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Studies of superconductivity in multiband correlated electronic systems has become one of the
central topics in condensed matter/materials physics. In this paper, we present the results of
thermodynamic measurements on the superconducting filled skutterudite system Pr1−xCexPt4Ge12
(0 ≤ x ≤ 0.2) to investigate how substitution of Ce at Pr sites affects superconductivity. We
find that an increase in Ce concentration leads to a suppression of the superconducting transition
temperature from Tc ∼ 7.9 K for x = 0 to Tc ∼ 0.6 K for x = 0.14. Our analysis of the specific
heat data for x ≤ 0.07 reveals that superconductivity must develop in at least two bands: the
superconducting order parameter has nodes on one Fermi pocket and remains fully gapped on the
other. Both the nodal and nodeless gap values decrease, with the nodal gap being suppressed more
strongly, with Ce substitution. Ultimately, the higher Ce concentration samples (x > 0.07) display
a nodeless gap only.

PACS numbers: 71.10.Ay, 74.25.F-, 74.62.Bf, 75.20.Hr

INTRODUCTION

Filled skutterudite compounds with the chemical for-
mula MPt4Ge12 (M = alkaline earth, lanthanide, or ac-
tinide) are a relatively new entry into the family of heavy-
fermion superconductors. The first Pr-based heavy-
fermion superconductor PrOs4Sb12 has a superconduct-
ing critical temperature Tc ' 1.85 K and a Sommerfeld
coefficient γ ∼ 500 mJ/(mol·K2), revealing a rather sig-
nificant enhancement of the effective mass of the conduc-
tion electrons [1, 2]. Interestingly, the related compound
PrPt4Ge12 has a much higher Tc ' 7.9 K and smaller
γ ∼ 60 mJ/(mol·K2), corresponding to a moderate en-
hancement of the conduction electron effective mass [3].
It is noteworthy that these materials, among many oth-
ers in the family of filled skutterudites, have been widely
studied recently, mainly due to their potential for ther-
moelectric applications [4, 5] as well as a variety of low
temperature phenomena such as magnetic and quadrupo-
lar order and metal-insulator transitions [1, 6–10].

The microscopic nature of superconductivity in both
PrPt4Ge12 and PrOs4Sb12 has been the focus of intense
experimental effort in recent years. For example, µSR ex-
periments on PrPt4Ge12 reveal time reversal symmetry
breaking (TRSB) in the superconducting state, indicat-
ing an unconventional symmetry of the pairing ampli-
tude [11]. The substitution of Ce for Pr results in the
suppression of the TRSB. In addition, the specific heat
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of the systems Pr1−xCexPt4Ge12 and PrPt4Ge12−xSbx
shows a crossover from a power law to an exponential
temperature dependence upon increase of the Ce and Sb
substituent concentration, which unequivocally suggests
that the superconducting gap becomes fully isotropic at
sufficiently high Ce or Sb concentrations [12, 13].

Naively, one would not regard these observations as
surprising, since several experimental probes have con-
firmed that the parent compound PrPt4Ge12 is a multi-
band superconductor [3, 14]. Given that cerium ions have
a valence of Ce3+ (4f1 configuration) corresponding to an
odd number of electrons in the 4f -shell, one would gener-
ally expect a rapid suppression of unconventional super-
conductivity in response to magnetic scattering [15]. If
the two Fermi pockets are not related by crystal symme-
try, then the unconventional pairing on one of the Fermi
pockets will be more susceptible to magnetic scattering
than its conventional (or symmetric) counterpart. Al-
though the viability of this interpretation still remains
an open issue, the scenario of co-existence between nodal
and nodeless pairing gaps finds support in different ex-
perimental findings [3, 12, 14]. In that regard, it is worth
mentioning that the same issues persist for PrOs4Sb12,
for which several experimental groups have provided ev-
idence for nodal as well as nodeless superconductivity
[2, 9, 16–20].

Motivated by these questions, we performed low-
temperature specific heat measurements on supercon-
ducting samples of Pr1−xCexPt4Ge12. Our detailed and
systematic analysis indicates the presence of multiband
superconductivity up to the Ce concentration x = 0.07
and a single nodeless gap for x > 0.07. Furthermore, we
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argue that at least one of the superconducting order pa-
rameters for the parent compound and the lightly doped
compound must be nodal. Thus, our findings imply that
the nodal gap disappears at high Ce concentrations. Our
findings are consistent with the suppression of the TRSB
with increasing Ce concentration in these materials, as
observed in recent µSR experiments [11].

EXPERIMENTAL DETAILS

Polycrystalline samples of Pr1−xCexPt4Ge12 were syn-
thesized by arc-melting and annealing according to the
procedure described in detail elsewhere [12]. These poly-
crystalline samples were characterized through Rietveld
refinement of powder X-ray diffraction (XRD) data, as
well as resistivity and magnetization measurements [12].
This detail characterization shows the purity of the poly-
crystalline samples used in this study.

The two surfaces of each sample were polished with
sand paper to improve the contact between the sample
and the specific heat platform. We performed a series
of specific heat measurements on these polycrystalline
samples of Pr1−xCexPt4Ge12 (x = 0, 0.01, 0.03, 0.04,
0.05, 0.06, 0.07, 0.085, 0.1, and 0.14) in zero magnetic
field and over the temperature T range 0.50 K ≤ T ≤
10 K. The specific heat measurements were performed
via a standard thermal relaxation technique using the
He-3 option of the Quantum Design’s Physical Property
Measurement System (PPMS).

RESULTS AND DISCUSSION

As shown in Fig. 1, a clear superconducting transi-
tion is observed for Pr1−xCexPt4Ge12 samples with x ≤
0.14. Samples with x > 0.14 do not display a complete
superconducting transition for temperatures as low as
0.5 K. For the unambiguous determination of the ther-
modynamic superconducting transition temperature Tc
we used the method of isoentropic construction; i.e., we
chose Tc such that the entropy around the transition is
conserved (see top left inset to Fig. 1). The bottom right
inset to Fig. 1 shows that Tc is suppressed monotonically
with increasing Ce substitution x.

In the absence of any magnetic contribution, the mea-
sured specific heat in the normal state is the sum of elec-
tronic Ce = γnT and lattice Cph = βT 3 contributions;
hence, we fitted the measured specific heat in the normal
state (Tc < T ≤ 10 K) for different Ce concentrations
with C(T ) = γnT+βT 3. The result of such a fit for the
x = 0 sample is shown in Fig. 2 and gives γn = 73.7±6
mJ/mol·K2 and β = 5.2± 0.05mJ/mol·K4. To determine
the electronic contribution to the specific heat, we sub-
tracted the lattice contribution Cph from the measured
specific heat.
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FIG. 1: (Color online) Measured specific heat C divided by
temperature T plotted vs. T for different Ce substitutent
concentrations in Pr1−xCexPt4Ge12 (0 ≤ x ≤ 0.14). The
measurements were performed over the temperature range
0.50 ≤ T ≤ 10 K. Top left inset: Isoentropic construction to
obtain the value of superconducting transition temperature
Tc. Bottom right inset: Superconducting transition temper-
ature Tc, obtained from the data in the main panel of the
figure using the isoentropic construction, vs. x.
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FIG. 2: (Color online) Fit (blue line) of the C(T )/T data
(solid filled circles) with γn + βT 2 in the temperatures range
just above Tc to 10 K, performed in order to extract the lattice
contribution to specific heat. The fit yields the parameters γn
= 73.7±6 mJ/mol·K2 and β = 5.2± 0.05mJ/mol·K4.

After subtracting the lattice contribution, the specific
heat shows an upturn in the low-temperature region (see
Fig. 3), which we attribute to a nuclear Schottky con-
tribution CSch = An/T

2 due to impurity phases that
appear during preparation of the samples. In fact, such
an upturn was also observed in previous studies [3, 14]
and was suppressed in the case of single crystals by prop-
erly etching the surface of the crystals. Since the present
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FIG. 3: (Color online) Plot of the specific heat data (C −
Cph)/T vs temperature T (black circles) for the (a) x = 0 and
(b) x = 0.07 samples. The solid red lines are fits of the data
as described in the text. The solid red circles represent the
electronic contribution to specific heat (right vertical axis),
obtained after subtraction of all the other contributions.

study was performed on polycrystalline samples, we were
unable to eliminate the nuclear Schottky contribution
by just etching the surface of the samples. Neverthe-
less, the upturn in the present study appears randomly
throughout the samples with different Ce concentration,
leading us to conclude that it is, indeed, the result of
impurity phases. Therefore, to determine the electronic
contribution to specific heat, we also subtracted the nu-
clear Schottky contribution CSch = An/T

2 for tempera-
tures T < 2 K where the effect of the upturn is evident.
We obtained the best fit of the data with the expression
(C − Cph) = γ0T +BTm + An/T

2 for 0 ≤ x ≤ 0.04 and
with (C − Cph) = γ0T +Be−∆/T +An/T

2 for x > 0.04.
Here γ0 and An/T

2 are the residual specific heat and the
nuclear Schottky contribution, respectively. Figures 3(a)
and 3(b) show the results of the fitting (red curves) and
the electronic contribution to the specific heat (red solid

symbols) for the x = 0 and x = 0.07 sample, respec-
tively, after subtracting the residual heat capacity and
the nuclear Schottky contribution.

As we have already mentioned in the introduction,
there are conflicting reports regarding the symmetry of
the superconducting energy gap of PrPt4Ge12. For exam-
ple, a specific heat study based on the BCS model points
towards multiband superconductivity with isotropic or-
der parameters [14], while power-law behavior in the spe-
cific heat at low temperatures, together with measure-
ment of the superfluid density through µ-SR measure-
ments, indicate a gap with point nodes [3]. This latter
finding is also supported by the time-reversal symme-
try breaking observed through another independent µ-SR
study, suggesting the superconductivity is of unconven-
tional nature [11].

To get better insight into the nature of the supercon-
ducting gap of this system and its evolution with Ce sub-
stitution, we first focus on the temperature dependence
of the electronic specific heat at low T . As just men-
tioned, the power-law T dependence of the electronic
specific heat at low temperatures (T � Tc) is a signa-
ture of the nodal character of the superconducting order
parameter [21], while within the analysis based on the
weak-coupling BCS theory, its exponential temperature
dependence characterizes an isotropic gap. Thus, in our
analysis, we used log-log and semi-log plots to discrim-
inate between power-law and exponential behavior, re-
spectively, of Ce in the measured low-T range, as shown
in Fig. 4.

Figures 4(a) and 4(c) clearly show that the low tem-
perature data (T < 0.3 Tc) follow a power-law behavior
with an exponent m ≈ 3.5−4 for the x = 0 and x = 0.04
samples, respectively. This power-law behavior is typi-
cal of all samples with x ≤ 0.04. While a power-law of
m = 3 is consistent with point nodes, a power-law expo-
nent m > 3 could be due to the fact that the gap is not
purely nodal. Therefore, the fact that the low-T elec-
tronic heat capacity follows a power-law T dependence
with a power of m = 3.5−4 indicates that the nodal gap
is dominant for the samples with x ≤ 0.04. Our result is
thus consistent with previously reported point nodes in
PrPt4Ge12 [3]. We note that semi-log plots of the same
low-T data [Figs. 4(b) and 4(d)] show that, indeed, these
data do not follow an exponential behavior (the slopes of
these plots decrease monotonically with decreasing T ).

On the other hand, Figs. 4(e) and 4(f) show that the
specific heat data from the x = 0.07 sample displays ex-
ponential behavior. This exponential behavior is typical
of all the samples with x > 0.04, and it seems to indicate
that the nodeless gap is dominant for the samples with
x > 0.04.

In order to further explore the nature of the super-
conducting pairing, we used the following expression to
evaluate the electronic specific heat Ce in the supercon-



4

0 2 4 6 8 1 01 E - 4

1 E - 3

0 . 0 1

0 . 1

1

( d )

P r 1 - x C e x P t 4 G e 1 2
x = 0 . 0 4

C e/� nT c

T c / T
1 1 01 E - 4

1 E - 3

0 . 0 1

0 . 1

1

( c )

T = 1 . 1 2 K ≈0 . 2 T C

P r 1 - x C e x P t 4 G e 1 2
x = 0 . 0 4

C e/� nT c

T c / T

1 2 3 4 5 6 7 8

1 E - 3

0 . 0 1

0 . 1

1

( f )

C e/� nT c

T c / T

P r 1 - x C e x P t 4 G e 1 2
x = 0 . 0 7

0 2 4 6 8

1 E - 3

0 . 0 1

0 . 1

1

( e )

C e/� nT c

T c / T

P r 1 - x C e x P t 4 G e 1 2
x = 0 . 0 7
T = 1 . 5 5 K ≈0 . 3 7 T c

0 2 4 6 8 1 0 1 2 1 4

1 E - 3

0 . 0 1

0 . 1

1

( b )

C e/� nT c

T c / T

P r P t 4 G e 1 2

1 1 0
1 E - 4

1 E - 3

0 . 0 1

0 . 1

1

C e/� nT c

T c / T

P r P t 4 G e 1 2

T = 2 K ≈0 . 2 5 T C

( a )

FIG. 4: (Color online) Log-log plots of Ce/γnTc vs. Tc/T for
(a) x = 0, (c) x = 0.04, and (f) x = 0.07 Ce concentrations.
The blue lines show the temperature range over which the
power law holds for x = 0 and x = 0.04 and the exponential
works for x = 0.07. Semi-log plots of Ce/γnTc vs. Tc/T for
(b) x = 0, (d) x = 0.04 and (e) x = 0.07 samples.
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FIG. 5: (Color online) Plot of the electronic specific heat
Ce/T vs T/Tc for Pr1−xCexPt4Ge12 with (a) x = 0 and (b)
x = 0.07 using nodal and nodeless gaps and (c) x = 0.085
with a nodeless gap. The red solid line gives the overall fit
of the data, while the green and blue lines are the individual
contributions of the nodal and nodeless gaps, respectively.
Insets: Low T region of the data in main panel. The details
of the gap values are discussed in the text.
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ducting state [22]:

Ce(∆, T ) = 2νFβkB
1

4π

∫ 2π

0

dφ

∫ π

0

sin θdθ

×
∫ ∞
−∞

(
− ∂f
∂E

)[
E2 +

1

2
β
d∆2

dβ

]
dε,

(1)

where νF is the density of states evaluated at the Fermi
energy, β = 1/kBT , E =

√
ε2 + ∆2, f = (1 + eβE)−1,

∆ = ∆0 for isotropic s-wave pairing, and ∆ = ∆0 sinnθ
for the case where the pairing wave function has point
nodes. Based on this approach, we used a superposition
of two different superconducting gaps ∆i (i = 1, 2), one
nodal(∆2) and one nodeless (∆1). Hence, there are two
contributions to the electronic specific heat Ce

Ce(T ) = r1Ce(∆1, T ) + r2Ce(∆2, T ), (2)

where ri ∈ [0, 1] are weights for each contribution with
r1+r2 = 1. We note that we subtracted the residual
specific heat from the electronic contribution in order to
be able to utilize the BCS model.

We show the fit of the zero-field electronic specific heat
data for Pr1−xCexPt4Ge12 with a two band model [23]
in Figs. 5(a) and 5(b) for the x = 0 and x = 0.07 sam-
ples, respectively. The data for the undoped sample are
reproduced very well by using a smaller nodeless gap
(∆1 = 1.08 meV) with a relative weight r1 = 0.25 and
a larger nodal gap with point nodes (∆2 = 1.7 meV)
with a relative weight r2 = 0.75 [Fig. 5(a)]. The data
for the x = 0.07 sample are reproduced very well by us-
ing an nodeless gap (∆1 = 0.63 meV) with a relative
weight r1 = 0.9, and a nodal gap (∆2 = 0.94 meV) with
a relative weight r2 = 0.1 [Fig. 5(b)]. The zero-field elec-
tronic specific heat data for Pr1−xCexPt4Ge12 could be
fitted very well with a larger nodal gap and a smaller
nodeless gap for all samples with 0 ≤ x ≤ 0.07, implying
that there are at least two Fermi surfaces in this doping
range. All these excellent fits were done taking n = 1
in the expression for the gap corresponding to the case
where the pairing wave function has point nodes. This
choice of the n value implies the breaking of the time re-
versal symmetry (TRS) in this system. The implication
of the TRS breaking in this system is in agreement with
earlier studies [11]. In this regard, it would be intriguing
to see whether the TRS breaking can be observed in the
measurements of the Kerr effect. Finally, for alloys with
x ≥ 0.085, the specific heat data could be fitted very well
with only one nodeless gap as shown in Fig. 5(c) for the
x = 0.085 sample.

The doping dependence of the values of the two gaps is
shown in Fig. 6. With increasing Ce concentration, the
magnitude of the nodal gap decreases faster than that of
the nodeless gap, consistent with the fact that the impu-
rity scattering is more detrimental to the nodal gap than
the nodeless gap. The inset of Fig. 6 shows the doping
dependence of the relative weight of the two gaps. Note
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FIG. 6: (Color online) Gap values ∆ plotted vs. Ce concen-
tration x. The green solid circles are the nodal and the blue
solid squares are the nodeless gap values used to reproduce
the total heat capacity. Inset : Contribution of the nodal and
nodeless gaps in the main panel plotted vs. Ce concentration.

that the contribution of the nodal gap decreases and that
of the nodeless gap increases with increasing Ce concen-
tration. Therefore, the density of states on the Fermi
pocket with the nodal gap decreases with increasing Ce
concentration and almost disappears for x > 0.07. This
is why the heat capacity data can be reproduced with
only a single nodeless gap for samples with for x > 0.07.
The coexistence of nodal and nodeless gaps has also been
observed in the Pr(Os,Ru)4Sb12 family of skutterudite
materials [24], suggesting that such a coexistence of the
nodal and nodeless gaps may be a general feature of the
skutterudites.

Our experimental results show that the ratio of the
largest pairing gap at zero temperature to the critical
temperature is approximately 2∆(0)/kBTc ∼ 4, which
exceeds slightly the BCS value of 3.53 implying that
PrPt4Ge12 belongs to a class of weakly to moderately
coupled superconductors. Thus we may speculate that
conventional electron-phonon interaction can be consid-
ered as a viable mediator of Cooper pairing in this mate-
rial. In that regard future measurements of the isotope
effect should help to either confirm or discard this sce-
nario.

We reconcile the fact that the low-T electronic heat
capacity follows a power-law (exponential) behavior for
all samples with x ≤ 0.04 (x > 0.04) with the fact that
all of the heat capacity data can be fitted very well with
a two gap model - with one nodal and one nodeless gap -
by drawing the reader’s attention to the insets to Figs. 5.
The inset to Fig. 5(a) shows that the nodeless gap is al-
most temperature independent in the low temperature
region so that the overall contribution to the heat ca-
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pacity is governed by the nodal gap in this temperature
range; hence, consistent with the power-law T depen-
dence of Ce at low T [Fig. 4(a)]. This behavior is typ-
ical for 0 ≤ x ≤ 0.04. On the other hand, the inset to
Fig. 5(b) shows that the nodal gap has a negligible tem-
perature dependence for 0.04 < x ≤ 0.07 so that the over-
all contribution to the heat capacity is governed by the
nodeless gap in this temperature range; hence, the heat
capacity follows exponential T dependence [Fig. 4(e)].

CONCLUSION

In this paper, we analyzed the low-temperature specific
heat data to investigate the nature of the superconduct-
ing order parameter in the Pr-based filled skutterudite
system Pr1−xCexPt4Ge12. Our findings indicate that
specific heat has contributions from two Fermi pockets:
one contribution originates from the pairing with a node-
less gap function, while the other one is best described
by a model with a nodal gap function. The effect of Ce
substitution is displayed in the monotonic suppression of
the superconducting transition temperature. The larger
gap remains nodal for Ce substitution below x = 0.07,
while only the nodeless gap survives for x > 0.07. The
results of our present work demonstrate that the previ-
ously observed predominately T3 dependence of C/T for
x = 0 and e−∆/T dependence at high Ce doping is due to
dominant anisotropic character of SC gap in PrPt4Ge12

and isotropic SC gap at higher Ce doping, respectively.
This property of Pr1−xCexPt4Ge12 compounds resem-
bles closely the multiband scenario of the La-substituted
PrOs4Sb12 system, where the presence of both the nodal
and the nodeless gap on different parts of Fermi surface
has been suggested. Our results are also consistent with
the recent findings of unconventional superconductivity
suggested by the TRSB in the parent compound and its
suppression through Ce doping.
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