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Vorticity is a concept well established in fluid dynamics to describe the local tendency of a
fluid to rotate. Here, we explore the vorticity of electron waves, and show that it can be used
to qualitatively estimate the strength of an electron magnetic circular dichroism (EMCD) signal,
without resorting in expensive inelastic electron scattering calculations. We discuss the properties
of vorticity, its relationship with orbital angular momentum and how it can be used to investigate
the characteristics of electron beams.
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Electron magnetic circular dichroism (EMCD) is a
young experimental method for measuring magnetic
properties at high spatial resolution in [scanning] trans-
mission electron microscopy (S/TEM). During its decade
of existence since the first experimental confirmation1,
EMCD has gone through a rapid development. In prin-
ciple, EMCD experiments should be able to achieve the
ultimate spatial resolution, allowing magnetic character-
ization of individual magnetic atomic columns. Elec-
tron vortex beams (EVBs;2–5) and aberrated beams6,7

of atomic size are both expected to be efficient probes of
magnetism. Initial experiments aiming to detect EMCD
with atomic size probes have been reported with aber-
rated beams8. However, as of today, these experiments
remain challenging to perform. Understanding how dif-
ferent kind of electron beams can be optimized to mea-
sure not only magnetism, but also different chiral signals
is crucial for future successful experiments.

In this Letter, we study the properties of electron
beams via the introduction of vorticity. We show that
vorticity is a local measure of orbital angular momentum
(OAM). We show that aberrated beams can be under-
stood as a coherent superposition of an Airy disk and
rings of electron vortices. We also show that the strength
of EMCD can be well estimated by the vorticity of elec-
tron beams, which is accessible from computationally-
inexpensive elastic electron scattering calculations.

Vorticity9, which is a concept well established in fluid
mechanics, is used to describe the local tendency of a
fluid to rotate. Vorticity is widely applied to study the
dynamics of turbulent fluids covering fields that go from
chemical engineering, mechanical and aeronautical en-
gineering, to atmospheric, oceanographic and planetary
sciences10. Vorticity is defined as Θ = ∇ × u, with u
being the velocity of the fluid.

Here, we explore the concept of vorticity for waves
generated by electron beams. For an electron wave,
the velocity is represented by the probability current
j = ~

me
Im[ψ?∇ψ]12, where ~ is the reduced Planck con-

stant, ψ is the wave function associated to the electron
beam, and me is the mass of the electron. As such, the

vorticity for an electron wave is simply defined as11

Θ =
~
me
∇× Im[ψ?∇ψ] = − i~

me
∇ψ? ×∇ψ. (1)

To conceptually illustrate how the vorticity Θ can be
utilized to capture the behavior of electrons, we explicitly
calculate Θ for different kind of electron beams. The first
example is vortex beams, which can be produced by holo-
gram grids inside of an electron microscope3–5. Vortex
beams have a doughnut-like intensity profile and carry
OAM as it is shown in Figure 1. A vortex beam within
an electron microscope can be expressed in cylindrical
coordinates as

ψl(r, ϕ, z) = eilϕRl(r, z), (2)

where l~ is the value of OAM carried by the vortex beam,
and Rl is a function that describes the amplitude behav-
ior of the vortex. Rl depends on the optical parameters
of the electron microscope, such as the convergence ob-
jective angle θc, defocus (∆f = z), and the wavelength of
the electron λ – which is determined by the applied accel-
eration voltage. For a round aperture and flat amplitude
distribution the radial dependence of a vortex beam is

Rl =

∫ θc

0

ei
π
λ∆fθ2Jl

(
2π
λ θr

)
θdθ, (3)

where Jl is the Bessel function of the first kind with order
l13. Notice that for the case of l = 0, Eqns. 2 and 3
lead to an Airy-disc14. Airy disc wavefunction describes
the behavior of electron beams in an electron microscope
column under the absence of aberrations. (It is not to be
confused with Airy waves15.)

The vorticity of a vortex beam utilizing the definition
shown in Eq. 2 is

Θr = l
~
mer

(Rl∂zR
?
l +R?l ∂zRl),

Θϕ = i
~
me

(∂rR
?
l ∂zRl − ∂rRl∂zR?l ), (4)

Θz = l
~
mer

(Rl∂rR
?
l +R?l ∂rRl).
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FIG. 1. Normalized wavefunctions and normalized vorticities
of an electron vortex beam, a four-fold astigmatic beam, and a
three-fold astigmatic beam. The calculations were performed
using an acceleration voltage of 100 kV and a convergence
semi-angle α = 30 mrad. The spatial range of all panels is
0.5 nm × 0.5 nm. All the panels for the vortex and four-fold
astigmatic beams are shown for a defocus value ∆f = 0 nm,
while for the three-fold astigmatic beam ∆f = −0.6 nm.

Few conclusions can easily be drawn from a simple
inspection of Eq. 4. The r and z components of the
vorticity are zero for an Airy disk electron beam, i.e.,
l = 0. This means that the vorticities Θr and Θz of an
aberration-corrected electron probe are always zero. For
the case of a vortex beam with OAM l~, the vorticity Θz

reaches its maximum value at zero defocus (∆f = z = 0),
and this value is proportional to 2Rl∂rRl – i.e., R?l = Rl
at z = 0. Conversely, the vorticity Θϕ component is
different than zero at ∆f = 0, with a magnitude that is
proportional to ∂rRl∂zRl for all ls. For different defocus
values, Θϕ is also different than zero for all ls, indicating
that the azimuthal component of the vorticity is always
nonzero.

As it will be shown below, the concept of vorticity be-
comes rather useful and insightful when working with
aberrated electron beams. Here we will only illustrate
the case of vorticity for electron beams containing a sin-
gle no cylindrical symmetry aberration (i.e., beam shift,
two fold astigmatism, coma, three fold astigmatism, four
fold astigmatism, etc.). Krivanek’s notation is used here
to label the aberrations because it simplifies the mathe-
matical description for all kind of aberrations16.

The angular dependence of an aberration Cn,m of or-

der n and multiplicity m (or symmetry) is given by
2π
λ
θn+1

n+1 cos(mϕ) for mirror-symmetric aberrations (la-

beled as Cn,m,a), and 2π
λ
θn+1

n+1 sin(mϕ) for antisymmetric

aberrations (labeled as Cn,m,b).
It can be shown that the wave function of a mirror-

symmetric aberrated beam ψn,m can be expressed as (see
Appendix A for details)

ψn,m = 2πR0 +

∞∑
l=1

Al,mPl,n,m
(
eilmϕ + e−ilmϕ

)
, (5)

where R0 is defined in Eq. 3 for l = 0, Al,m = 2πil(m+1)

is a phase coefficient, and Pl,n,m is∫ θc

0

ei
π
λ∆fθ2Jlm

(
2π
λ θr

)
Jl

(
2π

λ(n+1)θ
n+1Cn,m,a

)
θdθ.

(6)
Notice that ψn,m is a sum of an Airy disk wave plus

the sum of interfering vortex beams with opposite OAM
(±lm~). In other words, vortex beams created entirely
by means of an aberrated lens are not intrinsically sepa-
rated in space, since all the vortex beams and the Airy
disk wave produced by an aberrated lens are centered
around r = 0. However, since the aberrated beam ψn,m
is the result of a coherent interference of vortex beams,
there must be local regions where the vortices cancel each
other out, and regions where they do not cancel out and
possibly create a new vortex. It is here where the concept
of vorticity brings new light into the properties of aber-
rated beams, and how they can be utilized to do novel
spectroscopy.

In principle, aberrated beams, similarly as vortex
beams, should have a vorticity that is far more complex
than Airy disk waves. However, that is not always the
case. For instance, an aberrated beam with an odd aber-
ration multiplicity (i.e., beam shift, coma, or three fold
astigmatism) presents a simpler vorticity behavior than
an aberrated beam with even multiplicity. Similarly to
Airy disk waves, it can be shown that aberrated beams
with odd multiplicity have a vorticity Θz component that
is zero, but only for ∆f = 0. Aberrated beams with even
multiplicity have a vorticity Θz that is different than zero
at ∆f = 0. Also both multiplicities, odd and even, result
in aberrated beams with a vorticity Θϕ that is not zero
for any value of z.

Figure 1 shows the electron probe intensity, phase
and vorticity Θz calculated for a vortex beam with ~
OAM, and aberrated electron beams with four fold astig-
matism (C3,4,a = 15 µm), and three fold astigmatism
(C2,3,a = 120 nm). Notice that the maximum values of
the z component of the vorticity for a vortex beam and
a four-fold astigmatic probe occurs near the center of a
region where a phase singularity is present (defined as a
circular-like phase ramping with null intensity). In a vor-
tex beam this occurs at r = 0. Conversely, for a four-fold
astigmatic beam the phase singularities occur at the tails
of the beam, in between regions where the amplitude of
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the tails presents a local maxima. In general, however,
one can find maxima of vorticity without phase singulari-
ties in the electron beam wavefunction. This can be seen
in a three-fold astigmatic probe with defocus, Fig. 1.

Intuitively it may appear that the vorticity Θ(r) and

the OAM density, defined as ψ?(r)L̂ψ(r) = mer × j

(where L̂ is the angular momentum operator), should
be closely related to each other. It was even suggested in
Ref.17 that for a vortex beam, vorticity and OAM density
are proportional to each other. Clearly, the planar inte-
gral of the z component of the OAM density results in
the total OAM of the beam. However, the integral of the
vorticity can conveniently be re-expressed using the mo-
mentum operator p̂ as i

me~ 〈ψ|p̂× p̂|ψ〉. Then it becomes
obvious that the total vorticity is simply zero. Therefore
the relation between OAM density and vorticity is more
subtle.

To derive the relationship between OAM density and
vorticity, only the z component of the OAM density
is considered here. The OAM density centered around
point a is La(r) = me(r− a) × j(r). Taylor-expanding
the Lz component around a point a, and integrating only
in the xy plane over a small circle D centered around a,
the zero order term vanishes due to (r− a) factor evalu-
ated at r = a. The linear terms vanish as well, because
they are odd functions integrated over a symmetric re-
gion D. The lowest order nonzero terms are the second
order terms, except for the mixed (x, y) term, which van-
ishes for the same reason as the linear terms. This results
in the following approximation:∫

D

dxdyLz,a ≈
1

2

∫
D

dxdy

[
(x− ax)2 ∂

2Lz,a
∂x2

∣∣∣∣
a

+ (y − ay)2 ∂
2Lz,a
∂y2

∣∣∣∣
a

]
. (7)

In the next step one realizes that∫
D

dxdy(x−ax)2 ∂
2Lz,a
∂x2

∣∣∣∣
a

= me
∂jy
∂x

∣∣∣∣
a

∫
D

dxdy(x−ax)2,

(8)
and similarly for the term with the y derivative. Thus
one finally obtains∫

D

dxdyLz,a ∝ me

[
∂jy
∂x

∣∣∣∣
a

− ∂jx
∂y

∣∣∣∣
a

]
= meΘz(a), (9)

which means that the vorticity can be interpreted as a
local measurement of OAM. Fig. 1 showing the z com-
ponent of the vorticity for a four-fold astigmatic beam
suggests that it can be qualitatively understood as a su-
perposition of an Airy disk in the center with surrounding
rings of electron vortices with alternating OAM18.

Next, we proceed with the derivation of a more unex-
pected relationship, namely the connection between vor-
ticity and EMCD.

To derive the relation between vorticity and EMCD,
we need to start from the expression that describes elec-

tron inelastic scattering events in STEM, i.e., the double-
differential scattering cross-section (DDSCS)

∂2σ

∂Ω∂E
∝
∑
I,F

∣∣∣〈ψf | ⊗ 〈F |V̂ |I〉 ⊗ |ψi〉∣∣∣2 δ(EF − EI − E),

(10)
where |I〉, |F 〉 are the initial and final state of the sample
with energies EI , EF , respectively, and |ψi〉, |ψf 〉 are the
electron probe states before and after a core-level exci-
tation event. The electron probe is expressed before the
inelastic scattering event using its Fourier transform as
ψi(r) =

∫
C(k)eik·rdk. Elastic scattering is neglected

after the excitation event by writing ψf (r) = eikf ·r.
Finally, the mixed-dynamical form factor (MDFF) is
written in the dipole approximation. The imaginary
part of MDFF, which is responsible for a magnetic sig-
nal in electron energy-loss spectroscopy (EELS)1,7, is
Im[Sa(q,q′, E)] ∝ (q × q′) ·M(E), where M(E) is an
energy-loss dependent vector characterizing the magnetic
behavior of a specific material. Thus, the magnetic part
of the DDSCS can be written as

∂2σ

∂Ω∂E

∣∣∣∣
mag

∝
∑
a

∫∫∫∫
drdr′dkdk′ψi(r)e−ik·rψ?(r′)eik

′·r′

× ei(k−k
′)·a i(kf − k)× (kf − k′)

(kf − k)2(kf − k′)2
·M(E) (11)

where q = kf − k. C(k) has been substituted
for

∫
ψi(r)e−ik·rdr, and similarly for primed variables

q′, C(k′). Sum over a runs over all atomic positions,
where an excitation event can take place. For convergent
probes, such as in STEM, that vanish in infinity, one can
use the relation∫

ikψi(r)eik·rdr =

∫
∇ψi(r)eik·rdr (12)

for derivatives of Fourier transforms. In the next steps
we analytically integrate over k,k′ and use the Ansatz
ψi(r) = eiki·rφi(r) commonly used in multislice methods,
expressing electron beam wavefunction as a product of
plane wave times a smoothly varying envelope function
φi(r). For a symmetrical on-axis detector and M(E)||ki
we finally arrive to an expression for the magnetic part
of the inelastic scattering cross-section (see Appendix B
for a detailed derivation)

∂σ

∂E

∣∣∣∣
mag

∝
∑
a

∫
Ω

dkf,⊥

∫∫
drdr′

e−i(kf−ki)·(r−r
′)

|r− a||r′ − a|

× iM(E) · [∇φi(r)×∇′φ?i (r′)] , (13)

where the integral over kf,⊥ runs over any circular or
annular detector aperture centered on axis. The second
line of this expression reminds vorticity, however it is
evaluated at two different positions r, r′. The gradient
with prime, ∇′, means a gradient with respect to the
primed coordinate r′. The weight of contributions from
r, r′ is given by the first line and the largest contributions
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FIG. 2. a) Thickness dependence of the EMCD compared
with the sum of vorticity over atomic positions,

∑
a Θz(a).

Calculations were performed for an EVB with OAM=~, con-
vergence semi-angle α = 27.5 mrad and a range of collection
semi-angles β indicated in the legend. Sample is bcc iron
oriented in (001) zone axis, acceleration voltage is 200 kV.
b) Comparison of EMCD and vorticity,

∑
a Θz(a), as a func-

tion of strength of four-fold astigmatism C3,4b for an electron
beam with convergence angle 30 mrad and acceleration volt-
age 100 kV.

obviously come from the closest surrounding of positions
r = r′ = a.

Therefore we propose that the strength of EMCD sig-
nal can be qualitatively estimated by summing the z-
component of the vorticity at the atomic sites. This the-
orem constitutes the central result of this Letter.

A simple test of its accuracy is shown in Fig. 2(a),
where a simulated thickness dependence of the EMCD
strength19 is compared to the sum of z-component of vor-
ticities evaluated at the atomic sites,

∑
a Θz(a). Double-

channeling effects are more pronounced at smaller collec-
tion angles, which results in an oscillation of the EMCD
signal and in a weaker agreement with the calculated vor-
ticity. For larger collection angles the qualitative match
between EMCD and vorticity is quite remarkable. This

result is important because it means that when using rel-
atively large collection angles, as in modern STEM ex-
periments (> 20 mrad), vorticity can give a very good
qualitative picture of the strength of an EMCD signal.
The calculation of vorticity is computationally very cheap
(seconds or minutes on a modern personal computer),
while an explicit evaluation of the EMCD signal (Eq. 13)
can take several days and typically requires a computer
cluster.

Similar interpretation can be extracted from Fig. 2(b),
where the EMCD strength is compared to the z-
component of vorticity summed over atoms, as a func-
tion of four-fold astigmatism. Here, a sample thickness
of one unit cell is assumed in order to minimize the dis-
tortion effects in the electron probe, which are due to
elastic scattering. The agreement between the vorticity
and EMCD with four-fold astigmatism is weaker than in
the previous case. However, the oscillation periods and
position of the optimum EMCD signal correlate rather
well with the vorticity. Generally, a weaker correspon-
dence of the vorticity and EMCD signal is likely due to
a varying delocalization of the vorticity peaks for aber-
rated probes as a function of the four fold astigmatism,
C3,4b.

We note that EMCD and vorticity are shown in arbi-
trary units in Fig. 2. Absolute values would only have
sense in a suitably chosen normalization, e.g., relative to
the incoming beam intensity. However, as long as the
normalization does not change across the range of shown
parameters, such as thickness or aberration values, vor-
ticity offers an efficient way to optimize the beam pa-
rameters, as well as to analyze thickness-dependence of
EMCD. Yet, to provide an approximate scale, the relative
strengths of EMCD shown in panels a) and b) reach at
maximum about 20% and 5%, respectively. These values
are typically only reached for small collection angles, and
for vortex beams only at very low sample thicknesses.

In conclusion, we have derived a relation between the
vorticity of electron beams, the orbital angular momen-
tum density and the strength of an EMCD signal. Us-
ing the concept of vorticity, we also show that aberrated
electron beams are composed by a linear combination of
vortex beams and an Airy disk that coherently interfere
when the aberrations are not cylindrical symmetric. This
means that although aberrated beams have a total OAM
of zero, locally they contain vortices that can be utilized
to measure chiral signals. We also show that vorticity
is a computationally efficient alternative to qualitatively
estimate the strength of an EMCD signal. The results
presented here raise the concept of vorticity to the level
of a central property of electron beams that needs to be
further investigated.
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Appendix A: Derivation of the analytical expresion for an aberrated beam

Eq. (5), which expresses the analytical form of an aberrated beam can be obtained by analyzing how a plane wave
gets diffracted by a circular thin aberrated lens, with an aberration χ(k). The analytical expression of the diffracted
wave ψ by an aberrated lens can be described by

ψ(r) =

∫
eik·reiχ(k)dk, (A1)

where k = 2πθ/λ and r are the coordinates in the aperture plane and image plane, respectively. For the case of a
lens with only one non cylindrical symmetry (besides defocus ∆f), the aberrated beam can be expressed as

ψn,m(r, φ) =

∫ 2π

0

∫ θc

0

ei∆f
′θ2eir

′θ cos(ϕ−φ)eiθ
n+1C′

n,m cos(mϕ)dϕθdθ. (A2)

To simplify the mathematical notation, here we defined ∆f ′ = π
λ∆f , C ′n,m as 2π

λ(n+1)Cn,m,a, explicitly omitting the

a index for the mirror-symmetric aberration coefficient, and r′ = 2π
λ r. As it will be shown in a moment, an aberrated

beam with an anti-symmetric aberration Cn,m,b differs from a mirror-symmetric aberrated beam in a phase coeficient.
Replacing each exponential term in the integral by their respective Jacobi-Anger expansion, Eq. (A2) becomes

ψn,m(r, φ) =

∞∑
l,p=−∞

ilipe−ipφ
∫ 2π

0

eiϕ(p+lm)dϕ

∫ θc

0

ei∆f
′θ2Jp(r

′θ)Jl(C
′
n,mθ

n+1)θdθ, (A3)

The integral with respect to ϕ vanishes unless p = −lm. Using the relationship J−l(x) = (−1)lJl(x), the diffracted
wave ψn,m(r, φ) is

ψn,m(r, φ) = 2π

∞∑
l=−∞

i−lmil(−1)lmeilmφ
∫ θc

0

ei∆f
′θ2Jlm(r′θ)Jl(C

′
n,mθ

n+1)θdθ, (A4)

mailto:jan.rusz@physics.uu.se
mailto:idrobojc@ornl.gov
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or written in a more compact form,

ψn,m(r, φ) =

∞∑
l=−∞

Al,me
ilmφPl,n,m(r, θc). (A5)

Al,m = 2πil(m+1) is a phase coefficient, and Pl,n,m(r, θc) is a radial function resulting from the integral with respect
to θ up to a convergence angle θc. If the lens instead has only an antisymmetric aberration Cn,m,b, the diffracted
wave ψn,m(r, φ) differs from Eq. (A5) only by a new phase coefficient, which can be written as Bl,m = 2πilm.

Appendix B: Relationship between EMCD and vorticity

DDSCS is given by

∂2σ

∂Ω∂E
∝
∑
I,F

∣∣∣〈ψf | ⊗ 〈F |V̂ |I〉 ⊗ |ψi〉∣∣∣2 δ(EF − EI − E) (B1)

Writing the real-space incoming-beam wave-function ψi(r) via its Fourier components

ψi(r) =

∫
C(k)eik·rdk (B2)

and approximating the outgoing wave with a plane-wave (point-like detection)

ψf (r) = eikf ·r (B3)

the DDSCS can be expressed as

∂2σ

∂Ω∂E
∝
∑
a

∫∫
dkdk′C(k)C?(k′)ei(k−k

′)·aSa(kf − k,kf − k′, E)

(kf − k)2(kf − k′)2
(B4)

where we introduced MDFF for atom a, and a sum over atom positions a, which originates from the sum over all
initial states I.

EMCD signal originates from imaginary parts of the MDFF, which is in dipole approximation equal to

Im[Sa(q,q′, E)] ∝ (q× q′) ·M(E) (B5)

with an energy-dependent vector M(E), which is material-dependent and contains information about spin and orbital
magnetism. Furthermore, the factors C(k) can be written via inverse Fourier transform of the incoming beam

C(k) =

∫
ψi(r)e−ik·rdr (B6)

Using these expressions we can write the DDSCS as

∂2σ

∂Ω∂E
∝
∑
a

∫∫∫∫
drdr′dkdk′ψi(r)e−ik·rψ?i (r′)eik

′·r′ei(k−k
′)·a i(kf − k)× (kf − k′)

(kf − k)2(kf − k′)2
·M(E) (B7)

We choose a coordinate system, in which kf ||z-axis. Then the MDFF part can be written as

i(kf − k)× (kf − k′)

(kf − k)2(kf − k′)2
·M(E) = iM(E) · k× k′ + kf × (k− k′)

[k2
⊥ + (kf − kz)2][k′2⊥ + (kf − k′z)2]

(B8)

Now we note that for an incoming beam wavefunction that vanishes in infinity, under an integral we can write∫
ikψi(r)eik·rdr =

∫
∇ψi(r)eik·rdr (B9)

using the theorem about Fourier transform of a derivative of a function.
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This allows us to rewrite the entire DDSCS as a sum of two terms

∂2σ

∂Ω∂E
∝ iM(E) ·

∑
a

∫∫∫∫
drdr′dkdk′

e−ik·(r−a)

k2
⊥ + (kf − kz)2

eik
′·(r′−a)

k′2⊥ + (kf − k′z)2

× [∇ψi(r)×∇′ψ?i (r′) + kf × (∇−∇′)ψi(r)ψ?i (r′)] (B10)

where ∇′ means a gradient in the primed index r′. The first term formally reminds vorticity, but it is evaluated at
two independent coordinates. Nevertheless, we will deal with integrals over k,k′ first.

We need to evaluate∫
e−ik·(r−a)

k2
⊥ + (kf − kz)2

dk =

∫ ∞
−∞

dkz

∫ 2π

0

dφ

∫ ∞
0

k⊥dk⊥
e−ikzze−ik⊥x⊥ cosφ

k2
⊥ + (kf − kz)2

(B11)

where z = rz − az and x⊥ =
√

(rx − ax)2 + (ry − ay)2.
For the integral over φ we can use Jacobi-Anger identity

eiz cosφ =

∞∑
n=−∞

inJn(z)einφ (B12)

from which only the term n = 0 survives, giving

2π

∫ ∞
−∞

dkze
−ikzz

∫ ∞
0

k⊥dk⊥
J0(k⊥x⊥)

k2
⊥ + (kf − kz)2

(B13)

The integral over k⊥ gives a modified Bessel function of the second kind

2π

∫ ∞
−∞

dkze
−ikzzK0(x⊥|kf − kz|) (B14)

This can be written as

2πe−ikfz
∫ ∞
−∞

dkze
−i(kz−kf )zK0(x⊥|kz − kf |) = 2πe−ikfz

∫ ∞
−∞

dk̃e−ik̃zK0(x⊥|k̃|) (B15)

and split to two integrals from −∞ to 0 and from 0 to ∞, which are complex conjugates of each other, i.e., the entire
integral becomes

4πe−ikfz
∫ ∞

0

cos(k̃z)K0(x⊥k̃)dk̃ = 4πe−ikfz
1

x⊥

π

2

√(
z
x⊥

)2

+ 1

=
2π2e−ikf (rz−az)

|r− a|
(B16)

which we can write in a coordinate-independent form as

2π2e−ikf ·(r−a)

|r− a|
(B17)

Now we return to the DDSCS. Integrals over k,k′ are evaluated, so we have

∂2σ

∂Ω∂E
∝ 4π4iM(E) ·

∑
a

∫∫
drdr′

e−ikf ·(r−r
′)

|r− a||r′ − a|

× [∇ψi(r)×∇′ψ?i (r′) + kf × (∇−∇′)ψi(r)ψ?i (r′)] (B18)

Qualitatively it is obvious that the largest weight in front of the vorticity-like expression (2nd line) comes from
the nearest surrounding of the points r = r′ = a, which means that the magnetic signal should be approximately
proportional to the sum of the electron beam vorticities projected on the magnetization direction (often the optical
axis).

Further insight can be obtained by expressing the incoming wavefunction in an Ansatz commonly used in multislice
methods, i.e., plane-wave along incoming beam direction times a relatively smooth envelope function

ψi(r) = eiki·rφi(r) (B19)
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gradient of which is

∇ψi(r) = eiki·r(iki +∇)φi(r) (B20)

Then the first term becomes

∇ψi(r)×∇′ψ?i (r′) = eiki·(r−r
′)[iki × (∇+∇′) +∇×∇′]φi(r)φ?i (r

′) (B21)

and the second term

kf × (∇−∇′)ψi(r)ψ?i (r′) = eiki·(r−r
′)kf × [2iki + (∇−∇′)]φi(r)φ?i (r

′) (B22)

Therefore, in a common situation when ki||M(E), the magnetic part of the DDSCS reduces to

∂2σ

∂Ω∂E
∝ 4π4iM(E) ·

∑
a

∫∫
drdr′

e−i(kf−ki)·(r−r
′)

|r− a||r′ − a|

× [∇φi(r)×∇′φ?i (r′) + kf × (∇−∇′)φi(r)φ?i (r
′)] (B23)

where we identify Q = kf − ki as the momentum transfer vector. If also kf ||M(E), then the last term drops as
well. Alternatively, an integral over kf spanning a symmetrical on-axis detector leads to a vanishing z-component of
kf × (∇−∇′)φi(r)φ?i (r

′), therefore the last term drops in such situation as well. This can be shown by summation
over pairs of kf , where kf = (kx, ky, kz) and its paired k′f = (−kx,−ky, kz). Then kf + k′f = (0, 0, 2kz) and its vector
product with anything must be perpendicular to z-direction.

Thus, for the magnetization along the optical axis and on-axis detection the magnetic signal is determined by an
expression containing a non-local form of a vorticity-like expression

∂2σ

∂Ω∂E
∝ 4π4i

∑
a

∫∫
drdr′

e−i(kf−ki)·(r−r
′)

|r− a||r′ − a|
[∇φi(r)×∇′φ?i (r′)] ·M(E) (B24)

from which follows the Eq. (13) in the main text of the document, where an integration over kf over a symmetric
on-axis detector was assumed.
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