting order parameter on either side of the small junc-
tion. Analogously, we have defined ϕext ≡ 2πΦext/Φ0.
Note that the first two terms in (1) describe the readout
mode and the last three terms correspond to the qubit
mode. All coupling between these modes is captured by
the bilinear mutually inductive third term.

To linearize (1), we must temporarily dispense with
components of the cosine term. For weakly anharmonic,
capacitively-shunted qubits, the cosine can be replaced
by the quadratic term in its Taylor expansion.13 An ex-
ample is the transmon, which is a Josephson junction
shunted by a large capacitance, and whose dynamics are
governed by multiple Cooper pair tunneling events.11 For
highly anharmonic, inductively-shunted qubits, the co-
sine should be discarded altogether. The fluxonium be-
longs to this class, owing to its large inductive shunt and
single Cooper pair charging effects.

B. Normal modes

We decouple the linearized Lagrangian (EJ → 0 in
(1)) by diagonalizing the classical equations of motion.
This amounts to changing variables to ΦR and ΦQ such
that Φr = λ1ΦR + λ2ΦQ and Φq = λ3ΦR + λ4ΦQ. The
Lagrangian is now given by

L =
1

2
CRΦ̇2

R −
1

2LR
Φ2
R +

1

2
CQΦ̇2

Q −
1

2LQ
Φ2
Q

+ EJ cos (λ3ϕR + λ4ϕQ − ϕext) , (2)

where we have defined ϕi ≡ 2πΦi/Φ0 to be the normal
mode superconducting phases (with i = R,Q). Similarly,
Ci and Li denote the normal mode capacitances and in-
ductances given by

CR = λ2
1Cr + λ2

3Cq (3)

CQ = λ2
2Cr + λ2

4Cq (4)

1
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2
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λ2

4

Lq
− 2λ2λ4Ls
Lq(Lr + Ls)

(6)



We note that this normal mode basis, in which the cou-
pling between modes is entirely captured by the cosine
term in (2), conveniently makes obvious the inherited
nonlinearity of the readout as well as the nonlinear na-
ture of the coupling.13 To draw an analogy to the cQED
literature, we observe that |λ1| � |λ2| and |λ3| � |λ4|
in our devices (see Tab. II), which means that mode R
is vastly more linear than mode Q.21 This allows us to
refer to modes R and Q in (2) as the readout-like and
qubit-like modes, respectively, which we will henceforth
refer to as readout and qubit.

We then apply a Legendre transform and define the
conjugate charges Qi ≡ ∂L/∂Φ̇i for the two normal
modes.3 These steps permit the writing of the quantum
Hamiltonian

Ĥ =
1

2CR
Q̂2
R +

1

2LR
Φ̂2
R +

1

2CQ
Q̂2
Q +

1

2LQ
Φ̂2
Q

− EJ cos (λ3ϕ̂R + λ4ϕ̂Q − ϕext) . (7)

C. Numerical diagonalization

We express this Hamiltonian in the normal mode har-
monic oscillator basis {|nm〉}, where n and m correspond
to the number of excitations in the readout and qubit
modes, which yields the (infinite-dimensional) matrix

Ĥ = ~
∑
n,m∈N

(ωRn+ ωQm) |nm〉〈nm|

− EJ
∑

n,n′,m,m′∈N

[
cosϕext

(
cRnn′c

Q
mm′ + sRnn′s

Q
mm′

)
+ sinϕext

(
cRnn′s

Q
mm′ − sRnn′cQmm′

) ]
|nm〉〈n′m′|. (8)

The cosine and sine matrix elements can be computed
analytically as follows, where L b

a are the associated La-
guerre polynomials and it is understood that λR = λ3

and λQ = λ4.22
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We treat the full analytic expression (8–10) for the
Hamiltonian matrix of the fluxonium-resonator system
as in Fig. 1c (when Lq � Lr ∼ Ls). Computing the
lowest energy levels requires truncating both readout and
qubit Hilbert spaces. This is done by restricting the basis
to {|nm〉 : n ≤ n0,m ≤ m0} with finite cutoff dimensions
n0 and m0. We choose n0 ∼ 5 and m0 ∼ 20 in order to
simultaneously minimize truncation errors and computa-
tional cost.23 Such numerical diagonalization yields the
full solution to the time-independent Schrödinger equa-
tion

Ĥ|nµ〉 = Enµ|nµ〉, (11)

where µ denotes the qubit excitation. The computed
energy spectrum for device A (see Tab. I) as a function of
threaded external magnetic flux Φext is plotted in Fig. 2a
for the first nine transitions of the system from its ground
state.

In order to assign the quantum numbers n and µ to
these energy levels, which undergo anticrossings as ex-
ternal flux is varied as in Fig. 2, we additionally diago-
nalize a decoupled version of the Hamiltonian (7), Ĥ0.
This Hamiltonian is obtained by setting ϕ̂R → 0 in the

argument of the cosine in (7) or by setting cRnn′ → 1 and

sRnn′ → 0 in (8). Computing the energy levels for Ĥ0

only requires truncating the qubit Hilbert space. This
time, the basis is restricted to {|nm〉 : m ≤ m0} with fi-
nite m0. As before, we take m0 ∼ 20, and we reiterate
that numerical methods are the only tractable option.
This procedure results in the solution of

Ĥ0|nµ〉0 = εnµ|nµ〉0. (12)

Note that the eigenstates are easily separable; that is,
|nµ〉0 = |n〉|µ〉0 and εnµ = ~ωRn + εµ. In other words,
the decoupled spectrum has built-in quantum numbers.
Quantum numbers are then assigned by comparing the
coupled energy spectrum Enµ to the decoupled spectrum
εnµ. In the limit of weak coupling, we may simply take n
and µ for a given coupled level to be those of the nearest
decoupled level. In this scheme, the quantum numbers
labeling a chosen energy level abruptly switch at level
anticrossings, as shown in Fig. 2b.
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FIG. 2. (a) Energy levels Enµ of the fluxonium-resonator
system as a function of external flux Φext. The zero point
energy is taken to be E0g and energies are given in frequency
units, while flux is given in multiples of the magnetic flux
quantum Φ0. (b) Anticrossing between the 0 → 1 readout
transition and the e→ h qubit transition, and the divergence
of second-order perturbation theory.

D. Comparison with other methods

To benchmark our method, we contrast the essential
steps with those of Ref. 12, 13, and 17. Respectively,
the central differences are transforming to normal coordi-
nates, truncating the cosine term, and using perturbation
theory for the qubit-environment coupling.

1. Normal modes

Numerical diagonalization of the Hamiltonian corre-
sponding to (1) in the bare harmonic oscillator basis
{Φr,Φq} was carried out in the case of capacitive cou-
pling in Ref. 12. Our approach performs this diagonaliza-
tion in the dressed harmonic oscillator basis {ΦR,ΦQ}.
This transformation allows for more aggressive Hilbert

space truncation when numerically diagonalizing, pro-
vided the residual coupling mediated by the cosine is
smaller than the initial linear coupling:

Ls
Lr + Ls

<
|λ3|
λ4

. (13)

The left-hand side in the above inequality represents the
turns ratio between the shared inductance the readout
inductance, while the right-hand side represents the de-
gree of mode hybridization. Criterion (13) is satisfied for
a broad class of systems, including our physical devices
(see Tab. I–II).

2. Cosine truncation

In Ref. 13, the cosine term in (7) is Taylor expanded
and the first few terms are retained. In our treatment,
no truncation is employed. This truncation makes it ex-
tremely easy to calculate the off-diagonal Hamiltonian
matrix elements, facilitating numerical diagonalization or
perturbative analysis. For either mode, this step requires
that (i) a well-defined classical steady state 〈ϕi〉 is found
and (ii) the quantum fluctuations of the phase ϕZPF

i are
small. Condition (i) guarantees that the Taylor expan-
sion is possible, and we note that it is patently violated
for the fluxonium qubit, since there are multiple poten-
tial minima. Condition (ii) ensures that the expansion
converges rapidly, and it mathematically amounts to

Zi =

√
Li
Ci
� RQ =

~
(2e)2

, (14)

where Zi is the characteristic impedance of mode i and
RQ is the impedance quantum. This highlights the fact
that truncating the cosine expansion is permissible only
for low impedance modes.

3. Perturbation theory

Independently of the considerations in the previous
two sections, the qubit-readout coupling terms may be
treated perturbatively, as in Ref. 17. This treatment
greatly reduces the Hilbert space size for numerical di-
agonalization, at the expense of additional calculations
of perturbed eigenstates and energy levels. For a vari-
ety of systems, perturbative expansions do not converge
quickly enough to provide an advantage in computational
complexity over numerical diagonalization (see Fig. 2b as
well as App. A for an application to our system). Simply
stated, perturbation theory is not efficient for systems
with sufficiently large qubit-environment coupling.
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FIG. 3. (a–b) (blue): qubit g → e transition frequency. (c–d) (red): readout 0 → 1 transition frequency. (e–f) (purple):
dispersive shift χ. All results are plotted as a function of external flux Φext in units of Φ0. Circles indicate data taken using
two-tone spectroscopy (blue), single-tone spectroscopy (red), and single-tone spectroscopy preceded by qubit state preparation
(purple). Solid lines indicate theoretical fits obtained from numerical diagonalization. Dashed lines indicate results from
second-order perturbation theory.

TABLE I. Parameters used for energy level calculations in
Fig. 2–3.

Device A Device B

Cr 20.3 fF 20.1 fF

Lr 15.6 nH 19.7 nH

Cq 5.3 fF 5.9 fF

Lq 386 nH 430 nH

EJ 6.20 GHz 9.08 GHz

Ls 4.5 nH 2.9 nH

TABLE II. Normal mode coefficients corresponding to param-
eter sets in Tab. I.

Device A Device B

1− λ1 1.5× 10−3 4.1× 10−4

λ2 1.5× 10−2 8.4× 10−3

λ3 −5.6× 10−2 −2.9× 10−2

1− λ4 1.1× 10−4 3.5× 10−5

IV. AGREEMENT WITH EXPERIMENT

We test the accuracy of our circuit model and analysis
by comparing the simulated spectrum to experimentally
obtained spectroscopy data at various values of Φext and
for two devices with different parameters (Tab. I).

These devices are measured in an impedance-matched,
copper rectangular waveguide mounted in a dilution re-
frigerator at ∼ 20 mK. Two-tone microwave pulses are
incident on the device and then demodulated at 300 K
using a heterodyne interferometry setup (App. B).9 This
allows for the measurement of the readout 0→ 1 transi-
tion frequency, the qubit g → e transition frequency, and
the dispersive shift χ of the readout by the qubit. Data
is shown in Fig. 3.

It is clear that the measured readout 0 → 1 transi-
tion frequency and the qubit g → e transition frequency
should be compared to the quantities (E1g − E0g)/h
and (E0e−E0g)/h obtained from diagonalization, respec-
tively, in the limit of zero temperature. The dispersive
shift χ may also be computed from diagonalization via

χ ≡ 1

h
[(E1e − E0e)− (E1g − E0g)] . (15)



These three numerically computed quantities are also
plotted in Fig. 3. In addition, the dispersive shift cal-
culated from the perturbative approach in App. A is also
plotted in Fig. 3e–f.

The parameters in Tab. I are found by fitting these sim-
ulated quantities to those measured experimentally. The
readout capacitance Cr is predicted independently us-
ing a commercial high-frequency electromagnetic solver
(Ansys HFSS), a finite-element electromagnetic modeling
program. The chief discriminating factor between device
A and device B is the qubit-readout coupling strength.
The turns ratio between the shared inductance and the
readout unshared inductance is Ls/Lr ≈ 0.29 for device
A, while Ls/Lr ≈ 0.15 for device B. Moreover, the value
of EJ is roughly 50% higher for device B than device
A, resulting in a significantly lower g → e transition fre-
quency at Φext = 0.5Φ0.

Theoretical and experimental results in Fig. 3 agree
well, with the exception of two features. First, the loca-
tion in external flux of the singularity in χ for device
A differs between the model and measurements. We
attribute this to the e → h qubit transition crossing
the 0 → 1 readout transition (see Fig. 2b), which in-
volves the |0h〉 state, whose transition frequency is ∼ 12
GHz from the ground state. Our approximation of the
Josephson junction array composing the unshared su-
perinductance of the qubit breaks down at these frequen-
cies due to the fundamental mode of the array occurring
at ∼ 11 GHz.18,20,24 Second, perturbation theory consis-
tently overestimates the dispersive shift in the vicinity
of avoided crossings for both device A and (to a lesser
extent) device B. This is most apparent at Φext = 0.5Φ0

for device A, at which point χ is calculated to be 75 MHz
using perturbation theory and 57 MHz using numerical
diagonalization. The error in the perturbative calcula-
tion stems from the e → f qubit transition becoming
nearly resonant with the 0 → 1 readout transition (see
Fig. 2a).

The strong variation of the energy spectrum with ex-
ternal flux is apparent in Fig. 2a.25 This indicates a
valuable feature of the fluxonium-resonator system: the
qubit, readout, and qubit-readout coupling all behave
differently as Φext is swept. As an additional exam-
ple, the inherited nonlinearity of the readout resonator
may, extracted from the computed energy spectrum, un-
dergoes strong variation with both qubit state and Φext

(App. C). This allows access to multiple coupling regimes
and cQED Hamiltonians within a single device.

V. CONCLUSION

We have constructed an effective circuit (Fig. 1c) and
Hamiltonian (7) for the fluxonium-resonator system: a
device consisting of a readout resonator and fluxonium
qubit, where all inductances are formed by arrays of
Josephson junctions and the readout-qubit coupling is re-
alized by a partially shared inductance. The low-energy

spectrum of this device has been computed using a new
method: numerical diagonalization in the dressed mode
basis. Quantitative agreement with experimental results
was obtained for nearly all values of Φext. This demon-
strates the utility of our method and we expect it to
be applicable in diagonalizing a broad class of supercon-
ducting circuit Hamiltonians, such as strongly coupled
fluxonium qubits, inductively-shunted transmon qubits,
and fluxonium qubits coupled to readout resonators via
shared flux qubits.
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Appendix A: Perturbation Theory

To treat the qubit-readout coupling in (7) perturba-
tively, as shown in Fig. 2b and mentioned in Sec. IV, we
Taylor expand the cosine term about λ3 = 0, because
|λ3| � 1. Discarding the O(λ3

3) terms results in

Ĥ =
1

2CR
Q̂2
R +

1

2LR
Φ̂2
R +

1

2CQ
Q̂2
Q +

1

2LQ
Φ̂2
Q

− EJ
[

cos (λ4ϕ̂Q − ϕext)− λ3ϕ̂R sin (λ4ϕ̂Q − ϕext)

− 1

2
(λ3ϕ̂R)2 cos (λ4ϕ̂Q − ϕext)

]
. (A1)

Although the same assumption (|λ3| � 1) justifies both
the replacement of (7) by (A1) and the use of perturba-
tion theory on the last two terms in (A1), the majority of
error arises from the latter step. We may then consider
the first five terms in (A1) as the unperturbed Hamil-

tonian Ĥ0, which coincides with the decoupled Hamilto-
nian from Sec. III C. First- and second-order perturba-
tion theory may then be used on the seventh and sixth
terms in (A1), respectively. This results in corrections of
the form

δεnµ = EJ(λ3ϕ
ZPF
R )2

(
n+

1

2

)
0〈µ| cos (ϕ̂Q − ϕext) |µ〉0

+ E2
J(λ3ϕ

ZPF
R )2

∑
µ′ 6=µ

(2n+ 1)(εµ − εµ′) + ~ωR
(εµ − εµ′)2 − (~ωR)

2

× |0〈µ′| sin (ϕ̂Q − ϕext) |µ〉0|2 , (A2)



completing the calculation of the energy levels εnµ+δεnµ
for the system via perturbative treatment of the readout-
qubit coupling.

Appendix B: Experimental details

The two devices in Sec. IV are fabricated with alu-
minum on sapphire substrates using double-angle evap-
oration. In particular, bridge-free fabrication is used for
the Josephson junctions.26 The rectangular waveguide
enclosing the resulting devices has 0.3 dB insertion loss
across frequencies in the passband of 6.5 − 9 GHz. An
applied external magnetic flux is threaded through the
qubit (Fig. 1b–c) by passing a current through a super-
conducting coil around the mid-section of the waveguide.
Thermally anchored to the mixing chamber of a dilution
refrigerator, this sample holder is magnetically isolated
from its environment using high-permeability metallic
and aluminum shields.

Input microwave signals are channeled into the waveg-
uide through 63 dB of attenuation as well as infrared-
frequency filters.27,28 Output signals are passed through
two isolators and then amplified using a high-electron-
mobility transistor and a commercial microwave ampli-
fier at 300 K. Single-tone spectroscopy using a vector
network analyzer is used to determine the readout 0→ 1
transition frequency. We use two-tone spectroscopy to
measure the qubit g → e transition frequency. This in-
volves sending a ∼ 100 µs saturation pulse at a variable
qubit frequency followed by a ∼ 30 µs readout pulse at
the fixed 0 → 1 transition frequency. Our room tem-
perature heterodyne interferometry setup independently
mixes the outgoing readout pulse as well as a reference
readout pulse with local oscillator signals (at a frequency
detuned from the readout by 50 MHz) and then digi-
tizes and analyzes the 50 MHz components. Finally, the
dispersive shift χ is measured by applying a π-rotation
pulse at the qubit g → e transition frequency and then
performing pulsed single-tone spectroscopy of the 0→ 1
readout transition with the heterodyne interferometry
setup. This is compared to the result from the same
procedure with an off-resonant π-pulse to determine χ.

Appendix C: Inherited anharmonicity of the readout

Further proof of the tunability of the fluxonium-
resonator system as a function of Φext is demonstrated
in Fig. 4. The calculated qubit state-dependent inher-
ited anharmonicity of the readout is shown as a function
of external flux for device A. We define this inherited
anharmonicity as

1

h
[(E2µ − E1µ)− (E1µ − E0µ)] , (C1)

|g〉
|e〉

FIG. 4. Inherited anharmonicity of the readout resonator
as a function of external flux Φext, defined as the difference
between the 1 → 2 and 0 → 1 readout transition frequen-
cies. Results from numerical diagonalization are shown for
the qubit in state |g〉 (black) and state |e〉 (orange).

that is, analogously to the self-Kerr effect.29,30 Remark-
ably, this inherited anharmonicity changes in sign and
order of magnitude for both fixed qubit state and vari-
able Φext, and variable qubit state and fixed Φext.

Appendix D: Input-output theory

In Sec. III–IV, we have treated the fluxonium-
resonator system as a closed quantum system; exper-
imentally, however, the system is allowed to exchange
photons with its waveguide environment. In this ap-
pendix, we will attempt to understand quantitatively
how the system responds to microwaves traveling through
the waveguide.

Depending on its frequency and the relative electric
dipole moments of the readout and qubit normal modes,
a microwave pulse incident on the fluxonium-resonator
system may excite either the readout or qubit mode. We
therefore couple transmission lines with impedances ZR
and ZQ to the readout and qubit modes, respectively, as
shown in Fig. 5.31 Note that the electrical circuit for the
system (solid black in Fig. 5) is drawn according to the
Hamiltonian (7) with scaled coordinates,32 so that the
inter-mode coupling is entirely captured by a single non-
linear inductive element. This construction, which con-
siders both transmission lines as the waveguide, allows us
to treat dissipation from the system using the two-port
microwave scattering matrix approach as opposed to the
Lindblad master equation formalism.33

We proceed by defining the 2× 2 impedance matrix Z
as that whose elements Zij are given by

Vj = IiZij , (D1)

in accordance with Ohm’s law, where Vj is the voltage
measured across mode j (with R and Q corresponding
to readout and qubit, respectively, as in Fig. 5) and Ii is
the current imposed across mode i. In other words, Zij
is the impedance response of the voltage across mode j
to a flux across mode i. Taking a time derivative in the
Fourier domain, we have



V out
Q

ZQ

V in
Q

V out
R

ZR

V in
R

LQ

CR

Φext

EJ

LR

CQ

FIG. 5. Electrical circuit schematic for the fluxonium-
resonator system (black), showing the decomposition into nor-
mal modes coupled by a single nonlinear inductive element.
Transmission lines (dashed grey) are weakly coupled (solid
grey) to these modes in order to treat the system as a two-
port microwave device.

Zij = χΦiVj = iωχΦiΦj (D2)

in the language of linear response theory, where ω is the
probe frequency. Employing the spectral expansion of
the Kubo formula, we may write

Zij =
∑
n,µ

πnµZ
nµ
ij , (D3)

where πnµ denotes the population of the state |nµ〉.34,35

On the other hand, Znµij represents the impedance re-

sponse of the system perfectly prepared in the state |nµ〉,
and it may be expressed as

Znµij = 2iω
∑
n′,µ′

En′µ′ − Enµ
(En′µ′ − Enµ)

2 − (~ω)
2

× 〈nµ|Φi|n′µ′〉〈n′µ′|Φj |nµ〉. (D4)

This expression highlights two crucial facts: the
impedance response for the state |nµ〉 has poles when-
ever ω resonates with the nµ → n′µ′ transition and the
residues of these poles scale with the matrix elements
of the normal mode fluxes between the initial and final
transitional states.

The 2× 2 scattering matrix S is defined by

(
V out
R

V out
Q

)
= S

(
V in
R

V in
Q

)
, (D5)

where V in
i and V out

i depict incoming and outgoing volt-
age waves for mode i (see Fig. 5). We note that Vi =
V in
i + V out

i and that the characteristic impedance of the
transmission line connected to mode i is defined so that
V

in/out
i = I

in/out
i Zi, again invoking Ohm’s law. Here, I in

i

and Iout
i denote incoming and outgoing current waves for

mode i, where Ii = I in
i − Iout

i . These relations allow us
to write

S =
(
ZZ−1

0 + I
)−1 (

ZZ−1
0 − I

)
, (D6)

where Z0 =
(
ZR 0
0 ZQ

)
is the characteristic impedance

matrix. In our treatment, Z is purely imaginary (see
(D4)), and so dissipation is included in our choice of fi-
nite characteristic impedances. In particular, we may
take Zi = Qi

√
Li/Ci so that the connected transmission

line is matched to the impedance of its normal mode up
to multiplication by Qi, the quality factor of the mode.
Choosing QR = 1.5×103 and QQ = 7.5×105, which cor-
respond to a readout resonator linewidth of ∼ 5 MHz and
qubit relaxation time of ∼ 100 µs at Φext = 0.5Φ0 for de-
vice A, we may calculate the state-dependent scattering
parameters plotted in Fig. ??–??.

Overall, we see that |Sii| ≈ 1 (near perfect reflection)
and |SRQ| ≈ 0 (near vanishing transmission), which cor-
respond to our choice of fairly large quality factors and
hence weak coupling to the waveguide. On the other
hand, argSii and argSRQ experience full 360◦ and 180◦

rolls, respectively, at each transition frequency – the ex-
ception being that the phase response is very small for
Sii near its converse mode transition frequencies, which
is due to the weakness of the readout-qubit coupling.

The state-dependent scattering matrix completely
characterizes the fluxonium-resonator system in the ide-
alized waveguide environment (as modeled by transmis-
sion lines connected to constituent modes). In Fig. ??–
??, we clearly see readout resonator photon number split-
ting of the g → e qubit transition, a frequency shift of χ
in the |0g〉 and |0e〉 phase rolls, and a shift in the read-
out transition frequency depending on the photon num-
ber (a manifestation of the self-Kerr effect). We note
that more complicated loss mechanisms, such as internal
losses, can be added to our model by adding a real part to
the impedance matrix. Qualitatively, this will draw the
reflection coefficient magnitudes away from unity toward
zero (in the limit of critical coupling).

We note that the experimental setup used for the mea-
surements in Sec. IV does not allow for complete access
to the photons leaking out of the qubit mode. How-
ever, in fluorescence experiments that intentionally cou-
ple the microwave environment to the qubit, we expect
these state-dependent scattering parameters to agree well
with measurements.
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