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Linear Heisenberg antiferromagnets (HAFs) are chains of spin-S sites with isotropic exchange J
between neighbors. Open and periodic boundary conditions return the same ground state energy per
site in the thermodynamic limit, but not the same spin SG when S ≥ 1. The ground state of open
chains of N spins has SG = 0 or S, respectively, for even or odd N . Density matrix renormalization
group (DMRG) calculations with different algorithms for even and odd N are presented up to
N = 500 for the energy and spin densities ρ(r,N) of edge states in HAFs with S = 1, 3/2 and 2.
The edge states are boundary-induced spin density waves (BI-SDWs) with ρ(r,N) ∝ (−1)r−1 for
r = 1, 2, . . . N . The SDWs are in phase when N is odd, out of phase when N is even, and have
finite excitation energy Γ(N) that decreases exponentially with N for integer S and faster than
1/N for half integer S. The spin densities and excitation energy are quantitatively modeled for
integer S chains longer than 5ξ spins by two parameters, the correlation length ξ and the SDW
amplitude, with ξ = 6.048 for S = 1 and 49.0 for S = 2. The BI-SDWs of S = 3/2 chains are
not localized and are qualitatively different for even and odd N . Exchange between the ends for
odd N is mediated by a delocalized effective spin in the middle that increases |Γ(N)| and weakens
the size dependence. The nonlinear sigma model (NLσM) has been applied the HAFs, primarily to
S = 1 with even N , to discuss spin densities and exchange between localized states at the ends as
Γ(N) ∝ (−1)N exp(−N/ξ). S = 1 chains with odd N are fully consistent with the NLσM; S = 2
chains have two gaps Γ(N) with the same ξ as predicted whose ratio is 3.45 rather than 3; the
NLσM is more approximate for S = 3/2 chains with even N and is modified for exchange between
ends for odd N .

PACS numbers: 75.10.Pq,75.10.Kt,75.30.Fv,75.40.Mg

I. INTRODUCTION

The Hilbert space of a system of N spins S has di-
mension (2S + 1)N . The total spin ST ≤ NS and its z
components are conserved for isotropic (Heisenberg) ex-
change interactions between spins. The simplest case is a
chain with equal exchange J between nearest neighbors.
A great many theoretical and experimental studies have
been performed on the linear Heisenberg antiferromagnet
(HAF), Eq. 1 below, with S = 1/2 and J > 0. There
are multiple reasons why. First, there are good physical
realizations of spin-1/2 chains in inorganic crystals with
localized spins on metal ions and in organic crystals based
on one-dimensional (1D) stacks of radical ions. Second,
the Hilbert space is smallest for S = 1/2 for any choice
of exchange interactions, small enough to access the full
spectrum and thermal physics for comparison with ex-
periment. Third, long ago Bethe and Hulthen obtained
the exact ground state1 of the infinite chain with antifer-
romagnetic exchange between nearest neighbors, a proto-
typical gapless many-body system with quasi-long-range
order.

HAFs and related chains with S ≥ 1 came to the fore
with Haldane’s conjecture based on field theory that in-
teger S chains are gapped.2 Shortly thereafter, White
introduced the density matrix renormalization group
(DMRG) method that made possible accurate numeri-
cal calculation of the ground state properties of S ≥ 1

chains.3 The thermodynamic limit of spin chains with
exchange interactions leads to quantum phase diagrams
with many interesting correlated phases. According to
the valence bond solid (VBS) analysis,4 integer S chains
have localized edge states with spin s = S/2. DMRG
studies of finite chains have confirmed edge states in both
integer5,6 S and half integer7,8 S chains. Machens et al.,9

have recently discussed short S ≥ 1 HAFs with compa-
rable energies for bulk excitations and edge states. They
summarize previous studies such as the relation of S ≥ 1
HAFs to the nonlinear σ model (NLσM), its application
to edge states, the VBS model and its valence bond di-
agrams. Qin et al.,7 applied DMRG to HAFs up to 100
spins to discuss the energies of edge states and to dis-
tinguish between chains of integer and half integer S.
DMRG is quantitative for S = 1 HAFs of N ≤ 100 spins
with correlation length ξ ∼ 6 and large Haldane gap.
Longer chains are necessary for the S = 2 HAF with
ξ ∼ 50 or for the gapless S = 3/2 HAF.

In this paper we consider edge states of HAFs with
S = 1, 3/2 and 2 in systems of up to 500 spins. We use
conventional DMRG for chains with an even number of
spins and another algorithm for chains with an odd num-
ber of spins. We compute and model the spin densities
of edge states as well as their excitation energies. The
Hamiltonian of the spin-S HAF chain with open bound-
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ary conditions (OBC) is

HS(N) = J

N−1∑
r=1

~Sr · ~Sr+1. (1)

The spin at site r is Sr, the total spin ST and its z com-
ponent Sz are conserved, and J = 1 is a convenient unit
of energy.

The terminal spins r = 1 and N are coupled to only
one spin in Eq. 1. Periodic boundary conditions (PBC)
also has J between sites 1 and N . Every spin is then
coupled to two neighbors, the system has translational
symmetry, and the smallest ST is expected in the ground
state (GS) for AF exchange. Indeed, the GS of PBC
chains is a singlet, spin SG = 0, except for odd N and
half integer S, when SG = 1/2. The sectors of integer and
half integer S are disjoint, and even N is conventionally
taken for the thermodynamic limit. As noted by Faddeev
and Takhtajan, the thermodynamic limit of the S = 1/2
HAF with odd N is not well understood.10

HAFs with OBC are fundamentally different because
there is no energy penalty for parallel spins at sites 1 and
N . The GS of Eq. 1 remains a singlet for even N , but
it becomes a multiplet with SG = S and Zeeman degen-
eracy (2SG + 1) for odd N . The lowest-energy triplet is
necessarily an excited state when N is even. For integer
S, the singlet is an excited state when N is odd, while
for half integer S > 1/2, the doublet is an excited state
when N is odd. Except in the S = 1/2 case, SG depends
on the boundary conditions for arbitrarily large systems.
It follows that HAFs with OBC support edge states with
SG ≥ 1 whose energies per site become degenerate in the
thermodynamic limit with those of PBC systems with
SG = 0 or 1/2.

We define the energy gaps of edge states in chains of
N spins as

ΓS(N) = E0(S,N)− E0(0, N), (2)

where E0(S,N) is the lowest energy in the sector with
total spin S. Even N leads to ΓS(N) > 0. Odd N leads
to ΓS(N) < 0 for integer S and to ΓS(N) < 0 relative to
E0(1/2, N) for half integer S. Since DMRG algorithms
conserve Sz rather than S, the most accurate results are
the GS in sectors with increasing Sz and ΓS(N) > 0.
Otherwise, the singlet or doublet is an excited state in
the Sz = 0 sector for integer S or in the Sz = 1/2 sec-
tor for half integer S. The size dependence of ΓS(N)
is faster than 1/N , which distinguishes gap states from
bulk excitations that may also have zero gap in the ther-
modynamic limit.

We shall characterize edge states using spin densities
and call them boundary-induced spin density waves (BI-
SDWs). BI-SDW is more descriptive than edge state and
is more accurate than localized state, since BI-SDWs are
not localized in half integer S chains. By convention, we
choose the Zeeman level Sz = S when S ≥ 1 and define
the spin density at site r as

ρ(r,N) = 〈Sz
r 〉, r = 1, 2 . . . N. (3)

The expectation value is with respect to the state of in-
terest. Singlet states have ρ(r,N) = 0 at all sites. SDWs
with S ≥ 1 have equal spin density at r and N + 1 − r
by symmetry in chains, ρ(N) = ρ(1) > 0 by construction
and ρ(r,N) ∝ (−1)r−1. It is advantageous to focus on
spin densities rather than energy gaps. Spin densities are
exclusively associated with S > 0 states while the ΓS(N)
in Eq. 2 are small differences between extensive energies.

The NLσM is a good approximation for S ≥ 1 HAFs,
and theoretical discussions have focused as much on field
theory as on spin chains.11–13 The model for integer S
chains relates edge states to an effective Hamiltonian be-
tween spins s′ = S/2 at the ends,9

Heff (N) = (−1)NJe exp(−N/ξ)~s′1 · ~s′N . (4)

The correlation length ξ and exchange Je are fit to
DMRG results for HS . An interesting point is that
ξ refers to the bulk, the singlet GS in the thermody-
namic limit, as has been confirmed within numerical ac-
curacy in S = 1 chains.5 The S = 2 chain has two gap
states that afford more stringent tests of Eq. 4. For ex-
ample, the ratio of the two gaps is necessarily 3:1 for
s′1 = s′N = 1. Edge states in HAFs with half integer
S ≥ 3/2 have been discussed7,9,14 using Heff with effec-
tive spins s′ = (S − 1/2)/2 and effective exchange J ′(N)
that decreases faster than 1/N but not exponentially.

Our principal goal is the quantitative description of
edge states in HAFs that are sufficiently long to neglect
bulk excitations in S = 3/2 or 2 chains. The paper is
organized as follows. Section II summarizes conventional
DMRG algorithm for even N and a different algorithm
for odd N that is related to Y junctions. Section III
presents BI-SDWs spin densities and gaps for S = 1 and
S = 2 chains with finite Haldane gaps and finite corre-
lation lengths ξ. DMRG returns ξ = 6.048 for S = 1
chains, in agreement with 6.03(1) reported previously,5

and ξ = 49.0 for S = 2 chains. DMRG spin densities
are fit quantitatively by BI-SDWs that are in phase for
odd N , out of phase for even N . The coupling Heff (N)
between ends is quantitative for S = 1 chains and is
semi quantitative for S = 2 chains, in qualitative agree-
ment with the VBS picture of localized spins. Section IV
presents the BI-SDWs and gaps of the S = 3/2 chain.
The BI-SDWs are not localized in this case. The singlet-
triplet gap Γ1(N) for even N decreases faster than 1/N ,
as anticipated by Ng.14 The gap Γ3/2(N) for odd N re-
quires a modified Heff (N) with a delocalized spin in cen-
tral part in addition to spins at the ends. The delocalized
spin rationalizes |Γ3/2(N)| > Γ1(N) and a weaker size de-
pendence. The Discussion summarizes the limited nature
of connections to the NLσM or to VBS.

II. DMRG ALGORITHMS

By now, DMRG is a mature numerical method for 1D
systems.15,16 It gives excellent low-energy properties and
has been widely applied to spin chains. Conventional
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DMRG starts with a superblock that consists of four
sites: one site in the left block, one in the right block
and two new sites, the central sites. The left and right
blocks increase by one site as two new sites are added at
every step. The procedure generates a chain with OBC
and an even number of sites N . The vast majority of
DMRG calculations been performed on chains with even
N . White has discussed17 an algorithm with one rather
than two central sites that speeds up the computational
time by a factor of two to four. The method was tested
on an S = 1 HAF of 100 spins.

We use conventional DMRG for spin chains with even
N and adapt an algorithm for odd N that was developed
for Y junctions.18 Y junctions of N = 3n+ 1 spins have
three arms of n spins plus a central site for which we
recently presented an efficient DMRG algorithm. Fig. 2
of Ref. 18 shows the growth of the infinite DMRG algo-
rithm. A chain of N = 2n+1 spins can be viewed as two
arms of n spins plus a central site. The algorithm takes
the system as an arm plus the central site and the envi-
ronment as the other arm. Since the system of n+1 spins
at step n becomes the environment at the next step, the
chain grows by two spins at each step. The procedure
described for Y junctions18 holds with one fewer arm for
chains of N = 2n+ 1 spins.

The accuracy of the algorithm for odd N is compara-
ble to conventional DMRG, as has already been shown
for Y functions.18 In either algorithm, new sites are cou-
pled to the most recently added sites and the superblock
Hamiltonian contains only new and once renormalized
operators. Table I has representative DMRG results for
the ground states of S = 2 and 3/2 chains with N ≥ 100
spins. The index m is the number of states kept per
block. The truncation error is P (m) = 1−

∑m
j ωj where

the sum is over the eigenvalues ωj of the density matrix.
Several sweeps of finite DMRG calculations are required
for S = 3/2 or 2, with N calculations per sweep, and
finite DMRG is necessary for accurate spin densities. In-
creasing m rapidly increases the required computer re-
sources for long chains and involves trade offs. We have
checked our results against previous studies in Table I as
well as against S = 1 chains and find comparably small
or smaller P (m) that amount to evolutionary improve-
ments for even N . The algorithm for odd N returns
equally small P (m).

In the following we have set m according to Table I
and performed 5-10 sweeps of finite DMRG for S = 2
and 3/2 chains. We estimate that GS energies per site
are accurate to 10−8 for S = 1 chains, to 10−6 for S =
3/2 and to 10−5 for S = 2. Comparable estimates are
discussed using various criteria in works cited in Table 1.
The energy gaps ΓS(N) between the GS in sectors with
different total spin are accurate to 10−5 for S = 1 and
to 10−4 for S = 3/2 or 2. Haldane gaps ∆(S) have been
reported20 to S = 5, again using various criteria. We
estimate that spin densities are accurate to better than
10−4 based, for example, on DMRG calculations with
different algorithms for N and N − 1. Accurate ρ(r,N)

TABLE I. Representative previous and present DMRG calcu-
lations for HAF chains with spin S = 2 or 3/2 and N ≥ 100
sites. The truncation error is P (m) when m states are kept
per block.

N, [Ref.] S m P (m)
270 [6] 2 210 1× 10−7

150 [19] 2 250 1× 10−6

100 [7] 3/2 120 3× 10−7

192 [8] 3/2 500–800 1× 10−7 – 1× 10−8

400 2 600 1.1× 10−7

399 2 500 8.5× 10−9

400 3/2 460 8.4× 10−7

399 3/2 460 1.4× 10−7

are readily obtained in large systems whose ΓS(N) are
not accessible.

III. INTEGER SPIN, S = 1 AND 2

We start with the extensively studied S = 1 HAF with
OBC and even N . The large Haldane gap5,20 ∆(1) =
0.4105 reduces the computational effort. The singlet-
triplet gap Γ1(N) in Eq. 2 decreases rapidly with system
size. The GS alternates between SG = 0 and 1 for even
and odd N , respectively. We evaluate Γ1(N) for even
N as the difference of the total energy in the sectors
Sz = 0 and 1. In addition, we also obtain Γ1(N) < 0 for
odd N using the first excited state in the Sz = 0 sector.
The excited state is accurate to 10−6 for m > 300. As
shown in the upper panel of Fig. 1 with different symbols
for even and odd N , |Γ1(N)| decreases as Je exp(−N/ξ)
with ξ = 6.048. The effective exchange between the ends
is Je = 0.7137 in Eq. 4 with spins s′ = 1/2. The effective
Hamiltonian is quantitative for S = 1 chains. The gap at
N = 80 is 1.5 × 10−6, which still exceeds the estimated
numerical accuracy. The inset shows the relevant VBS
valence bond diagram.4 Each line is a singlet pair, (αβ−
βα)/

√
2, between S = 1/2 spins, two per S = 1 site, and

the circles are unpaired spins at the ends.
Comparable DMRG accuracy for S = 1 chains with

even N has been discussed previously. Sørensen and Af-
fleck found ξ = 6.07 for Γ1(N) and 6.028(3) for spin
densities.21 White and Huse obtained5 the GS energy
per site very accurately and reported ξ = 6.03(1) for the
spin densities of a 60-site chain with an auxiliary spin-
1/2 at one end (site N + 1 in Eq. 1). Schollwöck et al.,6

discussed the same procedure for S = 2 chains with even
N and an auxiliary spin-1 at one end. Auxiliary spins
at both ends with adjustable exchange to sites 1 and N
can be used to study bulk excitations.5 In this paper, we
shall not resort to auxiliary spins. We always consider
BI-SDWs at both ends of chains.

The spin densities ρ(r, 65) in Fig. 1, lower panel, are for
the GS of the 65-spin chain. We take Sz = 1 and obtain
positive ρ(r) at odd numbered sites and negative ρ(r) at
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FIG. 1. Upper panel: Singlet-triplet gap |Γ1(N)| of S = 1
chains with N spins, even or odd, in Eq. 1; inset: VBS valence
bond diagram for N = 8. Lower panel: Spin densities ρ(r, 65)
of the S = 1 chain with 65 spins.

even numbered sites, respectively. All chains with S > 0
have ρ(r,N) ∝ (−1)r−1, which is why call them as BI-
SDWs. Table II lists the spin densities of the first 10 sites
in chains of 66/65 spins and 48/47 spins. The 66/65 spin
densities clearly refer to the same triplet and speak to the
numerical accuracy since different algorithms are used.
The spin density at site 1 is slightly greater than 1/2, and
so is the total spin density to odd-numbered sites. The
total spin density to an even-numbered site approaches
1/2 from below and exceeds 0.45 at r = 10. The apparent
exponential decrease of |ρ(r,N)| does not hold for the
first few sites since, for example, |ρ(2)| < ρ(3). The
triplets are identical near the ends but of course differ
at the middle of the chain, where ρ(33, 65) = 4.82 ×
10−3 becomes ρ(33, 66) = ρ(34, 66) = 3.7 × 10−4. Out
of phase BI-SDWs for even N have small but equal ρ
at sites N/2 and N/2 + 1. The 48/47 data illustrate
the weak size dependence of spin densities at the ends.
Well-defined edge states must become size independent.
The first 10 sites of N = 65 or 66 chains are close to the
thermodynamic limit of BI-SDWs.

To minimize the even-odd variations of spin densities
and to divide out an overall scale factor, we consider the
function

f(r,N) =
ρ(r − 1)− ρ(r + 1)

ρ(r − 1) + ρ(r + 1)
≈ − ∂

∂r
ln |ρ(r,N)|. (5)

f(r,N) is odd with respect to the chain’s midpoint while
|ρ(r,N)| is even. Figure 2 shows ln |f(r,N)| for S = 1
chains up to the middle, r ≤ (N + 1)/2. The DMRG
points near the edge become size independent. Except
for the first few (∼ 10) sites, f(r,N) is constant up to
about N/2 − 2ξ. The difference between even and odd
N is clearly seen in the middle region, and f(r,N) for
even, odd pairs are a convenient way to present spin

TABLE II. DMRG results for spin densities at the first ten
sites of S = 1 chains of N spins.

Site N = 66 N = 65 N = 48 N = 47
1 0.53204 0.53204 0.53198 0.53211
2 -0.32090 -0.32091 -0.32081 -0.32102
3 0.37324 0.37326 0.37311 0.37342
4 -0.26515 -0.26517 -0.26495 -0.26541
5 0.26242 0.26245 0.26216 0.26275
6 -0.19992 -0.19996 -0.19958 -0.20037
7 0.18544 0.18549 0.18502 0.18599
8 -0.14688 -0.14694 -0.14635 -0.14757
9 0.13166 0.13173 0.13101 0.13249
10 -0.10675 -0.10685 -0.10597 -0.10777
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FIG. 2. Symbols are DMRG spin densities in f(r,N), Eq. 5,
to the middle of S = 1 chains of N spins. The lines are Eq. 8
with correlation length ξ = 6.048. The horizontal dashed line
is the thermodynamic limit.
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FIG. 3. Symbols are DMRG results for |ρ(r,N)| to the
middle of S = 1 chains. Lines are Eq. 7 with ξ = 6.048 and
A = 0.566. Even and odd N deviate from A exp(−r/ξ) near
the middle of chains.
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densities directly without making any assumptions about
the appropriate model or interpretation. It follows that
the thermodynamic limit is ln |f(r)| = −1.801. The
lines are fits as discussed below using the correlation
length ξ = 6.048 from the gap Γ1(N), in accord with
the NLσM’s expectation of equal ξ for gaps and spin
densities.

The magnitudes of the spin densities are shown in
Fig. 3 as a function of r/ξ up to the middle of the chains.
They decrease as A exp(−r/ξ) and deviate upward in the
middle for odd N , downwards for even N . The amplitude
A is independent of system size when N/ξ > 5.

To model the spin densities of integer S chains, we

introduce SDWs at the left and right ends,

ρ(r,N) = A(−1)r−1 [exp(−r/ξ)
−(−1)N exp (−(N + 1− r)/ξ)

]
. (6)

The SDWs are in phase for odd N when all odd-
numbered sites have ρ > 0; they are out of phase for
even N with equal ρ at sites N/2 and N/2 + 1. Ex-
cept for Ref. 21, the spin densities have been assumed
to decrease exponentially, thereby ignoring contributions
from the other end. While that is the case in the ther-
modynamic limit, N > 10ξ is minimally required to ne-
glect contributions from the other BI-SDW in the mid-
dle. Since the system size in DMRG calculations rarely
exceeds 10ξ, it is advantageous to consider both ends.
We have

ρ(r,N) = 2A(−1)r−1 exp (−(N + 1)/2ξ)

{
cosh ((N + 1− 2r)/2ξ) , (odd N)

sinh ((N + 1− 2r)/2ξ) , (even N)
(7)

The postulated BI-SDWs lead to

f(r,N) = tanh(1/ξ)

{
tanh ((N + 1− 2r)/2ξ) , (odd N)

coth ((N + 1− 2r)/2ξ) , (even N)
(8)

The relative phase of the SDWs matters within ±2ξ of
the middle. The range of r is the same for N and N − 1
when N is even.

The lines in Fig. 2 are ln |f(r,N)| for ξ = 6.048 and
continuous r in Eq. 8. The thermodynamic limit is
f(r) = tanh(1/ξ), the dashed line in Fig. 2, and it re-
duces to 1/ξ for an integer S chain with small Haldane
gap and very long spin correlations. The continuum ap-
proximation for discrete chains is better for S = 2 than
for S = 1 and is even better for larger S.

The correlation length ξ is accurately obtained using
both even and odd chains. The N = 119/120 spin den-
sities indicate a gap of Γ1(120) = 1.72× 10−9 that is far
below the accuracy of the energy difference. DMRG spin
densities are also limited, however, to less than 149/150;
there the ρ(r,N) show considerable scatter where f(r,N)
has even-odd variations. The SDW amplitude A = 0.566
in Fig. 3 accounts quantitatively for spin densities aside
from the first few. The parameters ξ and A suffice for all
fits in Figs. 2 and 3. Our results for S = 1 edge states ex-
tend the analysis to chains with an odd number of spins
and refine previous results for even N in which gaps and
spin densities returned slightly different ξ.

The S = 2 chain has a smaller Haldane gap20 of
∆(2) = 0.088. Numerical analysis is more difficult since
(i) there are more degrees of freedom per site; (ii) N > 5ξ
requires longer chains; and (iii) gaps ΓS(N) < ∆(2) also
require longer chains to distinguish between edge and
bulk excitations. Results are fewer and less accurate.

The nature of BI-SDWs in S = 2 or 3/2 chains was
the motivation for DMRG calculations on even and odd
chains of hundreds of spins. The spin densities and edge-
state gaps of long chains are required to assess theoretical
models.

According to the NLσM, edge states for S = 2 are
associated with spin s′ = S/2 = 1 in Heff , Eq. 4. Even
chains have a singlet GS and gaps to two edge states,
Γ1(N) to the triplet (S = 1) and Γ2(N) to the quintet
(S = 2). The correlation length ξ is the same for both
and Γ2(N) = 3Γ1(N). Neither gap has been reported in
chains of more than 200 spins. The VBS valence bond
diagram corresponds to two S = 1 diagrams in Fig. 1(a):
There are four lines per interior S = 2 site and two lines,
two unpaired spin at the ends. The BI-SDW analysis of
S = 1 chains is equally applicable to integer S chains.
Increasing S leads to longer ξ and to gaps ΓS(N) whose
relative magnitudes are fixed in advance by Eq. 4.

A chain with J = 1 and 200 spins S = 2 or 400 spins
S = 3/2 has a GS energy of roughly −103. The corre-
sponding Γ(N) in Table III are less than 10−3 and their
estimated accuracy is ±1 × 10−4. Our S = 2 and 3/2
gaps are consequently limited to N ∼ 200 and 450, re-
spectively. They are differences between total energies.
Spin densities, by contrast, are exclusively related to the
GS in a sector with S > 0. The representative gaps in
Table III cover more than a decade. We studied the m
dependence of gaps in S = 2 and 3/2 chains, summarized
in Table I, in order to identify the largest accessible sys-
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TABLE III. Edge-state energy gaps Γ(N), Eq. 2, of HAFs
with N spins S and J = 1 in Eq. 1.

N Γ1(N), S = 2 Γ2(N), S = 2 Γ1(N), S = 3/2
64 0.01583 0.05578 0.01276
100 0.00721 0.02452 0.00725
150 0.00255 0.00835 0.00388
200 0.00081 0.00285 0.00268
300 – – 0.00194
400 – – 0.00090
450 – – 0.00065
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10
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10
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10
-1

Γ
(N

)

Γ
1
(N) = 0.0564 exp(-N/49.0)

Γ
2
(N) = 0.1946 exp(-N/48.5) S = 2 Chain

FIG. 4. Edge-state gaps Γ1(N) and Γ2(N) of S = 2 chains of
N spins in Eq. 1.

tems. The gap ∆(2) of the infinite S = 2 chain is slightly
larger than Γ2(32). The competition between edge and
bulk excitations in short HAFs with S ≥ 1 is discussed
elsewhere.7–9,22

Figure 4 shows Γ1(N) and Γ2(N) for S = 2 and even
N . The gaps are exponential in N/ξ, as expected for
integer S. The correlation length, ξ ∼ 49, is the same
within our numerical accuracy. The ratio is Γ2/Γ1 = 3.45
based on the fitted lines and it varies between 3.27 and
3.56 for individual points. Although Γ2/Γ1 = 3.45 is
approximate, the ratio is larger than the NLσM value of
3 based on Eq. 4. We return to gaps after presenting
results for spin densities.

S = 2 chains with odd N have a quintet GS and exci-
tations to the triplet and singlet. We again use f(r,N)
and the BI-SDWs analysis. Figure 5 shows ln |f(r,N)| in
the Sz = 2 sector up to the middle of the chains. For the
sake of clarity, not all points are shown. Even-odd effects
now extend to about the first 25 sites and become size
independent in long chains. The thermodynamic limit
is f(r) = tanh(1/ξ) with ξ = 49.0. The magnitudes of
spin-densities in Fig. 6 are fit as a function of r/ξ with
the same ξ and A = 0.90 in Eq. 7. Two parameters are
nearly quantitative aside from sites r < 25. The triplet
is an excited state for either even or odd N . It is the
lowest state in the Sz = 1 sector for even N and the first

0 50 100 150 200 250
r
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0

ln
f

(r
,N

) 

N =   301 401 501

N =   302 402 502

S = 2 Chain

ξ = 49.0

FIG. 5. Open symbols are DMRG spin densities in the Sz = 2
sector for f(r,N), Eq. 5, to the middle of S = 2 chains of N
spins. Solid lines are Eq. 8 with correlation length ξ = 49.0.
The horizontal dashed line in the thermodynamic limit.

0 1 2 3 4 5

r / ξ

-8
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0

ln
ρ

(r
, 

N
) 

N = 301

N = 401

N = 502N = 402N = 302

N = 501A = 0.90

ξ = 49.0

S = 2 Chain

FIG. 6. Open symbols are DMRG results for |ρ(r,N)| in the
Sz = 2 sector to the middle of S = 2 chains. Lines are Eq. 8
with ξ = 49.0 and A = 0.90. Even and odd N deviate from
A exp(−r/ξ) in the middle.

excited state in that sector for odd N . DMRG calcula-
tions for even N converge slowly for reasons we do not
understand in detail. The triplet spin densities return
the same f(r,N) as the quintets in Fig. 5.

The correlation length ξ = 49.0 based on spin den-
sities is more accurate than ξ from energy gaps. The
ξ = 49.0 fits account for ρ(r,N) of even and odd chains
that extend to 500 spins, whereas numerical accuracy
limits ΓS(N) to N ∼ 200. Schollwöck et al.6 argued that
the thermodynamic limit requires N > 5ξ and obtained
(Fig. 6 of [6]) ξ = 49(1) for N = 270 with an auxil-
iary spin-1 at the other end using the local correlation
length ξ(r) = 2/[ln(ρ(r − 1)/ρ(r + 1))]. Qin et al.,7 es-
timated that ξ ∼ 33 for S = 2 chains up to N = 100
and remarked that the accuracy was much worse than
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for S = 1 chains. Indeed, spin densities for N = 127/128
return ξ ∼ 36. As seen in Figs. 3 and 6 for S = 1 and 2,
respectively, the thermodynamic limit requires N > 5ξ
even when the contribution of the BI-SDW at the other
end is included. The present results for S = 2 chains of-
fer more stringent comparisons of the NLσM. The model
is semi quantitative: The ratio Γ2/Γ1 = 3.45 is greater
than 3. We note that BI-SDWs with exponentially de-
creasing |ρ(r,N)| would assumed on general grounds and
follow directly from f(r,N). The NLσM accounts for the
same ξ for gaps and spin densities.

IV. HALF INTEGER SPIN, S = 3/2

HAF chains with half integer S ≥ 3/2 are gapless
and their edge states are fundamentally different. Even
chains have a singlet GS and BI-SDWs with integer S;
odd chains have SG = S and BI-SDWs with half integer
S > 1/2. The even S = 3/2 chain has a singlet-triplet
gap Γ1(N) that decreases faster than 1/N and has been
studied by Qin et al.,7 and in greater detail by Fáth et
al.8 The NLσM gap goes as8

NΓ1(N) =
a

lnBN
+O

(
ln lnN

(lnN)2

)
(9)

Fáth et al.8 used DMRG to compute Γ1(N) for S = 3/2
chains from N = 12 to 192 in steps of 12 spins. The
first term of Eq. 9 leads to parameters a(N) and B(N)
whose size dependence was obtained from successive gaps
Γ1(N + 12) and Γ1(N). Extrapolation in 1/N gave the
thermodynamic values of a = 1.58 and B = 0.11 with
±15% uncertainties. In the present study, we are charac-
terizing BI-SDWs in spin chains and take the first term
with constant a, B as a two-parameter approximation.

Figure 7 shows the calculated gaps of S = 3/2 HAFs as
N |Γ(N)|. The gaps decrease faster than 1/N as expected
for edge states. The NLσM size dependence for even N is
Eq. 4 with Je(N) = Γ1 = a/(N lnBN). The dashed line
has a = 1.58 and B = 0.11 as inferred by Fáth et al.8 The
solid line for even N is a power law with two parameters,
Γ1 = Je(N) = 4.79N−1.42. Either fit is adequate over
this range of system sizes, and neither accounts for the
(possible) decrease at N > 400. The shortest chains in
which edge and bulk excitations are decoupled are prob-
ably in the range N = 30 to 60, and the desired Γ1(N)
fits are for long chains. The gaps |Γ3/2(N)| for odd N are
several times larger and their size dependence is weaker.
They can be approximated by a different logarithm or
power law. The gaps Γ3/2(N) and Γ1(N) of the S = 3/2
chain are in marked contrast to equal |Γ1(N)| in Fig. 1
for S = 1 chains with even and odd N .

The BI-SDWs of even chains are triplets. The ratios
f(r,N) in Eq. 5 are quite different for the S = 3/2 chain,
either even or odd, and are not shown. The upper panel
of Fig. 8 shows the magnitude of spin densities up to the
middle of chains. The SDWs converge at small r but are
not localized in the S = 3/2 chain. The spin densities

0 100 200 300 400

N

0

0.5

1

1.5

2

2.5

N


Γ
(Ν

) 

S = 3/2 Chain

1.58 / ln (0.11 N)

6.9 / ln (0.50 N)

4.63 N
-0.21

4.79 N
-0.42

Odd

Even

FIG. 7. Open symbols are DMRG results for the gaps Γ1(N)
and |Γ3/2(N)| for S = 3/2 chains with N spins in Eq. 1. The
solid and dashed lines are power law and logarithmic fits,
respectively, with two parameters. For even N , the NLσM
parameters in Eq. 9 are a = 1.58, B = 0.11.

add up as required to Sz = 1 for even N . They decrease
slowly and the sum over |ρ(r,N)| diverges in the ther-
modynamic limit. The lines are fits that are discussed
below. The lower panel of Fig. 8 shows the cumulative
spin density to site R that we define as

T (R,N) =

R∑
r=1

ρ(r,N) + ρ(R+ 1, N)/2. (10)

The total spin density is Sz = 1 = T (N − 1, N) +
ρ(1, N)/2. T (R,N) increases rapidly to 0.5 around
R1/2 ∼ 15, reaches a broad maximum that depends on
system size and decreases as required by symmetry to
0.5 in the middle of the chain. The VBS valence bond
diagram in the inset has unpaired spins at each end that
correspond14 to s′ = (S − 1/2)/2 = 1/2. Each S = 3/2
site forms three singlet-paired spins to a neighbor. The
middle and either the top or bottom line corresponds to
the VBS diagram of the S = 1 chain with a localized
spin at the ends. The remaining line with paired spins is
a singlet valence bond diagram of the S = 1/2 chain. The
slow variation of T (R,N) in the middle and no net spin
between R1/2 and N − R1/2 is consistent with singlet-
paired spins.

The GS of odd chains is a quartet, S = 3/2. Figure 9,
upper panel, shows |ρ(r,N)| to the middle of chains. The
large amplitude of in-phase BI-SDWs in the middle de-
creases slowly with system size. The cumulative spin den-
sity T (R,N) in the lower panel is again given by Eq. 10
except that the r = (N + 1)/2 spin density is shared
equally between the two halves. The total is Sz = 3/2
for the entire chain, or 0.75 for the half chain. The rapid
initial increase to T (R1/2, N) = 0.5 by R1/2 ∼ 15 sug-
gests a spin-1/2, as does the gradual increase to 0.75 in
the middle. The VBS valence bond diagram in the lower
panel has three unpaired spins, two at one end, one at
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FIG. 8. Upper panel: Open symbols are DMRG spin densities
|ρ(r,N)| to the middle of S = 3/2 HAFs with even N in Eq. 1.
The lines are fits based on Eq. 11 withB = 2 and the indicated
scale factors CN . Lower panel: Cumulative spin densities,
Eq. 10, up to site R; inset: VBS valence bond diagram for
even N .

the other end; the diagram with reversed unpaired spins
at the ends contributes equally by symmetry. The mid-
dle and either top or bottom line is again the S = 1
VBS diagram. The remaining line is an S = 1/2 valence
bond diagram with an unpaired spin at either end. Al-
though the diagram correctly has three unpaired spins,
the DMRG spin densities clearly show one spin in the
central region rather than at the ends.

The S = 1/2 HAF with odd N does not support edge
states. The spin density is delocalized over the entire
chain.23 Even more simply, a half-filled tight binding or
Hückel band of N = 2n+1 sites has spin density 1/(n+1)
at odd numbered sites and ρ = 0 at even numbered sites;
in that case, T (R,N) goes as R/(n+1) and immediately
rationalizes the linear increase in Fig. 9, lower panel. We
attribute the larger gap |Γ3/2(N)| > Γ1(N) in Fig. 7
and its weaker dependence of system size to enhanced
coupling between the ends by the delocalized spin in the
middle.

The BI-SDW amplitude at the middle in the upper
panel of Fig. 9 decreases slightly faster than N−1/2. The
size dependence of the amplitude suggests modeling the
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r
0

0.1

0.2

0.3

0.4

ρ
(r

,N
) 

C
N

 = 0.502

      = 0.490
      = 0.486
      = 0.485

0 50 100 150 200 250

R

0.4

0.5

0.6

0.7

0.8

T
(R

,N
)

N = 199 299 399 499

B = 2.0

N = 199

299 399

499

1 2 3 4 5 6 7

S = 3/2 Chain

S = S
z
 = 3/2

FIG. 9. Upper panel: Open symbols are DMRG spin densities
|ρ(r,N)| to the middle of S = 3/2 HAFs with odd N in Eq. 1.
The lines are fits based on Eq. 11 withB = 2 and the indicated
scale factors CN . Lower panel: Cumulative spin densities,
Eq. 10, up to site R; inset: one of two equivalent VBS valence
bond diagrams for odd N).

spin densities as

ρ(r,N) = (−1)r−1CN

((
lnBr

r

)1/2

−(−1)N
(

lnB(N + 1− r)
N + 1− r

)1/2
)
. (11)

The amplitude CN depends on system size because the
SDWs are not localized. We took |ρ(r,N)| with B = 2
and the indicated CN to generate the lines in the upper
panels of Figs. 8 and 9. The spin densities are adequately
fit in the central region in either case. Deviations are seen
for r < 10 when N is even and for r < 15 when N is odd.

To some extent, Eq. 11 can be understood in terms
of the NLσM. In the thermodynamic limit, the GS spin
correlation functions C(r) depend only on the separation
r between spins. The NLσM result is21

C(r) ≡ 〈Sz
0S

z
r 〉 ∝ (−1)rr−1/2 exp(−r/ξ), (12)

for integer spin HAFs and r � ξ. Several authors5,21,24

have remarked that DMRG results for r1/2|C(r)| are no-
ticeably closer to exponential in S = 1 chains of 60 or
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100 spins. Since converged C(r) are limited to about r <
N/4, such agreement is promising but not forced. White
and Huse discuss5 the point explicitly and show (Fig.
4 of [5]) that the ratio |C(r)| to the NLσM correlation
function becomes constant at r ∼ 2ξ ∼ 12. The first few
sites where C(r) can be computed the most accurately
are inevitably excluded from direct comparison since the
NLσM describes a continuous rather than a discrete sys-
tem. The r−1/2 factor in C(r) does not appear in the
spin densities of integer S chains,21 whose exponential de-
crease with r/ξ is shown in Figs. 3 and 6. The spin corre-
lations of the S = 1/2 HAF go as |C(r)| ∝ (ln r/r0)1/2/r
according to field theory13, and Monte Carlo calcula-
tions25 up to N = 4096 return r0 = 0.08. But exact
results for C(r) in finite PBC systems25 still show signif-
icant deviations at N = 32.

Hallberg et al.26 applied the NLσM and DMRG to the
S = 3/2 chain and confirmed that it belongs to the same
universality class as the S = 1/2 chain. They report
|C(r)| ∝ (lnBr)1/2/r and estimate B = 0.60 from r = 4
to 25 in a 60-spin chain. We find B = 0.45 in similar
calculations for N = 200. Fáth et al.8 extrapolate to
B = 0.11 for Γ1(N) in the thermodynamic limit. The
differences are negligible in the context of spin densities.
Then r1/2|C(r)| gives Eq. 11 when contributions from
both ends are taken into account. DMRG results for
|ρ(r,N)| deviate from Eq. 11 near the ends of S = 3/2
chains and from Eq. 7 in integer S chains. The choice of
B changes the fits at small r. Since small r is not modeled
quantitatively in either case and does not concern us here,
we took B = 2 in Eq. 11 for the spin densities of S = 3/2
chains.

Three effective spins are needed for the S = 3/2 spin
densities when N is odd, a spin s′ in the middle in addi-
tion to spins at the ends. The generalization of Eq. 4 to
half integer S and odd N is

Heff (N) = −J1(N)
(
~s′ ·
(
~s′1 + ~s′N

))
− J2(N)~s′1 · ~s′N .

(13)
The eight microstates ofHeff correspond to the GS quar-
tet and two doublets. Both the total effective spin S′ and
S′1N = s′1 + s′N are conserved, with S′ = 3/2, S′1N = 1 in
the GS. The doublets have S′ = 1/2 and S′1N = 0 or 1.
The spectrum is

Eeff (S′, S′1N ) = −J1
2
S′(S′ + 1) +

J1 − J2
2

S′1N (S′1N + 1)

+
3(J1 + 2J2)

8
. (14)

The gap Γ3/2 = −J1/2−J2 is to the doublet with singlet-
paired spins at the ends; the gap to parallel spins is
−3J1/2. The effective exchanges in Eq. 13 can be fit
to DMRG results for the doublets with the lowest and
second lowest energy in the Sz = 1/2 sector. We find
J1(99) = 0.04214, J2(99) = −0.00346 and J1(199) =
0.01836, J2(199) = −0.00176. Large |Γ3/2(N)| in Fig. 7
for odd N is due to J1(N) and coupling through the de-
localized effective spin s′. The small effective exchange
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FIG. 10. Upper panel: DMRG spin densities |ρ(r,N)| to
the middle of S = 3/2 HAFs with odd N in Eq. 1 for the
lowest energy doublet state, S = Sz = 1/2. Lower panel:
Cumulative spin densities, Eq. 10, up to site R.

J2(N) is antiferromagnetic.

To conclude the discussion of S = 3/2 chains, we re-
call that the GS for PBC and odd N has SG = 1/2.
Since J1N = J is between sites in the same sublattice,
the system is not bipartite, and the GS has a domain
wall or topological soliton. The OBC system is bipartite.
The doublet S = Sz = 1/2 with the lowest energy has
positive spin densities at odd-numbered sites and nega-
tive spin densities at even-numbered sites, respectively,
with singlet paired s′1 and s′N in Eq. 13. Figure 10 shows
|ρ(r,N)| for S = Sz = 1/2 to the middle of S = 3/2
chains in the upper panel and the cumulative spin den-
sity T (R,N) in the lower panel. The magnitude of the
spin density at the middle decreases roughly as N−0.42.
There are no boundary-induced edge states. The spin is
delocalized as expected on general grounds and becomes
the effective spin s′ in Eq. 13. By contrast, the spin
densities are entirely associated with BI-SDWs in OBC
systems with even N or integer S since singlet states have
ρ(r,N) = 0 at all sites.
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V. DISCUSSION

We have applied different DMRG algorithms to spin-S
HAFs, Eq. 1, with even and odd number sites in order
to obtain accurate edge states in chains of several hun-
dred spins. The principal results are the energy gaps
ΓS(N), Eq. 2, and the spin densities ρ(r,N), Eq. 3, that
are modeled as boundary-induced spin density waves (BI-
SDWs) at both ends. For the S = 1 HAF, we reproduce
and refine previous studies on even chains of 60 or 100
spins that exceed the correlation length ξ = 6.048 by an
order of magnitude. We confirm that the gap goes as
(−1)NJe exp(−N/ξ) in chains with odd N . Two param-
eters, ξ and the SDW amplitude, account quantitatively
for Γ1(N) and ρ(r,N) for chains from N = 35 to at least
120. The BI-SDWs are in phase for odd N , out of phase
for even N .

The smaller Haldane gap of the S = 2 HAF or the gap-
less S = 3/2 HAF requires substantially longer chains,
here up to 500 spins, whose edge states have previously
been studied in shorter chains N < 200. The spin den-
sities of S = 2 HAFs beteen N = 199 and 502 are mod-
eled by BI-SDWs with correlation length ξ = 49.0 and
amplitude A = 0.90. There are now two gaps, Γ1(N)
and Γ2(N), that decrease exponentially as r/ξ up to the
N ∼ 220 limit of our numerical accuracy. The gap ratio
is Γ2(N)/Γ1(N) = 3.45. The gap Γ1(N) of the S = 3/2
HAF with even N decreases faster than 1/N , roughly as
N−1.42 or as 1/ ln(0.11N). The gap Γ3/2(N) for odd N
has larger amplitude and weaker size dependence. The
BI-SDWs of the S = 3/2 chain have maximum spin den-
sity at the ends but are not localized. The S = 3/2 spin
densities in chains of more than 100 spins have not been
previously reported to the best of our knowledge. The
S = 3/2 ground state for odd N can be modeled as a
spin-1/2 at each end and a spin-1/2 in between.

DMRG calculations can be performed on longer chains
of N ∼ 1000 and/or larger S. But the condition N > 5ξ
for integer S is increasingly difficult to satisfy for small
Haldane gaps ∆(S) whose rapid decrease has been re-
ported20 to S = 5. Moreover, the gaps will require
extraordinary accuracy since, as shown in Table III,
Γ(N) < 10−3 is reached at N = 200 for S = 2 or at
N = 400 for S = 3/2. Spin densities are more promising
probes of long chains in terms of the Sz > 0 sectors of
N and N − 1 spins. But the required system size for
half integer S is poorly known and may not have been
reached in the present work.

The nonlinear sigma model (NLσM) and valence bond
solid (VBS) have been applied to spin chains, primarily
to the S = 1 HAF in the thermodynamic limit. Machens
et al.9 summarize and critically evaluate both the NLσM
and VBS in connection with short chains of less than 20
spins. In partial disagreement with earlier works, they
find that the effective coupling between edge states in
Eq. 4 in short chains is influenced by the comparably
small finite-size gaps of bulk excitations. We have char-
acterized long chains whose prior modeling has mainly

been for S = 1.
Accurate DMRG results for S = 2 or S = 3/2 HAFs

are a prerequisite for comparisons, mainly via Heff in
Eq. 4, with either the NLσM or VBS. Good agreement
in S = 1 chains carries over to some extent to S = 2
chains and less so to S = 3/2 chains. Spin densities to
N = 500 yield ξ = 49.0 for the correlation length of the
S = 2 chain. The gaps in shorter chains return the same
ξ, but the ratio Γ2(N)/Γ1(N) is 3.45 instead of 3. The
deviation is real.

The 3/2 chain does not follow the expected22

(−1)NJe(N) pattern of Heff in Eq. 4. The BI-DWIs are
not localized. Two effective spins s′ = 1/2 at the ends
account for Γ1(N) when N is even. A third s′ = 1/2 in
the middle leads to Γ3/2(N) and the modified Heff in
Eq. 13 for odd N .

In other ways, however, comparisons are simply not
possible. Since field theory starts with a continuous sys-
tem rather than a discrete chain, the ends can be distin-
guished from the bulk but not sites at a finite distance
from the ends. Similarly, VBS deals with special Hamil-
tonians,4,6,9,27 that contain, in addition to Eq. 1, terms
that go as Bp(Sr · Sr+1)p with 2 ≤ p ≤ 2S and coeffi-
cients Bp. Exact GS are obtained in the thermodynamic
limit of these models. The relevant valence bond dia-
grams have paired spins, as shown, except at the first
and last sites. Either the NLσM or VBS correctly places
localized states or unpaired spins for integer S, but nei-
ther describes the BI-SDWs found in DMRG calculations
spin-S HAFs. The BI-SDWs are not localized in half in-
teger S chains and have different effective coupling be-
tween ends. Direct solution of Eq. 1 for S ≥ 1 chains
inevitably leads to edge states whose features are blurred
or lost in the NLσM or VBS. Comparisons may well be
limited to effective spins and exchange at the ends.

The occurrence of edge states in HAFs with S ≥ 1
follows directly from Eq. 1, as shown in the Introduction.
PBC systems with J1N = J have SG = 0 except for half
integer S and odd N , when SG = 1/2. OBC systems
with J1N = 0 have SG = 0 for even N and SG = S for
odd N . The energy per site in the thermodynamic limit
cannot depend on boundary conditions for short-range
interactions. Different SG under OBC and PBC implies
edge states, or BI-SDWs, in HAF with S ≥ 1 and gaps
ΓS(N) relative to SG = 0 for even N or integer S or
to SG = 1/2 for odd N and half integer S. The size
dependence and interpretation of gaps or spin densities
are standard for integer S. The spin densities and gaps of
the S = 3/2 chain lead to different BI-SDWs for even and
odd N . The NLσM or VBS provides useful guidance for
quantitative modeling of BI-SDWs obtained by DMRG
for HAFs with S ≥ 1.
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