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We study the magnetization dynamics of thin-film magnetic elements with in-plane magnetization
subject to a spin-current flowing perpendicular to the film plane. We derive a reduced partial
differential equation for the in-plane magnetization angle in a weakly damped regime. We then apply
this model to study the experimentally relevant problem of switching of an elliptical element when
the spin-polarization has a component perpendicular to the film plane, restricting the reduced model
to a macrospin approximation. The macrospin ordinary differential equation is treated analytically
as a weakly damped Hamiltonian system, and an orbit-averaging method is used to understand
transitions in solution behaviors in terms of a discrete dynamical system. The predictions of our
reduced model are compared to those of the full Landau–Lifshitz–Gilbert–Slonczewski equation for
a macrospin.

I. INTRODUCTION

Magnetization dynamics in the presence of spin-
transfer torques is a very active area of research with ap-
plications to magnetic memory devices and oscillators1–3.
Some basic questions relate to the types of magnetiza-
tion dynamics that can be excited and the time scales on
which the dynamics occurs. Many of the experimental
studies of spin-transfer torques are on thin film magnetic
elements patterned into asymmetric shapes (e.g. an el-
lipse) in which the demagnetizing field strongly confines
the magnetization to the film plane. Analytic models
that capture the resulting nearly in-plane magnetization
dynamics (see e.g.4–8) can lead to new insights and guide
experimental studies and device design. A macrospin
model that treats the entire magnetization of the ele-
ment as a single vector of fixed length is a starting point
for most analyses.

The focus of this paper is on a thin-film magnetic el-
ement excited by a spin-polarized current that has an
out-of-plane component. This out-of-plane component
of spin-polarization can lead to magnetization precession
about the film normal or magnetization reversal. The for-
mer dynamics would be desired for a spin-transfer torque
oscillator, while the latter dynamics would be essential in
a magnetic memory device. A device in which a perpen-
dicular component of spin-polarization is applied to an
in-plane magnetized element was proposed in Ref. [9] and
has been studied experimentally10–12. There have also
been a number of models that have considered the influ-
ence of thermal noise on the resulting dynamics, e.g., on
the rate of switching and the dephasing of the oscillator
motion13–15.

Here we consider a weakly damped asymptotic regime
of the Landau–Lifshitz–Gilbert–Slonczewski (LLGS)
equation for a thin-film ferromagnet, in which the oscil-
latory nature of the in-plane dynamics is highlighted. In
this regime, we derive a reduced partial differential equa-
tion (PDE) for the in-plane magnetization dynamics un-
der applied spin-torque, which is a generalization of the

underdamped wave-like model due to Capella, Melcher
and Otto8. We then analyze the solutions of this equa-
tion under the macrospin (spatially uniform) approxima-
tion, and discuss the predictions of such a model in the
context of previous numerical studies of the full LLGS
equation16. In particular, we identify the mechanisms
for non-switching, switching and precession within this
model, and the transitions between the three behaviors
as the spin-current parameters are varied.

The rest of this article is organized as follows. In Sec.
II, we perform an asymptotic derivation of the reduced
underdamped equation for the in-plane magnetization
dynamics in a thin-film element of arbitrary cross sec-
tion, by first making a thin-film approximation to the
LLGS equation, then a weak-damping approximation. In
Sec. III, we then further reduce to a macrospin ordinary
differential equation (ODE) by spatial averaging of the
underdamped PDE, and restrict to the particular case of
a soft elliptical element. A brief parametric study of the
ODE solutions is then presented, varying the spin-current
parameters. In Sec. IV, we make an analytical study of
the macrospin equation using an orbit-averaging method
to reduce to a discrete dynamical system, and compare
its predictions to the full ODE solutions. In Sec. V, we
seek to understand transitions between the different so-
lution trajectories (and thus predict current-parameter
values when the system will either switch or precess),
and the mechanism by which these occur, by studying
the discrete dynamical system derived in Sec. IV. Sec.
VI is devoted to a comparison of the predictions of the
macrospin model with those of the reduced PDE model
derived in Sec. II, in a simplified setting. Finally, we
summarize our findings in Sec. VII.

II. REDUCED MODEL

We consider a domain Ω ⊂ R3 occupied by a ferromag-
netic film with cross-section D ⊂ R2 and thickness d, i.e.,
Ω = D × (0, d). Under the influence of a spin-polarized
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electric current applied perpendicular to the film plane,
the magnetization vector m = m(r, t), with |m| = 1 in Ω
and 0 outside, satisfies the LLGS equation (in SI units)

∂m

∂t
= −γµ0m×Heff + αm× ∂m

∂t
+ τSTT (1)

in Ω, with ∂m/∂n = (n ·∇)m = 0 on ∂Ω, where n is the
outward unit normal to ∂Ω. In the above, α > 0 is the
Gilbert damping parameter, γ is the gyromagnetic ratio,
µ0 is the permeability of free space, Heff = − 1

µ0Ms

δE
δm is

the effective magnetic field,

E(m) =

∫
Ω

(
A|∇m|2 +KΦ(m)−µ0MsHext ·m)

)
d3r

+ µ0M
2
s

∫
R3

∫
R3

∇ ·m(r)∇ ·m(r′)

8π|r− r′|
d3r d3r′ (2)

is the micromagnetic energy with exchange constant A,
anisotropy constant K, crystalline anisotropy function
Φ, external magnetic field Hext, and saturation magne-
tization Ms. Additionally, the Slonczewski spin-transfer
torque τSTT is given by

τSTT = − ηγ~j
2deMs

m×m× p, (3)

where j is the density of current passing perpendicularly
through the film, e is the elementary charge (positive),
p is the spin-polarization direction, and η ∈ (0, 1] is the
spin-polarization efficiency.

We now seek to nondimensionalize the above system.
Let

` =

√
2A

µ0M2
s

, Q =
2K

µ0M2
s

, hext =
Hext

Ms
. (4)

We then rescale space and time as

r→ `r, t→ t

γµ0Ms
, (5)

obtaining the nondimensional form

∂m

∂t
= −m× heff + αm× ∂m

∂t
− βm×m× p, (6)

where heff = Heff/Ms, and

β =
η~j

2deµ0M2
s

(7)

is the dimensionless spin-torque strength.
Since we are interested in thin films, we now assume

that m is independent of the film thickness. Then, after
rescaling

E → µ0M
2
s d`

2E, (8)

we have heff ' − δE
δm , where E is given by a local energy

functional defined on the (rescaled) two-dimensional do-
main D (see, e.g., Ref. [17]):

E(m) ' 1

2

∫
D

(
|∇m|2 +QΦ(m)− 2hext ·m

)
d2r

+
1

2

∫
D

m2
⊥ d2r +

1

4π
δ| lnλ|

∫
∂D

(m · n)2 ds, (9)

in which now m : D → S2, m⊥ is its out-of-plane com-
ponent, δ = d/` is the dimensionless film thickness, and
λ = d/L� 1 (where L is the lateral size of the film) is the
film’s aspect ratio. The effective field is given explicitly
by

heff = ∆m− Q

2
∇mΦ(m)−m⊥ez + hext, (10)

and m satisfies equation (6) in D with the boundary
condition

∂m

∂n
= − 1

2π
δ| lnλ|(m · n)(n− (m · n)m) (11)

on ∂D.
We now parametrize m in terms of spherical angles as

m = (− sin θ cosφ, cos θ cosφ, sinφ), (12)

and the current polarization direction p in terms of an
in-plane angle ψ and its out-of-plane component p⊥ as

p =
1√

1 + p2
⊥

(− sinψ, cosψ, p⊥). (13)

Writing β∗ = β/
√

1 + p2
⊥, after some algebra, one may

then write equation (6) as the system

∂φ

∂t
= − 1

cosφ
heff ·mθ + α cosφ

∂θ

∂t

+ β∗(p⊥ cosφ− sinφ cos(θ − ψ)), (14)

− cosφ
∂θ

∂t
= −heff ·mφ + α

∂φ

∂t
+ β∗ sin(θ − ψ), (15)

where mθ = ∂m/∂θ and mφ = ∂m/∂φ for m given by
(12). Again, since we are working in a soft thin film, we
assume φ � 1 and that the out-of-plane component of
the effective field in equation (10) is dominated by the
term heff · ez ' −m⊥ = − sinφ. Note that this assumes
that the crystalline anisotropy and external field terms
in the out-of-plane directions are relatively small, so we
assume the external field is only in plane, though it is still
possible to include a perpendicular anisotropy simply by
renormalizing the constant in front of the m⊥ term in
heff. We then linearize the above system in φ, yielding

∂φ

∂t
=
δE
δθ

+ α
∂θ

∂t
+ β∗(p⊥ − φ cos(θ − ψ)), (16)
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− ∂θ

∂t
= φ+ β∗ sin(θ − ψ)

+ φ(−hx sin θ + hy cos θ) + α
∂φ

∂t
. (17)

where hx = heff · ex and hy = heff · ey, and E(θ) is E(m)
evaluated at φ = 0.

We now note that the last two terms in (17) are neg-
ligible relative to φ whenever |hx|, |hy| and α are small,
which is true of typical clean thin-film samples of suffi-
ciently large lateral extent. Neglecting these terms, one
has

∂φ

∂t
=
δE
δθ

+ α
∂θ

∂t
+ β∗(p⊥ − φ cos(θ − ψ)), (18)

−∂θ
∂t

= β∗ sin(θ − ψ) + φ. (19)

Then, differentiating (19) with respect to t and using the

result along with (19) to eliminate φ and ∂φ
∂t from (18),

we find a second-order in time equation for θ:

0 =
∂2θ

∂t2
+
∂θ

∂t
(α+ 2β∗ cos(θ − ψ)) +

δE
δθ

+ β∗p⊥ + β2
∗ sin(θ − ψ) cos(θ − ψ), (20)

where, explicitly, one has

δE
δθ

= −∆θ +
Q

2
Φ̃′(θ) + hext · (cos θ, sin θ), (21)

and Φ̃(θ) = Φ(m(θ)). In turn, from the boundary condi-
tion on m in (11), we can derive the boundary condition
for θ as

n · ∇θ =
1

2π
δ| lnλ| sin(θ − ϕ) cos(θ − ϕ), (22)

where ϕ is the angle parametrizing the normal n to ∂D
via n = (− sinϕ, cosϕ).

The model comprised of (20)–(22) is a damped-driven
wave-like PDE for θ, which coincides with the reduced
model of Ref. [8] for vanishing spin-current density in
an infinite sample. This constitutes our reduced PDE
model for magnetization dynamics in thin-film elements
under the influence of out-of-plane spin currents. It is
easy to see that all of the terms in (20) balance when the
parameters are chosen so as to satisfy

β∗ ∼ p⊥ ∼ α ∼ Q1/2 ∼ |hext|1/2 ∼
`

L
∼ δ| lnλ|. (23)

This shows that it should be possible to rigorously obtain
the reduced model in (20)–(22) in the asymptotic limit
of L → ∞ and α, β∗, p⊥, Q, |hext|, δ → 0 jointly, so that
(23) holds.

III. MACROSPIN SWITCHING

In this section we study the behavior of the reduced
model (20)–(22) in the approximation that the magneti-
zation is spatially uniform on an elliptical domain, and

compare the solution phenomenology to that found by
simulating the LLGS equation in the same physical situ-
ation, as studied in Ref. [16].

A. Derivation of macrospin model

Integrating equation (20) over the domain D and using
the boundary condition (22), we have

∫
D

(
∂2θ

∂t2
+
∂θ

∂t
(α+ 2β∗ cos(θ − ψ))

+β∗p⊥ + β2
∗ sin(θ − ψ) cos(θ − ψ)

+
Q

2
Φ̃′(θ) + hext · (cos θ, sin θ)

)
d2r

=
1

2π
δ| lnλ|

∫
∂D

sin(θ − ϕ) cos(θ − ϕ) ds. (24)

Assume now that θ does not vary appreciably across the
domain D, which makes sense in magnetic elements that
are not too large. This allows us to replace θ(r, t) by
its spatial average θ̄(t) = 1

|D|
∫
D
θ(r, t) d2r, where |D|

stands for the area of D in the units of `2. Denoting
time derivatives by overdots, and omitting the bar on θ̄
for notational simplicity, this spatial averaging leads to
the following ODE for θ(t):

θ̈ + θ̇ (α+ 2β∗ cos(θ − ψ)) + β2
∗ sin(θ − ψ) cos(θ − ψ)

+ β∗p⊥ +
Q

2
Φ̃′(θ) + hext · (cos θ, sin θ)

=
δ| lnλ|
4π|D|

sin 2θ

∫
∂D

cos(2ϕ) ds

− δ| lnλ|
4π|D|

cos 2θ

∫
∂D

sin(2ϕ) ds. (25)

Next, we consider a particular physical situation in
which to study the macrospin equation, motivated by
previous work10,11. As in Refs. [14–16], we consider an
elliptical thin-film element (recall that lengths are now
measured in the units of `):

D =

{
(x, y) :

x2

a2
+
y2

b2
< 1

}
, (26)

with no in-plane crystalline anisotropy, Q = 0, and no
external field, hext = 0. We take the long axis of the
ellipse to be aligned with the ey-direction, i.e. b > a,
with the in-plane component of current polarization also
aligned along this direction, i.e., taking ψ = 0. One can
then compute the integral over the boundary in equation
(25) explicitly, leading to the equation

θ̈ + θ̇ (α+ β∗ cos θ) + Λ sin θ cos θ

+ β2
∗ sin θ cos θ + β∗p⊥ = 0, (27)
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(d)(c)

(a) (b)

FIG. 1: Solutions of macrospin equation (30) for α = 0.01, Λ = 0.1. In (a), p⊥ = 0.2, σ = 0.03: decaying solution; in (b),
p⊥ = 0.2, σ = 0.06: limit cycle solution (the initial conditions in (a) and (b) are θ(0) = 3.5, to better visualize the behavior).
In (c), p⊥ = 0.3, σ = 0.08: switching solution; in (d), p⊥ = 0.6, σ = 0.1: precessing solution.

where we introduced the geometric parameter 0 < Λ� 1
obtained by an explicit integration:

Λ =
δ| lnλ|
2π2ab

∫ 2π

0

b2 cos2 τ − a2 sin2 τ√
b2 cos2 τ + a2 sin2 τ

dτ. (28)

This may be computed in terms of elliptic integrals,
though the expression is cumbersome so we omit it here.
Importantly, up to a factor depending only on the eccen-
tricity the value of Λ is given by

Λ ∼ d

L
ln
L

d
. (29)

For example, for an elliptical nanomagnet with dimen-
sions 100 × 30 × 2.5 nm (similar to those considered in
Ref. [16]), this yields Λ ' 0.1.

It is convenient to rescale time by
√

Λ and divide

through by Λ, yielding

θ̈ +
1√
Λ
θ̇ (α+ 2σΛ cos θ) + sin θ cos θ

+ σp⊥ + σ2Λ sin θ cos θ = 0, (30)

where we introduced σ = β∗/Λ. We then apply this
ODE to model the problem of switching of the thin-film
elements, taking the initial in-plane magnetization direc-
tion to be static and aligned along the easy axis, an-
tiparallel to the in-plane component of the spin-current
polarization. Thus, we take

θ(0) = π, θ̇(0) = 0, (31)

and study the resulting initial value problem.
We note that, apart from its greater simplicity,

Eq. (30) differs from the usual Stoner-Wohlfarth equa-
tion in the way the material and geometric parameters
enter into the equation. In particular, a logarithmic de-
pendence of the effective shape anisotropy constant on
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the element’s aspect ratio changes the relative strength
of the shape anisotropy in ultrathin films and is an impor-
tant physical effect, see Eq (29). Notice that the latter
was not taken into account in the earlier studies of Refs.
[14–16] based on the Stoner-Wohlfarth model.

B. Solution phenomenology

Let us briefly investigate the solution phenomenology
as the dimensionless spin-current parameters σ and p⊥
are varied, with the material parameters, α and Λ, fixed.
We take all parameters to be constant in time for simplic-
ity. We find, by numerical integration, 4 types of solution
to the initial value problem defined above. The sample
solution curves are displayed in Fig. 1 below. The first
(panel (a)) occurs for small values of σ, and consists sim-
ply of oscillations of θ around a fixed point close to the
long axis of the ellipse, which decay in amplitude towards
the fixed point, without switching.

Secondly (panel (b)), still below the switching thresh-
old, the same oscillations about the fixed point can reach
a finite fixed amplitude and persist without switching.
This behavior corresponds to the onset of relatively small
amplitude limit-cycle oscillations around the fixed point.

Thirdly (panel (c)), increasing either σ, p⊥ or both, we
obtain switching solutions. These have initial oscillations
in θ about the fixed point near π, which increase in ampli-
tude, and eventually cross the short axis of the ellipse at
θ = π/2. Then θ oscillates about the fixed point near 0,
and the oscillations decay in amplitude toward the fixed
point.

Finally (panel (d)), further increasing σ and p⊥ we
obtain precessing solutions. Here, the initial oscillations
about the fixed point near π quickly grow to cross π/2,
after which θ continues to decrease for all t, the magne-
tization making full precessions around the out-of-plane
axis.

IV. HALF-PERIOD ORBIT-AVERAGING
APPROACH

We now seek to gain some analytical insight into the
transitions between the solution types discussed above.
We do this by averaging over half-periods of the oscil-
lations observed in the solutions to generate a discrete
dynamical system which describes the evolution of the
energy of a solution θ(t) on half-period time intervals.

Firstly, we observe that in the relevant parameter
regimes the reduced equation (30) can be seen as a weakly
perturbed Hamiltonian system. We consider both α and
Λ small, with α .

√
Λ, and assume σ ∼ α/Λ and

σp⊥ . 1. The arguments below can be rigorously jus-
tified by considering, for example, the limit Λ→ 0 while
assuming that α = O(Λ) and that the values of σ and
p⊥ are fixed. This limit may be achieved in the origi-
nal model by sending jointly d → 0 and L → ∞, while

keeping17

Ld

`2
ln
L

d
. 1. (32)

The last condition ensures the consistency of the assump-
tion that θ does not vary appreciably throughout D.

Introducing ω(t) = θ̇(t), (30) can be written to leading
order as

θ̇ =
∂H
∂ω

, ω̇ = −∂H
∂θ

, (33)

where we introduced

H =
1

2
ω2 + V (θ), V (θ) =

1

2
sin2 θ + σp⊥θ. (34)

At the next order, the effects of finite α and Λ appear
in the first-derivative term in (30), while the other forc-
ing term is still higher order. The behavior of (30) is
therefore that of a weakly damped Hamiltonian system
with Hamiltonian H, with the effects of α and σ serving
to slowly change the value of H as the system evolves.
Thus, we now employ the technique of orbit-averaging to
reduce the problem further to the discrete dynamics of
H(t), where the discrete time-steps are equal (to the lead-
ing order) to half-periods of the underlying Hamiltonian
dynamics (which thus vary with H).

Let us first compute the continuous-in-time dynamics
of H. From (34),

Ḣ = ω(ω̇ + V ′(θ)), (35)

which vanishes to leading order. At the next order, from
(30), one has

Ḣ = − ω2

√
Λ

(α+ 2σΛ cos θ). (36)

We now seek to average this dynamics over the Hamil-
tonian orbits. The general nature of the Hamiltonian
orbits is either oscillations around a local minimum of
V (θ) (limit cycles) or persistent precessions. If the local
minimum of V is close to an even multiple of π, H can-
not increase, while if it is close to an odd multiple then
H can increase if σ is large enough. This is due solely to
the change of sign of the damping-like spin-torque term in
these regions associated with the chosen spin-polarization
direction.

The switching process involves moving from the oscil-
latory orbits close to one of these odd minima, up the en-
ergy landscape, then jumping to oscillatory orbits around
the neighboring even minimum, and decreasing in energy
towards the new local fixed point. The transition to pre-
cession, on the other hand, occurs when the trajectory
escapes its initial potential well (an odd multiple of π)
with enough energy to leapfrog the next potential well
(even multiple), and thus maintain enough energy to con-
tinue to precess. These mechanisms are discussed further
in the following sections.
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Continuing with the averaging procedure, we focus
first on the oscillatory orbits. We may define their half-
periods as

T (H) =

∫ θ∗+

θ∗−

dθ

θ̇
, (37)

where θ∗− and θ∗+ are the roots of the equation V (θ) =
H to the left and right of the local minimum of V (θ)
about which θ(t) oscillates. To compute this integral, we
assume that θ(t) follows the Hamiltonian trajectory:

θ̇ = ±
√

2(H− V (θ)). (38)

We then define the half-period average of a function
f(θ(t)) as

〈f〉 =
1

T (H)

∫ θ∗+

θ∗−

f(θ) dθ√
2(H− V (θ))

, (39)

which agrees with the time average over half-period to
the leading order. Note that this formula applies irre-
spectively of whether the trajectory connects θ∗− to θ∗+
or θ∗+ to θ∗−. Applying this averaging to Ḣ, we then have〈

Ḣ
〉

= − 1

T (H)

∫ θ∗+

θ∗−

χ(θ,H) dθ, (40)

where we defined

χ(θ,H) =
(α+ 2σΛ cos θ)

√
2(H− V (θ))√

Λ
. (41)

If the value of H is such that either of the roots θ∗± no
longer exist, this indicates that the system is now on a
precessional trajectory. In order to account for this, we
can define the period on a precessional trajectory instead
as

T (H) =

∫ θC

θC−π

dθ

θ̇
, (42)

where θC is a local maximum of V (θ). On the preces-
sional trajectories, we then have〈

Ḣ
〉

= − 1

T (H)

∫ θC

θC−π
χ(θ,H) dθ. (43)

In order to approximate the ODE solutions, we now
decompose the dynamics of H into half-period time in-
tervals. We thus take, at the n’th timestep, Hn = H(tn),
tn+1 = tn + T (Hn) and

Hn+1 = Hn −
∫ θ∗+(Hn)

θ∗−(Hn)

χ(θ,Hn) dθ, (44)

if Hn corresponds to a limit cycle trajectory. The same
discrete map applies to precessional trajectories, but with
the integration limits replaced with θC − π and θC , re-
spectively.

A. Modelling switching with discrete map

In order to model switching starting from inside a well
of V (θ), we can iterate the discrete map above, starting
from an initial energy H0. We choose H0 by choosing a
static initial condition θ(0) = θ0 close to an odd multiple
of π (let us assume without loss of generality that we are
close to π), and computing H0 = V (θ0).

On the oscillatory trajectories, the discrete map then
predicts the maximum amplitudes of oscillation (θ∗±(Hn))
at each timestep, by locally solving Hn = V (θ) for each
n. After some number of iterations, the trajectory will
escape the local potential well, and one or both roots of
Hn = V (θ) will not exist. Due to the positive average
slope of V (θ) the most likely direction for a trajectory to

escape the potential well is θ̇ < 0 (‘downhill’). Assuming
this to be the case, at some timestep tN , it will occur that
the equation HN = V (θ) has only one root θ = θ∗+ > π,
implying that the trajectory has escaped the potential
well, and will proceed on a precessional trajectory in a
negative direction past θ = π/2 towards θ = 0.

To distinguish whether a trajectory results in switching
or precession, we then perform a single half-period step
on the precessional orbit from θC to θC − π, and check
whether H < V (θC − π): if this is the case, the tra-
jectory moves back to the oscillatory orbits around the
well close to θ = 0, and decreases in energy towards the
fixed point near θ = 0, representing switching. If how-
ever H > V (θC − π) after the precessional half-period,
the solution will continue to precess.

In Fig. 2 below, we display the result of such an iter-
ated application of the discrete map, for the same param-
eters as the switching solution given in Fig. 1(c). In Fig.
2(a), the continuous curve represents the solution to (30),
and the points are the predicted peaks of the oscillations,
from the discrete map (44). Fig. 2(b) shows the energy
of the same solution as a function of θ. Again the blue
curve gives H(t) for the ODE solution, the green points
are the prediction of the iterated discrete map, and the
red curve is V (θ). The discrete map predicts the switch-
ing behavior quite well, only suffering some error near
the switching event, when the change of H is significant
on a single period.

B. Modelling precession

Here we apply the discrete map to a precessional
solution—one in which the trajectory, once it escapes
the potential well near π, does not get trapped in the
next well, and continues to rotate. Fig. 3(a) below dis-
plays such a solution θ(t) and its discrete approximation,
and Fig. 3(b) displays the energy of the same solution.
Again, the prediction of the discrete map is excellent.

An important point to note here is that whether a tra-
jectory switches or precesses after escaping its initial po-
tential well depends only on the details of the half-period
during which it escapes. In particular, the resulting tra-
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(b)(a)

FIG. 2: Switching solution (blue line) and its discrete approximation (green circles). Parameters: α = 0.01, Λ = 0.1, p⊥ = 0.3,
σ = 0.08. Panel (a) shows the solution θ(t), and panel (b) shows the trajectory for this solution in the H− θ plane. The red
line in (b) shows V (θ).

jectory after escape depends on the value of Hn at the
start of this half-period and on the ‘slope’ of the ratchet
potential (as can be seen in panel (b) of Figs. 2 and
3). We will use this fact in the following section to ob-
tain analytical predictions of the transitions between the
different types of trajectory as the parameters are varied.

V. TRANSITIONS IN TRAJECTORIES

In this section we seek to understand the transi-
tions between the trapping, switching, and precessional
regimes as the current parameters σ and p⊥ are varied.

A. Escape Transition

Firstly, let us consider the transition from states which
are trapped in a single potential well, such as those in
Figs. 1(a,b), to states which can escape and either switch
or precess. Effectively, the absolute threshold for this
transition is for the value of H to be able to increase for
some value θ close to the minimum of V (θ) near π. Thus,
we consider the equation of motion (36) for H, and wish

to find parameter values such that Ḣ > 0 for some θ near
π. This requires that

ω2

√
Λ

(α+ 2σΛ cos θ) < 0. (45)

Assuming that ω 6= 0, we can see that the optimal value
of θ to hope to satisfy this condition is θ = π, yield-
ing a theoretical minimum σ = σs for the dimensionless
current density for motion to be possible, with

σs =
α

2Λ
. (46)

This is similar to the critical switching currents derived
in previous work14. We then require σ > σs for the possi-
bility of switching or precession. Note that this estimate
is independent of the value of p⊥.

B. Switching–Precessing Transition

We now consider the transition from switching to pre-
cessional states. This is rather sensitive and there is not
in general a sharp transition from switching to precession.
It is due to the fact that for certain parameters, the path
that the trajectory takes once it escapes the potential
well depends on how much energy it has as it does so. In
fact, for a fixed α,Λ, and values of σ > σs we can sep-
arate the (σ, p⊥)-parameter space into three regions: (i)
after escaping the initial well, the trajectory always falls
into the next well, and thus switches; (ii) after escaping,
the trajectory may either switch or precess depending on
its energy as it does so (and thus depending on its initial
condition); (iii) after escaping, the trajectory completely
passes the next well, and thus begins to precess.

We can determine in which region of the parameter
space a given point (σ, p⊥) lies by studying the discrete
map (44) close to the peaks of V (θ). Assume that the
trajectory begins at θ(0) = π, and is thus initially in
the potential well spanning the interval π/2 ≤ θ ≤ 3π/2.
Denote by θC the point close to θ = π/2 at which V (θ)
has a local maximum. It is simple to compute

θC =
π

2
+

1

2
sin−1(2σp⊥). (47)

Moreover, it is easy to see that all other local maxima of
V (θ) are given by θ = θC + kπ, for k ∈ Z.

We now consider trajectories which escape the initial
well by crossing θC . These trajectories have, for some
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(a) (b)

FIG. 3: Precessing solution (blue line) and its discrete approximation (green circles). Parameters: α = 0.01, Λ = 0.1, p⊥ = 0.6,
σ = 0.1. Panel (a) shows the solution θ(t), and panel (b) shows the trajectory for this solution in the H − θ plane. The red
line in (b) shows V (θ).

value of the timestep n while still confined in the initial
well, an energy value Hn in the range

Htrap < Hn < V (θC + π), (48)

where we define Htrap to be the value of Hn such that
the discrete map (44) gives Hn+1 = V (θC). We thus
have Hn+1 > V (θC). In order to check whether the
trajectory switches or precesses, we then compute Hn+2

and compare it to V (θC − π). We may then classify the
trajectories as switching if Hn+2 − V (θC − π) < 0, and
precessional if Hn+2 − V (θC − π) > 0.

Figure 4 displays a plot of Hn − V (θC + π) against
Hn+2 − V (θC − π). The blue line shows the result of
applying the discrete map, while the red line is the iden-
tity line. Values of Hn − V (θC + π) which are inside the
range specified in (48) are thus on the negative x-axis
here. We can classify switching trajectories as those for
which the blue line lies below the x-axis, and precessing
trajectories as those which lie above. In Fig. 4, the pa-
rameters are such that both of these trajectory types are
possible, depending on the initial value of Hn, and thus
this set of parameters are in region (ii) of the parameter
space. We note that, since the curve of blue points and
the identity line intersect for some large enough value of
H, this figure implies that if the trajectory has enough
energy to begin precessing, then after several precessions
the trajectory will converge to one which conserves en-
ergy on average over a precessional period (indicated by
the arrows). In region (i) of the parameter space, the
portion of the blue line for Hn − V (θC + π) < 0 would
have Hn+2 − V (θC − π) < 0, while in region (iii), they
would all have Hn+2 − V (θC − π) > 0.

We can classify the parameter regimes for which
switching in the opposite direction (i.e. θ switches from
π to 2π) is possible in a similar way. It is not possible
to have a precessional trajectory moving in this direction

(θ̇ > 0), though.
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−0.05
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0.03

0.04

0.05

Hn − V (θC + π )

H
n
+
2
−

V
(θ

C
−

π
)

Switch Precess

FIG. 4: Precession vs switching prediction from the discrete
map. Parameters: α = 0.01, Λ = 0.1, p⊥ = 0.35, σ = 0.08.
Values of Hn−V (θC +π) to the left of the dashed line switch
after the next period, the trajectory becoming trapped in the
well around θ = 0. Values to the right begin to precess, and
converge to a precessional fixed point of the discrete map.

We may then predict, for a given point (σ, p⊥) in pa-
rameter space, by computing relations similar to that in
Fig. 4, which region that point is in, and thus generate
a theoretical phase diagram. We note that this method
provides an almost entirely analytical way (one only has
to compute two integrals: one at either end of the range
(48)) to predict in which region of the phase diagram
a given point lies. Additionally, it highlights the physi-
cal mechanism behind the existence of region (ii), where
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(b)(a)

FIG. 5: Macrospin solution phase diagrams for α = 0.01,Λ = 0.1: (a), the result of iterating the discrete map (30) with initial
energy Hn = V (π) corresponding to the initial condition (31)); (b), the result of a direct numerical solution of the macrospin
ODE (30) with initial condition (31). Dark regions to the left of the figures indicates solutions which do not escape their
initial potential well, and the vertical dashed white line shows the computed value of the minimum current required to escape,
σs = α/(2Λ). The black bands represent solutions which decay, like in Fig. 1(a), while the dark grey bands represent limit
cycle solutions like in Fig. 1(b). In the rest of the figures, the green points indicate switching in the negative direction like in
Fig. 1(c), grey indicate switching in the positive direction, and white indicates precession like in Fig. 1(d). The solid black
curves are the analytic predictions of boundaries of the regions (as indicated in the figure) by using the discrete map, and the
dashed line is the prediction of the boundary below which switching in the positive direction is possible.

one cannot reliably say whether a given set of parame-
ters will lead to switching or precession. Namely, that in
this region, the end result of the trajectory depends only
on the amount of energy (the value of H) it has on the
oscillation period during which it leaves the initial po-
tential well. Moreover, this value depends sensitively on
the initial condition of the magnetization vector (or, for a
fixed initial condition, on the parameter values chosen).
In region (i), the slope of the potential is shallow enough
relative to the current density that the trajectory cannot
fully escape and enter precession. Conversely in region
(iii) the opposite is true and the steepness of the potential
relative to current density is such that when the trajec-
tory escapes the initial well, it has far too much energy
to possibly drop into the next well.

In Fig. 5, we display the phase diagram in the (σ, p⊥)-
parameter space, showing the end results of solving the
ODE (30) (panel (b)) and of simply iterating the discrete
map (44) (panel (a)) as a background color, together
with predictions of the bounding curves of the three re-
gions of the space, made using the procedure described
above, in panel (a). The analytic predictions of the dis-
crete map predict the behavior of the iterated map very
well, and provide useful estimates on the different regions
of parameter space. The predictions do not match per-
fectly with the ODE solutions, but the diagrams have
qualitatively the exact same structure, and are actually
quantitatively fairly close. In particular, we note that
the region where downhill switching reliably occurs (the
portion of region (i) above the dashed black line) is es-
timated quite well. We would also note that we would

expect the predictions of the discrete map to improve if
the values of Λ and α were decreased. Finally, we see
that the uncertainty of switching vs. precession in re-
gion (ii) is displayed by the direct ODE solutions, with
the end result of the trajectories depending sensitively on
the parameter values.

VI. SWITCHING SIMULATIONS FOR PDE

In order to investigate the influence of the boundary
condition (22) and possible spatial inhomogeneities in the
magnetization on the dynamics, as well as to further val-
idate our macrospin approximation, we now study the
full PDE system (20)-(22) in a strip geometry, assum-
ing that spatial variations only occur across the width
of the strip. This can be seen as a caricature that cap-
tures the behavior of the magnetization in an ellipse of a
sufficiently large aspect ratio. The current polarization
direction is along the axis of the strip.

In Fig. 6 below we display 3 different solutions of (20)-
(22) in strips of increasing width. The blue curves dis-
play the magnetization angle θ, averaged across the strip
width, as functions of time. The green curves show the
values of θ at the boundary, which deviate most from the
average across the width. The red curves show the val-
ues of θ at the center of the strip. The deviations from
spatially uniform magnetizations increase as the width of
the strip increases. However, the deviations are still quite
small up to a strip width of 90nm (18 exchange lengths).
The macrospin approximation is thus well justified even
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in fairly large samples when the geometry is sufficiently
anisotropic.

In Fig. 7 below, we display the nature of the spatial de-
viations in θ. We observe that, effectively, the boundary
condition results in a weak pinning effect on the magneti-
zation near the boundary, resulting in smaller oscillations
close to the boundary and larger ones in the bulk. Thus,
the points of θ(x) which deviate the most from the av-
erage, as plotted in Fig. 6, are typically the boundary
values.

The simulations presented in this section have shown
that the spatial variations in θ(x, t) that occur during
a switching process typically display a certain structure,
where the amplitude of the oscillations in magnetization
leading up to the switching event grow faster in the bulk
of the material, with the boundary conditions serving to
provide a weak pinning effect which slows the average
growth of the oscillations. This apparent spatial struc-
ture does not qualitatively affect the nature of the switch-
ing process overall, with the solutions in Fig. 6 looking
very similar to macrospin switching solutions, even for
samples of relatively large width.

VII. DISCUSSION

We have derived an underdamped PDE model for mag-
netization dynamics in thin films subject to perpendic-
ular applied spin-polarized currents, valid in the asymp-
totic regime of small α and Λ, corresponding to weak
damping and strong penalty for out-of-plane magnetiza-
tions. We have examined the predictions of this model
applied to the case of an elliptical film under a macrospin
approximation by using an orbit-averaging approach. We
found that they qualitatively agree quite well with pre-
vious simulations using full LLGS dynamics16, as well as
simulations of our derived PDE model.

The benefits of our reduced model are that they should
faithfully reproduce the oscillatory nature of the in-
plane magnetization dynamics, reducing computational
expense compared to full micromagnetic simulations. In
particular, in sufficiently small and thin magnetic ele-
ments the problem further reduces to a single second-
order scalar equation.

Restricting this further to a macrospin approximation
allows for further analytical study of the behavior, while
maintaining a good qualitative agreement with the na-
ture of the full PDE dynamics. The orbit-averaging ap-
proach taken here enables the analytic investigation of
the transition from switching to precession via a simple
discrete dynamical system, which highlights the mech-
anisms for switching and precession in terms of the
parameter-dependent potential function V (θ). The re-
gions in parameter space where either switching or pre-
cession are predicted, as well as an intermediate region
where the end result depends sensitively on initial con-
ditions. It may be possible to further probe this region
by including either spatial variations in the magnetiza-
tion (which, in an earlier study16 were observed to sim-
ply ‘slow down’ the dynamics and increase the size of
the switching region) and doing a full numerical inves-
tigation of the phase diagram similar to Fig. 5 for our
derived PDE model (20)-(22), or by including thermal
noise which could result in a phase diagram predicting
switching probabilities at a given temperature, or both.
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(a) (b) (c)

FIG. 6: Switching solutions for full PDE model (20)-(22) in a strip geometry with assumed 1D variations, for 3 different strip
widths. Parameters d = 2.5nm, ` = 5nm, α = 0.01, β∗ = 0.01, p⊥ = 0.2. Panel (a), width L = 30nm; panel (b), width
L = 60nm; panel (c), width L = 90nm. The blue curves display the magnetization angle θ, averaged across the strip width, as
functions of time. The green curves show the values of θ at the boundary. The red curves show the values of θ at the center of
the strip.
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FIG. 7: Spatial variations in θ in PDE solutions for strip of
width 90nm. The other parameters are as in Fig. 6. Color
represents the values of θ(x, t).
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