
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Spin susceptibility of Andreev bound states
B. M. Rosemeyer and Anton B. Vorontsov

Phys. Rev. B 94, 144501 — Published  5 October 2016
DOI: 10.1103/PhysRevB.94.144501

http://dx.doi.org/10.1103/PhysRevB.94.144501


Spin susceptibility of Andreev bound states

B. M. Rosemeyer, Anton B. Vorontsov
Department of Physics, Montana State University, Montana 59717, USA

(Dated: September 6, 2016)

We calculate electronic spin susceptibility and spin-lattice relaxation rate in singlet supercon-
ductor near a pairbreaking surface, or in a domain wall of the order parameter. We directly link
presence of high-density Andreev bound states in the inhomogeneous region, combined with co-
herence factors, to enhancement of the susceptibility above the normal state’s value for certain q
vectors. Beside the dominant peak at ferromagnetic vector q = 0, we find significant enhancement of
antiferromagnetic correlations at vectors q <∼ 2kf , with q along the domain wall in S-wave supercon-
ductor, and across domain wall in D-wave (nodes along the wall). These features are destroyed by
applying moderate Zeeman field that splits the zero-energy peak. We solve Bogoliubov-de Gennes
equations in momentum space and discuss deviation of our results from the lattice models inves-
tigated previously. Large enhancement of the spin-lattice relaxation rate T−1

1 at the domain wall
provides clear signature of the quasiparticle bound states, and is in good agreement with recent
experiment in organic superconductor κ-(BEDT-TTF)2Cu(NCS)2.

I. INTRODUCTION

Soon after formulation of the BCS theory1 Fulde,
Ferrel2 and Larkin, Ovchinnikov3 (FFLO) pointed out
that nonuniform superconducting states play an impor-
tant role in strong magnetic fields or in magnetically-
active materials. The most characteristic feature of
nonuniform superconductors are distinct quasiparticle
states that lie inside the energy gap of the bulk phase.
They appear at pairbreaking surfaces in unconventional
superconductors,4 in vortex cores,5 heterostructures,6

and recently they were connected to topological prop-
erties of the order parameter.7,8 Generally known as An-
dreev bound states (ABS) they are localized, for exam-
ple, near a surface of a superconductor and decay into the
bulk within a few coherence lengths ξc = h̄vf/2πkBTc.
If the bound states are all concentrated at one energy,
producing a strong peak in the density of states (DOS),
they dramatically change properties of the surface layer.

One important question is how the bound states af-
fect magnetic properties of a material, in particular elec-
tronic spin susceptibility χ and spin-lattice relaxation
rate T−1

1 . For example, in triplet superfluid 3He these
observables may provide a way to probe surface Majo-
rana states.9,10 In singlet superconductors they may be
used to manipulate magnetic properties of the surface
layer, or help prove or disprove existence of FFLO phases.
This last goal is particularly relevant for several materi-
als. In heavy-fermion superconductor CeCoIn5, can an
FFLO phase be the origin of coexistence11–13 of anti-
ferromagnetism (AFM) and superconductivity? On the
other hand, is recently observed14 enhancement of re-
laxation rate T−1

1 in organic superconductor κ-(BEDT-
TTF)2Cu(NCS)2, indeed explained by Andreev bound
states at FFLO domain walls?

Previous investigations of how nonuniform FFLO or-
der parameter (OP) structures influence magnetic prop-
erties used quasiclassical techniques, and real-space lat-
tice models. The quasiclassical calculations15,16 show
about 10% enhancement of uniform magnetization in-

side FFLO domains at high fields where the FFLO phase
appears. However, this technique cannot say anything
about antiferromagnetic correlations with ordering vec-
tors beyond q ≈ 1/ξc. Several two-dimensional lattice
Hamiltonians have been solved via Bogoliubov-de Gennes
(BdG) equations to investigate co-existence of AFM or-
der and FFLO states.17–20 This approach can treat mod-
ulations on the order of Fermi momentum q ∼ 2kf .
It was found that incommensurate spin-density wave
(SDW) order can be induced inside the FFLO phase.17,18

Other calculations show that transverse and longitudinal
susceptibilities are enhanced up to 20% in zero field.19

The incommensurate part of antiferromagnetic vector q
was found mostly to point along the FFLO planes (i.e.
q ⊥ qFFLO),17,18 independent of whether the planes
were oriented along nodes or antinodes of the Dx2−y2

order parameter. q across FFLO planes was not favored,
except in the case of atomic-scale FFLO oscillations.19,20

The spatially-averaged approach19 has also only consid-
ered small-period modulations of the order parameter.
In Ref. 18 appearance of AFM was correlated with pres-
ence of multiple FFLO domain walls, but no mechanism
directly linking AFM and localized ABS was established.

The effects of the bound states have been investi-
gated in vortex phases, near vortex cores. The local-
ized states in cores and enhancement of local density of
states (LDOS) were predicted21 to produce faster relax-
ation time T1 of electronic spins, which was later seen
by spatially-resolved NMR in S-wave superconductor.22

Bound states can result in enhancement of T−1
1 over

the normal state value even in D-wave,23 producing
‘false Hebel-Slichter’ peak below Tc. In Pauli-limited D-
wave superconductors vortices can lead to SDW insta-
bility with q ‖nodes by increasing DOS for near-nodal
directions.24 Moreover, the core region of vortices often
have enhanced SDW correlations25–27 with q across the
core, but again the role of the bound states for these
correlations has not been explicitly shown.

To clarify the role of the Andreev bound states and
manifestly connect them with magnetic properties, we
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consider a prototypical non-uniform structure of Larkin-
Ovchinnikov kind: a domain wall that separates semi-
infinite regions of positive/negative amplitude of the or-
der parameter, Fig. (1). Near the wall the density
of states is strongly peaked for zero-energy excitations,
arising as result of topological properties of Dirac-type
equation.7,8 We consider itinerant 2-D electrons with S-
or D-wave pairing symmetry. For D-wave we orient the
domain wall along gap nodes,28 which also corresponds
to a pairbreaking surface in a half-space problem. We
solve the Bogoliubov-de Gennes equations in momentum
space, which directly relates the Fermi surface proper-
ties, symmetry of the order parameter, and momentum
dependence of the quasiparticle states to the observables.
This approach also naturally connects to the quasiclassi-
cal theory.

We find that the bound states lead to increase in the
transverse spin susceptibility of a superconductor which
may lead to SDW ordering. The specific ordering wave
vectors q connect ‘hot spots’ on the Fermi surface with
large bound state weights determined by coherence fac-
tors, that depend on the symmetry of the order param-
eter. We find that generally S-wave symmetry favors
AFM ordering vector along the domain wall, whereas in-
side D-wave nodally-oriented domain wall the ordering
vector points across it. We also calculate relaxation rate
T−1

1 for FFLO, that so far has been lacking. The bound
states give large relaxation rate T−1

1 when quasiparticle
transitions between bound states and continuum states
can occur. We find that application of Zeeman field that
splits the zero-energy states by 2µBH generally reduces
tendency toward AFM ordering inside the domain wall.

The remainder of this report is organized as fol-
lows. In section II we define our two-dimensional model
Hamiltonian with a mean-field two-point order parame-
ter ∆(x,x′). We solve it via Bogoliubov-de Gennes equa-
tions and find quasiparticle spectrum and amplitudes in
momentum space, which we use to calculate the electron
susceptibility and spin-lattice relaxation rate. We employ
a new numeric technique using a Fast Fourier Transform
for all momenta near the Fermi surface, which is more
suitable to calculating momentum dependent quantities.
In section III we present results of the calculations, and
we end in section IV with a discussion of the implications
of our findings for recent experiments. Finally, we pro-
vide appendix with outline of the self-consistent method
we are using.

II. MODEL

We work with the Hartree-Fock-Bogoliubov (HFB)
mean-field Hamiltonian for a single band

HHFB =
1

2

∫
dxdx′ Ψ†(x)H(x,x′) Ψ(x′) (1)

where we have defined the field operator Ψ†(x) =(
ψ†↑(x), ψ†↓(x), ψ↑(x), ψ↓(x)

)
, andH(x,x′) is a 4×4 block

FIG. 1. (a) Domain wall +∆→ −∆ in x-direction with trans-
lational invariance along y. Inset shows relative orientation of
the domain wall plane and internal symmetry of the order pa-
rameter, S (red) or D-wave (blue). (b) The normalized local
density of states N(ε, x)/Nf for S-wave domain wall, and (c)
the same for D-wave with nodes ‖ x. The zero-energy states
appear at the domain wall. We use ∆0 = 0.05εf throughout
the paper that results in ξckf ∼ 12.

matrix

H(x,x′) =

(
Ĥ0 δ(x− x′) ∆̂(x,x′)

−∆̂∗(x,x′) −Ĥ∗0 δ(x− x′)

)
. (2)

Ĥ0 =
[
−∇2

2m∗ − εf
]

1̂ − µBHσz describes free electrons in

a Zeeman field, m∗ is the effective mass of the electron,
εf is the Fermi energy, H is the applied magnetic field

and µB is the Bohr magneton. σα={x,y,z} are the Pauli
matrices. The singlet superconducting pair potential is
self-consistently defined as

∆̂(x,x′) = (iσy)∆(x,x′) (3)

∆(x,x′) = V (x− x′)〈ψβ(x′)ψα(x)〉(iσy)αβ (4)

where summation over repeated spin indices is implied,
and 〈...〉 denotes ensemble average. V (x − x′) is the ef-
fective attractive interaction that leads to superconduc-
tivity, with the cut-off energy Λ.

Since we expect presence of degenerate zero-energy
states we need to define Bogoliubov-Valatin canonical
transformation with some care.6 We take[

ψµ
ψ†µ

]
(x) =

∑
n

U (+)
n,µν(x) γnν + U (−)

n,µν(x) γ†nν , (5)

where the state index n for inhomogeneous superconduc-
tor replaces momenum k, used to label states in uniform
superconductor. To treat the zero-energy states in the
same way as finite-energy states, n labels all positive en-
ergy states, and half of zero-energy states, as we explain
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below. The U
(±)
n (x) are two eigenvectors of the Hamil-

tonian (2) corresponding to positive and negative energy
branches ∫

dx′H(x,x′)U (±)
n (x′) = ±εnU (±)

n (x) (6)

Due to particle-hole symmetry of HFB Hamiltonian, for
each n there is a pair of ±εn states, related to each other
through

U (+)
n,µν(x) =

[
δµν un
−iσyµνvn

]
, U (−)

n,µν(x) =

[
−iσyµνv∗n
δµν u

∗
n

]
The non-zero energy states are naturally represented by
γnµ and γ†nµ terms in (5). However as a consequence of
the particle-hole symmetry, the zero-energy states also

come in pairs, and assignment of γ0µ or γ†0µ to them is
somewhat arbitrary. To avoid double-counting of zero-
energy states in (5), we take half of them and assign it
to ‘positive’ solutions (γ, U (+)) and the other half ap-
pear as ‘negative’ part (γ†, U (−)). To find the positive
energy states we solve Bogoliubov-de Gennes equations,
and in case of singlet superconductivity they are spin-
independent:

εnun(x) = ξ(−i∇)un(x) +

∫
dx′∆(x,x′)vn(x′)

εnvn(x) = −ξ(−i∇)∗vn(x) +

∫
dx′∆∗(x,x′)un(x′)

(7)

where ξ(−i∇) = (−i∇)2/2m∗ − εf . In Zeeman field
The quasi-particle excitation energy is simply shifted to
εnµ = εn − µBH σzµµ and the full Hamiltonaian in di-

agonal form is HHFB = E0 +
∑

nµ εnµγ
†
nµγnµ. Finally,

orthogonality of solutions with n 6= n′, and orthogonality
of positive and negative solutions for the same n result
in two normalization conditions:∫

dx [un(x)u∗n′(x) + vn(x)v∗n′(x)] = δnn′ (8)∫
dx [un(x)vn′(x)− vn(x)un′(x)] = 0 (9)

For the domain wall, or stripes configuration, one has
translational invariance along the wall (ŷ) with momen-
tum quantum numbers {p}. In the transverse direction
the wave function for given p is expanded into Fourier
Series

un(x) = eipy
N−1∑
j=0

ũn(kj)e
ikjx ,

vn(x) = eipy
N−1∑
j=0

ṽn(kj)e
ikjx .

(10)

We employ a Fast Fourier Transform technique with

kj
kf

=

{
4πj/N, j ≤ N/2
−4π(N − j)/N, j > N/2

and periodic boundary conditions at kfx = 0 and kfx =
N/2 (kf is the Fermi momentum). The reasons for begin-
ning with a doubled Fourier domain (−2π, 2π] is because
the calculation of the relative momentum spin suscepti-
bility will half the domain to (−π, π] while doubling the
spatial domain to (−N/2, N/2). We use N = 212 = 4096
momentum grid points.

For efficient numerics, we restrict our set of transverse
momenta {kj} for each p to include only those whose
normal excitation energy

ξ(p, kj) =
k2
j + p2

2m∗
− εf , (11)

is below an energy cut-off, |ξp,kj | ≤ Λ. All higher energy
solutions to (7) are considered normal with ∆(x,x′) = 0.

Furthermore, since we are interested in low-energy su-
perconducting quasiparticles, we take a separable form
of the pair potential, described by the amplitude that
depends on the center of mass coordinate R, and the in-
ternal symmetry profile g(r) that depends on the relative
coordinate r,

R =
x + x′

2
r = x− x′ ,

∆(x,x′) = ∆(R, r) =∆(R)

[∫
dL

(2π)2
gL̂e

iL·r
]
,

(12)

where L is the relative momentum in a Cooper pair. We
consider S-wave and D-wave pairing states:

S − wave : gL̂ = 1

D − wave : gL̂ = sin(2θL̂) or gL̂ = cos(2θL̂)
(13)

where θL̂ is the angle of L measured from the x-axis.
The profile of the order parameter across the domain
wall depends only on coordinate x, ∆(R) = ∆(x).

Using equations (10) for the amplitudes,
(7) becomes a matrix eigenvalue equation for

εn, where the 2N Fourier coefficients, ŨTn =
(ũn(k0), ũn(k1)...ũn(kN−1), ṽn(k0), ṽn(k1)...ṽn(kN−1))
form the eigenvector for each longitudinal momentum p,

εnŨn =

 ↔ξ p ↔
∆p

↔
∆
∗

p −
↔
ξ p

 Ũn (14)

where
↔
ξ p and

↔
∆p are N×N matrices with (i, j)th entries

↔
ξ p(i, j) =

(
k2
i + p2

2me
− εf

)
δij (15)

↔
∆p(i, j) = gL̂ij

∫
dx∆(x)e−i(ki−kj)x (16)

and Lij =
ki+kj

2 x̂+pŷ. Solving (14) we obtain 2N eigen-
states, out of which N have positive (and zero) energies,
and N has mirror negative (and zero) energies. We ar-
range solutions from negative to positive energies, and
the quantum number n = (p, n) labels top N energy
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states. This guarantees that it goes over all positive εn
and half of zero-energy solutions.

We consider a system where we apply a unifrom
static field H0, and consider a magnetic response to
a small perturbation of the magnetic field δH(x, ω) =∫
dteiωtδH(x, t)Θ(t), where Θ(t) is the Heaviside step

function. Up to first order in perturbation the electron
magnetization is

Mα(x, ω) = M0,α + δMα(x, ω) (17)

δMα(x, ω) =

∫
dx′ χ

αβ
(x,x′, ω) δHβ(x′, ω) (18)

where M0 is the magnetization in the superconducting
state due to the uniform field H0. The bare susceptibility
χ
αβ

(x,x′, ω) is given by the Kubo formula29

χ
αβ

(x,x′, ω) = iµ2
B

∫
dt eiωt 〈[Sα(x, t), Sβ(x′, 0)]Θ(t)〉

(19)
where S(x, t) =

∑
µν ψ

†
µ(x, t)σµνψν(x, t) is the spin op-

erator and ω = ω′ + iω′′ is assumed to have a small
imaginary part for convergence of the time integration
(ω′′ � ∆0, ∆0 is the gap energy at T = 0, H = 0).

Without effects that introduce spin-orbit coupling, the
isotropy of spin space is broken only by H0. Then the sus-
ceptibility tensor is diagonal in longitudinal(δH ‖ H0)-
transverse(δH ⊥ H0) space. We are mostly interested
in cases when the induced or spontaneous magnetization
is orthogonal to uniform state δM(q, ω) ⊥ M0. Using
the Bogoliubov-Valatin transformation, the normalized
transverse susceptibility is

χ⊥(x,x′, ω) =
2µ2

B

χ
0

∑
nn′µ

[
Ann′(x)A∗nn′(x

′)Π+
nµ;n′µ̄(ω)

+
1

2
C∗nn′(x)Cnn′(x

′)Π−nµ;n′µ(ω)

+
1

2
Cnn′(x)C∗nn′(x

′)Π−nµ;n′µ(−ω)

]
(20)

Here µ̄ denotes spin state opposite to µ,

Π±nµ;n′ν(ω) =
f(εnµ)− f(±εn′ν)

ω + εnµ ∓ εn′ν
, (21)

f(ε) is the Fermi distribution function, and χ0 = 2µ2
BNf

is the Pauli susceptibility in the normal state, Nf is the
DOS at the Fermi energy per spin projection. For ener-
gies close to zero, or much less than temperature spread
of the Fermi-Dirac distribution,

Π±nµ;n′ν(ω) ≈ ∂f

∂ε

εnµ ∓ εn′ν
ω + εnµ ∓ εn′ν

=
εnµ ∓ εn′ν

4T (ω + εnµ ∓ εn′ν)
.

Combinations of quasiparticle amplitudes

Ann′(x) = u∗n(x)un′(x) + v∗n(x)vn′(x) (22)

Cnn′(x) = un(x)vn′(x)− vn(x)un′(x) (23)

are the coherence factors (of type II corresponding to per-
turbations that break time reversal symmetry30). They
determine the spatial dependence of susceptibility, while
the remaining terms are functions of energy and temper-
ature.

We note that the combinations Ann′(x)A∗nn′(x
′) and

C∗nn′(x)Cnn′(x
′) in (20) under coordinate exchange x↔

x′ (r ↔ −r) become complex conjugated. This symme-
try guarantees that local susceptibility at wave vector q

χ(R,q, ω) =

∫
dr e−iq·rχ(R, r, ω) = χ′ + iχ′′ , (24)

has real part χ′ that depends only on the real part of
Π±nµ;n′ν , and the imaginary part χ′′ has contributions

only from the imaginary part of Π±nµ;n′ν .

Lastly, we find the spin-lattice relaxation rate T−1
1 due

to the hyperfine interaction between nuclear spins I(xs)
and electron spins S(x)

Hhf =

∫
dxdxs I(xs) · A(xs − x) · S(x) (25)

A(r) is the 3 × 3 hyperfine matrix. For transitions be-
tween spin 1/2 nuclear states which are well below the
thermal energy (εi − εf = ω << T ), and if A(r) is
strongly peaked near r = 0, the spin-lattice relaxation
rate due to A⊥ is found using first order perturbation
theory,31

T−1
1 (R, ω) = 2T lim

ω→0

∑
q

|A⊥(q)|2
χ′′
⊥

(R,q, ω)

ω
(26)

The details of A⊥(q) depend on the interactions of the
spin fields, however in an effort to focus on the DW ef-
fects we consider only the simplest isotropic coupling,
A⊥(q) = A0.

III. RESULTS AND ANALYSIS

We first find the profile of the order parameter for
the domain wall configuration. The details of the self-
consistent calculation are presented in appendix and
the general solution is shown in Fig. 1(a). The local
density of states for spin projection µ is Nµ(ε,x) =
−(1/π)Im [GRµ (ε,x)] where GRµ (ε,x) is the retarded
Greens function,

GRµ (ε,x) = −i
∞∫

0

dt ei(ε+i0)t〈[ψµ(x, t) , ψ†µ(x, 0)]+〉

=
∑
n

[
|un(x)|2

ε− εnµ + i0
+
|vn(x)|2

ε+ εnµ̄ + i0

]
average 〈. . . 〉 is over the ground state of the superconduc-
tor. LDOS is presented in figure 1(b,c) for S- and D-wave
pairings. The large zero-energy peak appears at the do-
main wall, confined on the scale of 10ξc (ξc = vf/2πTc).
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In magnetic field the spectrum is Zeeman-shifted and the
bound states appear at energies ±µBH0 for up/down
spins. We perform calculations by introducing a cut-
off in energy Λ = 5∆0, above which we treat states as
if in normal metal, and checked that doubling of Λ does
not change our results. We set zero-temperature gap in
terms of Fermi energy ∆0 = 0.05εf , which results in co-
herence lengths ξsc = 11.2/kf (S-wave) and ξdc = 13.6/kf
(D-wave). The cutoff provides a rough separation of low
and high energy scales, and one can break the double
sum over n and n′ in susceptibility (20) into three con-
tributions

I εn < Λ, εn′ < Λ low-ε
II εn < Λ, εn′ > Λ; (n↔ n′) mixed-ε
III εn > Λ, εn′ > Λ high-ε

A. Real Susceptibility

We calculate the deviation of local susceptibility in
non-uniform superconductor from the known normal
state value

δχ(x,q, ω) = χ(x,q, ω)− χN (|q|, ω) , (27)

which means cancellation of high-energy part III in (20).
Mixed terms II are only slightly affected by supercon-
ductivity and we find their contribution to δχ/χN to be
< 1% for all relevant q vectors. Thus, to reduce nu-
merical cost and to obtain high-q resolution figures, we
compute only the dominant low-energy region terms that
we denote δχ

I
.

In figure 2 we show zero-field results for local static
susceptibility (ω = 0) in the middle of the domain wall
(x = 0) as a function of the ordering vector q. The sus-
ceptibility is clearly increased for uniform magnetization
q ≈ 0, due to large density of bound states at zero en-
ergy. There are also several regions of non-zero q ∼ kf ,
for which χ⊥ is significantly enhanced over the normal
state value, showing tendency towards antiferromagnetic
ordering. In S-wave superconductor, Fig. 2(left), the di-
rection of such q vectors is along the y-axis, i.e. pointing
along the domain wall.

When the domain wall is along nodes of D-wave order
parameter, Fig. 2(middle), the ordering vector q showing
enhanced susceptibility is along the diagonal directions
for small qx/kf ≈ ±qy/kf , and for (qx, qy) ∼ (1.75kf , 0)
that shows about 15% enhancement over χ0. The latter
means that if antiferromagnetic SDW order is induced by
the non-uniform superconductivity, its modulation vector
will be normal to the order parameter domain wall, or
normal to the pairbreaking surface if we consider semi-
infinite superconductor. For the domain wall in antin-
odal orientation, Fig. 2(right), enhancement appears at
multiple qs, including ŷ direction similar to S-wave, and
diagonal q ∼ (1.25, 1)kf .

We associate these regions of enhancement exclusively
with correlations between bound states. Overall, one ex-
pects the biggest change in static ω = 0 susceptibility
from terms in (20) that have vanishing denominators of
(21) i.e. εnµ± εn′µ′ → 0. Thus, the (nµ;n′ν) term which
connects two bound states with zero energies should give
a large contribution. The magnitude of this contribution,
however, is also determined by the phase space, or the
weight of zero-energy state, and spatial dependence of
the coherence factors. This determines the direction of q
for maximally enhanced δχ.

To understand the role of coherence factors one can use
the Andreev approximation to estimate the BdG un, vn
amplitudes. The state index can be written as n = (k̂, n),

where k̂ is the unit vector that defines a quasiclassical
trajectory, and n labels states along this trajectory:

un(x) = uk̂,n(x)eipf k̂·x , vn(x) = vk̂,n(x)eipf k̂·x .

The Andreev equations follow from BdG equations (7):

(εk̂,n + ivf k̂∇)uk̂,n(x) = ∆(x, pf k̂)vk̂,n(x)

(εk̂,n − ivf k̂∇)vk̂,n(x) = ∆∗(x, pf k̂)uk̂,n(x)
(28)

By approximating the domain wall profile with a step

function, ∆(x, pf k̂) = ∆sgn(x) gk̂, the amplitudes for
the zero-energy bound states are,[

uk̂,n
vk̂,n

]
(x) =

1√
2

[
1

−i sgn(∆∗
k̂f

)

]
exp

(
−

∣∣∣∣∣∆gk̂ xvf k̂x

∣∣∣∣∣
)
(29)

where ∆ is the bulk amplitude of the order parameter,

and ∆k̂f = ∆sgn(k̂x) gk̂ is the order parameter at the

final end of the quasiclassical trajectory k̂. Using this
one finds that the coherence amplitudes between bound

states at points k̂, k̂′ on the Fermi surface in the middle
of the domain wall (x = −x′ = r/2) are

A0
k̂k̂′

(x)A0
k̂k̂′

(x′)∗ =

∣∣∣∣∣1 + sgn(∆k̂f∆∗
k̂′f

)

2

∣∣∣∣∣
2

× e−ipf (k̂−k̂′)·r e
− ∆
vf

(∣∣∣ gk̂
k̂x

∣∣∣+∣∣∣∣ gk̂′k̂′x
∣∣∣∣)|rx̂|

(30)

C0
k̂k̂′

(x)C0
k̂k̂′

(x′)∗ =

∣∣∣∣∣1− sgn(∆k̂f∆∗
k̂′f

)

2

∣∣∣∣∣
2

× eipf (k̂+k̂′)·r e
− ∆
vf

(∣∣∣ gk̂
k̂x

∣∣∣+∣∣∣∣ gk̂′k̂′x
∣∣∣∣)|rx̂|

(31)

The ordering vector q = pf (k̂ − k̂′) that maximizes AA∗

in (30) corresponds to combinations of k̂ and k̂′ that have
same sign of ∆k̂f and ∆k̂′f . For CC∗ the ordering vector

is q = pf (k̂+k̂′) and with replacement k̂′ → −k̂′ Eq. (31)
results in the same relation between ∆k̂f and ∆k̂′f . These

vectors are illustrated in the bottom panel of figure 2.
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FIG. 2. Upper panels show static susceptibility δχI (0,q, 0) as a function of ordering vector q at the center of the domain
wall in the limit of low field µBH/∆0 = 0.01 and temperature kBT/∆0 = 0.05. The purple region around q = 0 (uniform
magnetization) has enhancement δχ′

I
> 0.5 due to large density of bound states and has been removed to better highlight the

main features. The S-wave superconductor (left) favors q||ŷ, along the domain wall. A domain wall along nodes of D-wave
superconductor (middle) increases tendency for AFM with qx ∼ 1.75kf , across the domain wall. For antinodally-oriented
domain wall (right) enhancement of χ shows for q/kf ∼ (0, 2) and (1.25, 1). Bottom panels show ordering vectors q that
connect points on the Fermi surface with same signs of ∆k̂f and ∆k̂′f that give largest coherence factors between zero-energy

bound states. The OP at the final end of quasiclassical trajectory k̂, ∆k̂f , is a product of the domain wall spatial profile (inner

circle) and the symmetry factor gk̂ (outer profile). black/red denote signs ±1.

For S-wave gk̂ = 1, and the two trajectories must end up
on the same side of the domain wall, resulting in the q
ordering generally along the domain wall. For D-wave,
the two trajectories can be inside the same lobe on the
same side of the domain wall giving small q2 vectors, or
there is a large wavevector q1

<∼ 2kf that connects points
on the mirror lobes, corresponding to trajectories ending
up on different sides of the domain wall.

Another slight enhancement for D-wave (node) can be
seen as a circle of radius kf centered at (0, kf ), espe-
cially near wavevector q/kf = (0.7, 1.7) and the ones ob-
tained by symmetry operations. This enhancement can-
not be explained by bound states, since for these wave
vectors the amplitudes in (30-31) vanish. We suggest
that these ordering vectors correspond to correlations be-
tween the bound states and the low-energy propagating
states for near-nodal directions |∆k̂| <∼ εn � ∆0. The
free-propagating particle (p) and hole (h) type solutions

e±ikk̂·x are[
uk̂,n
vk̂,n

]
∝
[
ε+ vfk

∆∗
k̂

]
eikk̂·x ,

[
∆k̂

ε+ vfk

]
e−ikk̂·x (32)

with vfk =
√
ε2 − |∆k̂|2. Considering particle and hole

scattering on the domain wall, we can find the exact

wave functions of the propagating states along k̂. For
energies near the continuum edge, the eigenvectors are[
uk̂,n , vk̂,n

]
∝
[

1 , sgn(∆k̂)
]

times appropriate reflec-

tion/transmission coefficients. The main feature of the
propagating solutions is that they are real. Then combi-

nation of a bound state vector (29) for k̂ with propagating

state vector for k̂′ results in

Ak̂k̂′A
∗
k̂k̂′

(0, r) ∝ e−ipf (k̂−k̂′)·r e
− ∆
vf

(∣∣∣ gk̂
k̂x

∣∣∣)|rx̂|
(33)

where dependence of the coherence factors on signs of the
order parameter has disappeared, and similar for CC∗.
Thus we have enhancement of susceptibility for vectors
q that have tails at the bottom node of the gap and the
heads tracing the bound states along the Fermi surface.
We note, however, that such correlations at the domain
wall are weighted by the particle/hole transmission and
reflection coefficients, that can be small for ε >∼ |∆k̂|.

In external field the energies of spin-up/down quasipar-
ticles are shifted by ±µBH, and the zero-energy peak is
split into two peaks, separated by energy 2µBH. This
leads to reduction of Π± factors (21) and δχ

I
shows

very little enhancement over the normal state. In fig-
ure 3 we present δχ

I
at the center of domain wall for

applied field µBH = 0.4∆0, close to Pauli field, µBHP ≈
0.7∆0 (S−wave), 0.55∆0(D−wave). At lower temper-
atures (panels B, D and F) the zero-field enhancement
regions are still distinguishable but are much smaller, in-
cluding the q = 0 uniform magnetization, since there is
no zero-energy peak anymore. In D-wave (node) the en-
hancement at antiferromagnetic qx ∼ 1.75kf is almost
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FIG. 3. Effects of magnetic field and temperature on δχI (q)
at the center of domain wall. The zero-energy peaks are
shifted by ±µBH = ±0.4∆0, significantly reducing AFM cor-
relations. Panels are for different temperatures: (A) kBT =
0.35∆0; (C,E) kBT = 0.2∆0; (B,D,F) kBT = 0.05∆0. Color
scales to the right apply to the rows.

entirely wiped out. The higher temperature panels A, C
and E reveal a further reduction of χ′(q) due to a smaller
self-consistent gap and overall thermal smearing of the
sum in (20). We note that higher fields and tempera-
tures mostly reduce correlations involving bound states.
This suppression of δχ

I
with magnetic field at the domain

wall is in stark contrast to behavior of susceptibility in
the bulk, where magnetic field facilitates appearance of
SDW correlations.32–34

B. Relaxation Rate

We also calculate the imaginary part of susceptibility
taking ω → 0 (well-defined for unconventional supercon-
ductors only35)

χ′′
⊥

(x,x, ω′) ∝
∑
nn′µ[

|Ann′(x)|2[f(εnµ)− f(εn′µ̄)]δ(ω′ + εnµ − εn′µ̄)

+
1

2
|Cnn′(x)|2[f(εnµ)− f(−εn′µ)]δ(ω′ + εnµ + εn′µ)

−1

2
|Cnn′(x)|2[f(εnµ)− f(−εn′µ)]δ(εnµ + εn′µ − ω′)

]
to find the local spin-lattice relaxation rate (26) in static
limit T−1

1 (R = x, ω′) = A2
02T [χ′′⊥(x, r = 0, ω′)/ω′]ω′→0:

1

T1(x)T
= −2A2

0

∑
nn′µ

∂f(εnµ)

∂ε

{
|Ann′(x)|2 δ(εnµ − εn′µ̄)

+ |Cnn′(x)|2 δ(εnµ + εn′µ)
}
. (34)

where for numerical evaluation we use δ(ε) = ω′′/π[ε2 +
ω′′2] with ω′′ = 2.5× 10−3εf = ∆0/20

The deviations of relaxation rate from the normal
state’s Korringa limit36 are due to the spin-flip transi-
tions between the low-energy states. Figures 4a and 4b
provide numeric results for relaxation rate at the domain
wall for S- and D-wave symmetry, with self-consistently
determined bulk order parameter ∆(T,H). In S-wave
one notices that the Hebel-Slichter coherence peak be-
low Tc for H → 0 is absent in the middle of the domain
wall, due to spatial asymmetry of the order parameter.
However, a peak develops for higher fields, but it lies
not immediately below Tc(H), but at lower temperatures.
Similar enhancement of relaxation rate above the normal
state’s value can also be seen in D-wave. This peak ap-
pears due to transitions between the bound states and the
continuum states, when εkµ ∼ ∆± µBH = ∓µBH = ε0µ̄
(ω′ → 0 limit), as schematically shown in figure 5.

For small fields in the static limit 2µBH ≈ ω′ → 0
the relaxation rate is divergent due to the sharp DOS of
bound states, that should be compared to the logarith-
mic divergence in S-wave bulk superconductor associated
with the sharpness of BCS coherence peaks.30

IV. CONCLUSIONS AND DISCUSSION

To summarize, we found that the concentration of zero-
energy Andreev bound states (in zero field) at a domain
wall defect in the order parameter leads to significant
enhancement of the bare susceptibility. Since variations
of the order parameter occur on scale of coherence length
ξc � 1/kf , the new quasiparticle environment inside the
domain wall may lead to overall divergence of the total
local susceptibility

χRPA(R,q) =
χ⊥(R,q)

1− Jq χ⊥(R,q)

for antiferromagnetic ordering vector q (q ∼ kf ), given
sufficiently large exchange interaction Jq. We find that
the direction of the SDW modulation vector depends on
the symmetry of the order parameter and orientation of
its nodes relative to the domain wall. For S-wave gap,
q is along the domain wall (i.e. q ⊥ qFFLO), while for
D-wave, when domain wall is aligned with its nodes, the
q-vector points across domain wall. The susceptibility
enhancement is related to the increased correlations be-
tween bound states. These correlations disappear with
magnetic field and temperature, something that was not
seen in lattice models.

Our weak-coupling model does not support scenario
of FFLO-induced magnetism in CeCoIn5. First, the Q-
phase appears in high magnetic fields11,12 where we find
bound state enhancement effects are wiped out. More-
over, even if the enhancement of susceptibility survives
the field, from our calculation the direction of the SDW
modulation is expected to be along the field (assum-
ing qFFLO||nodes||H), inconsistent with observations.13

This, however, has to be checked further, since in our
model we do not use the material-specific anisotropic
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(a) S-wave (b) D-wave

FIG. 4. The relaxation rate at the center of domain wall, normalized to the Korringa limit, T−1
1 /T−1

K (solid lines), and the bulk
gap ∆/∆0 (dotted lines) as a function of temperature t = kBT/∆0 for different applied fields h = µBH/∆0. For higher fields,
the enhancement of the relaxation rate above normal state value is due to transitions between bound states and the continuum
states, when ∆(T,H) = 2µBH (see Fig. 5), while at low fields the enhancement is due to transitions between bound states.
This behavior is very different from that of the bulk relaxation rate (dot-dashed lines, shown for h = 0.1). In bulk S-wave one
can see a Hebel-Schlicter peak that is suppressed for fields above h ∼ 0.15.

FIG. 5. Splitting of the energy states by Zeeman magnetic
field. The bound states contribute to the relaxation rate T−1

1

at the domain wall either at small fields, where transitions
between spin-flipped bound states are allowed, or at fields
2µBH = ∆ that allow transitions between bound states and
the low-lying continuum states at ∆.

Fermi surface. The nesting properties of the Fermi sur-
face will be important for obtaining correct SDW vectors
and instability conditions. On the other hand, some fea-
tures of the high-field phase are rather more consistent
with behavior of uniform state susceptibility,33,34 and are
independent of the exact shape of the Fermi surface. Di-
rect comparison of our free-electron model with lattice
models18,19 is also difficult, for the same reason of having
quite different input electronic energy dispersions. While

both approaches give effective attraction between FFLO-
type superconducting order and the antiferromagnetic
order, the directions of emergent SDW vectors are not
in complete alignment. Another difference between the
these approaches could be related to the small size of the
lattice grids, typically around 40× 40 sites, which forces
use of length scales qFFLO ∼ 1/ξc ∼ q ∼ kf (for com-
parison, we use ξckf ∼ 12, and STM measurements37,38

in CeCoIn5 give ξc ∼ 60Å, kf ∼ (π/4.6)Å−1 and kfξc ≈
40). This all calls for future more detailed investigation
of emergent magnetic properties in nonuniform supercon-
ductors, that would clarify effects of the order parameter
symmetry, spatial modulations, realistic Fermi surface
anisotropy and field’s orientation.

Finally, in nonuniform superconductor we find an in-
crease of the spin-lattice relaxation rate T−1

1 over the
Korringa limit. This enhancement mostly appears due to
transitions between Andreev bound states and the prop-
agating continuum states that can occur in high fields,
µBH = 0.5∆, close to the Pauli limiting field in D-
wave µBHP = 0.55∆0. The range of fields where it
appears is in good agreement with experimental observa-
tions in κ-(BEDT-TTF)2Cu(NCS)2 near the first-order
superconducting-normal transition,14 although we find
the magnitude of the enhancement is somewhat smaller
than the measured value.
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Appendix: Self-consistent order parameter

To calculate susceptibility χ(q,R), which is a function
of relative momentum q, we choose a natural momentum-
based Fourier expansion (10) to find self-consistent so-
lutions of BdG amplitudes un(x), vn(x) from (7) with
order parameter (4). In the past, a variety of nu-
meric or approximate methods have been used to address
this problem: spatial lattice19,39,40, Chebyshev polyno-
mial expansion41 or quasiclassical Greens functions.15,28

Though effective, they are less suitable for our purpose.
The separable order parameter ∆(x,x′) = ∆(R)g(r)

with relative r = x − x′ and center-of-mass R = (x +
x′)/2 coordinates is obtained from mean-field definition
(4) using Bogoliubov transformation (5):

∆(R) g(r) = V (r)
∑
n

′
{un(x)v∗n(x′) [f(εn↓) + f(εn↑)]

−un(x′)v∗n(x) [f(−εn↓) + f(−εn↑)]}

(A.1)

where f(εnµ) = 〈γ†nµγnµ〉 is the Fermi occupation number
of state εnµ with spin µ. The prime on the sum denotes
the cut-off restriction on the attractive potential V (r),
|εn| < Λ,40 which for this report we set at Λ = 5∆0,
where ∆0 = 0.05εf is the zero temperature bulk order
parameter. The amplitude of the order parameter is de-

composed into CoM momentum Q (only x-component for
the domain wall)

∆(Rx) =

∫
dQ ∆̃(Q) eiQRx . (A.2)

Using the Fourier expanded amplitudes (10) for momenta
p along the domain wall, and k = {ki} in x direction, and
introducing relative momentum, r→ q, we write the gap
equation

∆̃(Q) gq̂ =
∑
n,p,k

′
ũn(k)ṽ∗n(k −Q)

{
Ṽ (q−K) [f(εn↓) + f(εn↑)]

−Ṽ (q + K) [f(−εn↓) + f(−εn↑)]
} (A.3)

Here K = (k−Q/2)x̂+pŷ, with magnitude |K|, |q| ∼ kf .

We take separable interaction Ṽ (q−K) = −V gq̂ g∗K̂ with

a constant V . Then

∆̃(Q) = V
∑

n,p,k,µ

′
ũn(k)ṽ∗n(k −Q)gK̂ tanh

[εnµ
2T

]
(A.4)

The interaction parameter V is eliminated together with
the cut-off Λ using the zero temperature and field value
∆0. We recursively solve (14) with (A.4) until sufficient
convergence for profile ∆(Rx) is reached.
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