
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Level spectroscopy in a two-dimensional quantum magnet:
Linearly dispersing spinons at the deconfined quantum

critical point
Hidemaro Suwa, Arnab Sen, and Anders W. Sandvik

Phys. Rev. B 94, 144416 — Published 14 October 2016
DOI: 10.1103/PhysRevB.94.144416

http://dx.doi.org/10.1103/PhysRevB.94.144416


Level spectroscopy in a two-dimensional quantum magnet:
linearly dispersing spinons at the deconfined quantum-critical point

Hidemaro Suwa,1, 2 Arnab Sen,3 and Anders W. Sandvik2

1Department of Physics, University of Tokyo, Tokyo 113-0033, Japan
2Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA

3Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
(Dated: September 22, 2016)

We study the level structure of excitations at the “deconfined” critical point separating anti-
ferromagnetic and valence-bond-solid phases in two-dimensional quantum spin systems, using the
J-Q model as an example. Energy gaps in different spin (S) and momentum (k) sectors are ex-
tracted from imaginary-time correlation functions obtained in quantum Monte Carlo simulations.
We find strong quantitative evidence for deconfined linearly dispersing spinons with gapless points
at k = (0, 0), (π, 0), (0, π), and (π, π), as inferred from two-spinon excitations (S = 0 and S = 1
states) around these points. We also observe a duality between singlet and triplet excitations at the
critical point and inside the ordered phases, in support of an enhanced symmetry, possibly SO(5).

PACS numbers: 75.10.Jm, 75.40.Mg, 75.30.Ds, 75.40.Cx

I. INTRODUCTION

Conventional quantum phase transitions between dif-
ferent ground states of quantum many-body systems
can be understood within the Landau-Ginzburg-Wilson
(LGW) paradigm, according to which a critical point is
described by an order parameter whose fluctuation di-
verges 1,2. Following intriguing numerical results point-
ing to violations of LGW predictions3,4, the deconfined
quantum critical (DQC) point was proposed as a scenario
beyond the standard paradigm 5,6. Here the low-energy
physics is not described directly by order parameters, but
by fractional degrees of freedom that emerge (deconfine)
on long length scales close to the DQC point. These
fractional objects should have prominent signatures in
excitation spectra and experimentally accessible spectral
functions. We here present a numerical study of low-
energy excitations at the DQC point of a two-dimensional
(2D) quantum magnet.

The DQC point considered here separates states with
Néel antiferromagnetic (AFM) order and spontaneous
dimerization (valence-bond-solid, VBS, order) 7, realized
with the J-Q spin-1/2 Hamiltonian 8

H = −J
∑
〈ij〉

Pij −Q
∑
〈ijkl〉

PijPkl, (1)

where Pij = 1/4−Si ·Sj is a singlet projector on sites ij,
〈ij〉 denotes nearest-neighbor sites (links) on a periodic
square lattice with L2 sites, and 〈ijkl〉 denotes a pair of
links on a 2× 2 site plaquette. The summations are over
all links and plaquettes; thus H maintains all the symme-
tries of the square lattice. The Q = 0 case is the standard
AFM-ordered Heisenberg model9, and when Q/J is suffi-
ciently large, Q/J & 22, projection of correlated singlets
leads to columnar dimerization and loss of AFM order.
In contrast to frustrated Heisenberg systems that may
also harbor VBS states and DQC points10–12, the J-Q
model is not affected by sign problems and can be stud-

ied using quantum Monte Carlo (QMC) simulations on
large lattices13.

The existence of the DQC point has been addressed
in numerous studies of the J-Q model 8,13–21, 3D close-
packed loop 22 and dimer 23 models (which provide effec-
tive descriptions of quantum spins), and lattice versions
of the proposed 5,6 non-compact CP1 DQC field the-
ory 19,24,25. Unusual scaling behaviors were observed in
these studies that were not predicted within the DQC
theory, but which can now be accounted for by a scal-
ing hypothesis incorporating the two divergent length
scales of the theory; a standard correlation length and
a scale related to emergent U(1) symmetry of the VBS
fluctuations26. While there are still important unset-
tled questions remaining, e.g., on the fundamental origins
of the anomalous scaling22,26 and an apparent emergent
SO(5) symmetry27, there is now little doubt that the
transition is continuous (instead of weakly first-order, as
had been claimed in some studies15,19,24).

Dynamical properties of DQC systems have not been
addressed in direct numerical calculations. The J-Q
model offers unique opportunities to study deconfined
excitations and the quantum dynamics of confinement.
The deconfined excitations should be spinons carrying
spin S = 1/2 5,6. Going into the ordered phases, pairs
of spinons become confined (bound) into S = 1 magnons
which are gapped in the VBS phase and gapless in the
AFM phase. The existence of spinons has been inferred
from studies of S = 1 states in QMC simulations26,28.
However, the spinon dispersion relation has not been
computed and it has not been directly confirmed that
the lowest singlets and triplets are degenerate, as they
should be in an infinite lattice with two independently
propagating spinons—this degeneracy may not even be
perfect, due to weak (logarithmic) interactions between
vortex-like spinons6.

Here we report QMC studies of the level spectrum of
the J-Q model at its DQC point. We analyze gaps ex-
tracted from correlation functions, thus characterizing
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FIG. 1. (Color online) Gap estimation for J/Q = 0.045,
L = 64, S = 1, and k = (π, π). The main panel shows
the imaginary-time dynamic correlation function. The gap
extrapolation, resulting in ∆̂(∞) = 0.06879(16), is illus-
trated in the inset. The curve shows the fitting function
∆̂(τmax) − ∆̂(∞) ∝ e−aτmax , where the parameter a is op-
timized for the best fit 33,34. The straight line in the main
panel has slope corresponding to the extracted gap (the pref-
actor being the sole fitting parameter).

the level spectrum of spinons and scaling behaviors as
bound states (magnons) form in the ordered phases. Our
study reveals gapless critical S = 0 and S = 1 excita-
tions at k = (0, 0), (π, 0), (0, π), and (π, π), and all these
points are characterized by linear dispersion with a com-
mon velocity, thus lending strong support to elementary
S = 1/2 spinons with dispersion minimum at the above
four k-points. Moreover, the scaling of singlet and triplet
gaps in the ordered phases exhibits a duality consistent
with emergent SO(5) symmetry27,29.

The outline of the rest of the paper is as follows: In
Sec. II we explain the technical details of extracting gaps
from imaginary time correlation functions. The scaling
procedures used in combination with level spectroscopy
based on finite-size gaps are presented in Sec. III along
with results. In Sec. IV, the full dispersion relation along
a path in the Brillouin zone is discussed first, before a de-
tailed analysis of linearly dispersing spinons in the neigh-
borhood of the four gapless points. We briefly summarize
our study and discuss implications in Sec. V.

II. GAP ESTIMATION BY QMC

We have used finite-temperature and projector QMC
simulations, with continuous-time worldlines as well as
the stochastic series expansion of e−βH (where β is ei-
ther the inverse temperature or the projection “time”)
and sampling with loop updates 13,30. In the projector
approach we use a singlet-sector amplitude-product trial
state 31,32. All the methods gave mutually consistent re-
sults for sufficiently large β. Most of the results reported
here were obtained with the somewhat more efficient pro-
jector method.
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FIG. 2. (Color online) Gap estimation for J/Q = 0.045, L =
64, S = 1, and k = (π, 0), the procedures and fitted functions
are analogous to those explained in Fig. 1. The estimated gap
is ∆̂(∞) = 0.3778(36).

To compute gaps for given S and k, an operator is
chosen which transfers the quantum numbers upon ex-
citing the S = 0, k = (0, 0) ground state. The following
operators were used for triplets and singlets, respectively:

Tk =
∑
r

Szr eir·k, Sk =
∑
r

SzrS
z
r+eeir·k, (2)

where e is a unit vector in the x or y direction of the
square lattice. Although S = 2 states also are excited
by Sk, a singlet has the lowest energy among the even-S
excited states in this system. Gaps were estimated by
the generalized moment method 33,34, in which a series
of moments of the imaginary-time correlation function
〈T−k(τ)Tk(0)〉 or 〈S−k(τ)Sk(0)〉 are systematically ex-
trapolated to extract the asymptotic exponential decay
time τS,k (inverse of the gap). The procedures, including
error estimation from bootstrap analysis, follow closely
our recent work on other systems in the triplet sector34.
We define g = J/(J +Q) and set J +Q = 1.

Here we demonstrate our approach for gap estimation.
The Fourier transform of the imaginary-time correlation
function is directly measured in the QMC simulations;∫ τmax

0

dτ C(τ)eiτωm = R(ωm) + iJ(ωm), (3)

where ωm = 2πm/τmax (m ∈ Z), C(τ) = 〈T−k(τ)Tk(0)〉
or 〈S−k(τ)Sk(0)〉, and R(ωm) and J(ωm) are the real
and imaginary parts, respectively. The projection length
β is set long enough to ensure that C(τ) is properly β →
∞ converged for the relevant values of τ . The series of
the gap estimators (n ≥ 1) is constructed according to

∆̂(n,τmax) = −ω2
1

∑n
m=1 xn,m,1

J(ωm)
ωm∑n

m=0 xn,m,0R(ωm)
, (4)

where x1,1,1 = 1 and otherwise

xn,m,p =
1∏

p≤j≤n,j 6=m(m+ j)(m− j)
. (5)
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FIG. 3. (Color online) Extrapolation of the transition point
from the coupling g∗(L) at the crossing between the lowest
triplet and singlet gaps. A power-law fit, g∗(L) − gc ∝ L−σ,
for 10 ≤ L ≤ 64 gives gc = 0.04301(8) and σ = 2.00(1) (with
χ2/Ndof ≈ 1.4). The inset shows triplet (triangles) and singlet
(squares) gaps for L=16, 24, and 32 (top to bottom).

The gap (∆) is then estimated by the extrapolation;

lim
n,τmax→∞

∆̂(n,τmax) = ∆, (6)

the convergence of which is analytically assured 33,34. In
practice, the limit n → ∞ is taken first, using results
for n ≤ 8, and τmax → ∞ is taken subsequently. Here
data with relative error bars larger than 1 are excluded
(which does not introduce any bias in the process). The
dynamical correlations and the gap extrapolations us-
ing ∆̂(τmax) ≡ limn→∞ ∆̂(n,τmax) for the J-Q model with
J/Q = 0.045, L = 64, S = 1, are shown in Fig. 1 and 2
for momentum k = (π, π) and (π, 0), respectively. In the
captions of these figures and in the following, the num-
bers in parenthesis indicate the statistical uncertainty,
one standard deviation, on the preceding digit. Conver-
gence of the gap estimator is observed in the both cases.
The statistical precision is high enough to allow the kind
of analysis presented in the following sections. Note that
the data points for different τmax are correlated, and, to
take this into account properly, the error bars of the final
gap estimates are calculated using bootstrapping.

III. LEVEL SPECTROSCOPY

We first use level spectroscopy to locate the transition
point and extract the critical gap scaling exponent. Dif-
ferent types of ground states are associated with differ-
ent low-energy excitations, which can lead to crossings of
energy levels with different quantum numbers as a func-
tion of the control parameter used to tune the quantum
phase transition. The finite-size scaling of the crossing
point provides a remarkably good estimate of the criti-
cal point in several 1D systems 13,33,35–37. As for the 2D
J-Q model, the triplet excitation is gapless in the Néel
phase (the lowest triplet being a quantum rotor state
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FIG. 4. (Color online) Scaling of the gap at the crossing
point. A fit to the form L∆∗ = a + bL−τ for 16 ≤ L ≤ 64
gives τ = 0.26(4) (with χ2/Ndof ≈ 1.8).

with gap scaling as 1/L29), while it is gapped in the
VBS phase. In contrast, the lowest singlet gap of a fi-
nite system decreases exponentially with the system size
in the VBS phase, while it converges to a finite value in
the Néel phase. Therefore, the lowest triplet, which is
at k = (π, π), and singlet, at k = (π, 0) and (0, π), cross
each other at a coupling which converges to the transition
point in the thermodynamic limit.

Figure 3 presents our results, with examples of level
crossings shown in the inset and the finite-size drift
of the crossing points g∗(L) analyzed in the main fig-
ure. The crossing points have been fitted to a constant
(the infinite-size critical point) with a power-law cor-
rection ∝ L−σ, with σ = 2.00(1). The critical point
gc = g∗(L → ∞) = 0.04301(8), or (J/Q)c = 0.04494(9),
is in reasonably good agreement with a recent, more pre-
cise estimate (J/Q)c = 0.04468(4) 26. Before discussing
the information contained in the correction exponent σ,
in Fig. 4 we present data for the gap at the crossing
point. Given that the expected dynamic exponent z = 1,
we here graph the crossing gap ∆ = ∆s = ∆t multiplied
by the system size L, and again fit with a power-law cor-
rection; ∝ L−τ with τ = 0.26(4).

Given the above results and the scaling hypothesis in-
troduced in26, we analyze the scaling of the lowest triplet
(µ = t) and singlet (µ = s) gaps ∆µ(δ, L) with the dis-
tance δ = g − gc from the DQC point using

∆µ(δ, L) = L−1fµ(δL1/ν , δL1/ν′
, L−ω), (7)

where ν ≈ 0.45 and ν′ ≈ 0.58 are the values from26, the
exponents governing the correlation length and the U(1)
scale, respectively, and ω is the exponent of the leading
irrelevant field (for which a small value, ω ≈ 0.3 was
found in scaling of other quantities in Ref. 26). The func-
tions fµ should approach constants when δ → 0, up to
additive size corrections from the L−ω dependence (and
higher-order corrections not included here).

To analyze the finite-size scaling of the gaps, we begin
in the standard way by Taylor-expanding the postulated
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FIG. 5. (Color online) Power-law scaling of the difference
between the singlet and triplet gaps. The curve is a fit to

∝ L−ω
′
, where ω′ = 0.68.

scaling functions fµ in Eq. (7) to leading order in the
relevant and irrelevant fields. For the singlet and triplet
cases we have

L∆s = as + bsδL
1/ν + csδL

1/ν′
+ dsL

−ωs , (8)

L∆t = at + btδL
1/ν + ctδL

1/ν′
+ dtL

−ωt , , (9)

where we have used the expected value of the dynamic
exponent, z = 1, and allow for the possibility of differ-
ent correction exponents, ωs and ωt, for the two gaps.
In principle the leading irrelevant corrections could arise
from the ratio L1/ν′−1/ν of the arguments δL1/ν and
δL1/ν′

of fµ, in which case we can just replace the expo-
nents ωs or ωt as appropriate by 1/ν − 1/ν′.

We are interested in the crossing point of the scaled
gaps; the value of δ = g − gc for which L∆s = L∆t.
Defining a = as − at , b = bt − bs, and c = ct − cs, we
obtain the crossing point δ∗s (L) = g∗(L)−gc as a function
of the system size;

δ∗(L) =
a+ dsL

−ωs − dtL−ωt

bL1/ν + cL1/ν′ . (10)

In general, if a 6= 0, i.e., if the scaled gaps are differ-
ent at the critical point when L → ∞, we see that
the crossing point for large L drifts as δ∗(L) ∝ L−1/ν ,
provided also that the coefficient b 6= 0. This is not
consistent with the observation that δ∗(L) ∝ L−σ with
σ ≈ 2.00 (Fig. 3), given that 1/ν ≈ 2.25. If b = 0,

we have δ∗(L) ∝ L−1/ν
′
, but this is also not consistent

with the data, because 1/ν′ ≈ 1.71. However, if a = 0

and b = 0, we have δ∗(L) ∝ L−1/ν
′−ω, where ω is the

smaller of ωs and ωt. Then σ = 1/ν′ + ω = 2.00(1) and
τ = ω = 0.26(4). This case is fully compatible with the
data; 1/ν′ = σ − τ = 1.74(4), in excellent agreement
with the previous value 1/ν′ = 1.71(3)26. The value of ω
is also in good agreement with a renormalization-group
calculation within the field theory38.

We here also present more direct evidence for as = at
in Eqs. (8) and (9). Figure 5 shows that the difference
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FIG. 6. (Color online) Estimates of the inverse of the expo-
nent controlling the triplet gap away from the critical point,
extrapolated to infinite size using a linear fit.

L(∆s−∆t) between the scaled gaps for J/Q = 0.045 very
close to the estimated gc goes to zero, along with a power-
law fit giving a correction exponent ω′ = 0.68(3). It is
interesting that this exponent is approximately twice the
value of the leading correction exponent ω ≈ 0.3 that we
have found for other quantities. It is then plausible that
ω′ corresponds to the quadratic contributions from the
leading irrelevant field, i.e., ω′ = 2ω. Another possibility
is that ω′ = 1/ν − 1/ν′, which is also consistent with
the known values of the exponents ν and ν′, which give
1/ν−1/ν′ ≈ 0.6. Within the current statistical precision
2ω and 1/ν − 1/ν′ cannot be distinguished.

The higher-power-law scaling (ω′ > ω) could appar-
ently mean that the leading corrections of the two gaps
are equal, ωs = ωt and the prefactors of the power-laws
are the same; that is, dsL

−ωs −dtL−ωt = 0. This perfect
cancellation, however, leads to σ = 1/ν′ + ω′, which is
not consistent with data; thus the leading terms should
not be canceled perfectly. What is surprising here is
rather that the dominant contribution (ω′ term) to the
difference of the scaled gaps seems absent in the crossing-
coupling (δ∗) scaling as shown in Fig. 3. This non-trivial
cancellation implies a relation in the correction terms al-
though it is not easy to identify among many possibilities.

An estimate for the exponent controlling the scaling
of the gap away from the critical point can be obtained
by using the derivative of the scaling functions fµ with
respect to δ. Let us define the scaled derivative of the
triplet gap

Dt(L) = L
d∆t

dδ
= L

d∆t

dg
. (11)

From the Taylor expansion in Eq. (9) we obtain the
leading-order behavior

ln[Dt(L)] = ln(bµ) +
1

ν̃
ln(L), (12)

where ν̃ is the exponent (ν or ν′) controlling the scaling.
We can devise an estimator for the exponent controlling
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FIG. 7. (Color online) Scaling of the derivatives of the singlet
and the triplet gaps with respect to g, along with the slower-
divergent sum of the two.

the relevant length scale:

y(L) =
ln[Dt(2L)]− ln[Dt(L)]

ln(2)
. (13)

This estimator converges to 1/ν if bt 6= 0, or to 1/ν′

if bt = 0 and ct 6= 0, in Eq. (9), when L → ∞, since
1/ν > 1/ν′. Fig. 6 shows y(L) graphed versus 1/L. Here
we estimated the derivative by linear interpolation of the
gaps around the crossing point between the lowest sin-
glet and triplet excitations, as shown in Fig. 3. We expect
that the lowest triplet gaps in the VBS phase should be
governed by the emergent U(1) length scale, i.e., the ex-
ponent ν′, based on the finding in Ref.26 that the length-
scale of triplets (the confinement length scale) diverges
with this exponent. Then the general form (9) of the
gap must have bt = 0 and ct 6= 0. We do not have
enough data in Fig. 6 to meaningfully analyze (with er-
ror bars sufficiently small for the results to be useful)
the behavior with a power-law form with an adjustable
power. The behavior appears to be essentially linear in
1/L, however, which is similar to the scaling of the triplet
length scale observed in Ref.26. For a rough estimate, we
therefore simply perform a straight-line fit. This gives
y(∞) = 1.79(7), which is consistent with the previous
value of 1/ν′.

In the thermodynamic limit, the scaling form (7) when
L → ∞ is compatible with ∆ ∝ δzν if fµ → (δL1/ν)zν

or ∆ ∝ δzν
′

if fµ → (δL1/ν′
)zν

′
. As we have inferred,

from the gap-crossing scalings, that the finite-size scal-
ing (where the first two arguments of fµ are small) is

governed by y = δL1/ν′
although x = δL1/ν is the larger

argument, x should not even appear in the scaling func-
tion (except possibly in a ratio y/x which acts as an
irrelevant field). Thus, we suspect that both the sin-

glet and triplet gaps scale as δzν
′

near the critical point.
This is also physically plausible because there should be
states (singlets and triplets) above the four degenerate
VBS singlets for g < gc related to the emergent U(1)
gauge field, which in the DQC scenario is governed by

ν′5,26. In the Néel phase as well there should be a singlet
energy reflecting the longer length scale5.

Note that, for quantities whose finite-size scaling is
governed by the argument x = δL1/ν in Eq. (7), the

L → ∞ form of fµ can still be governed by y = δL1/ν′
,

and this behavior can be associated with anomalous
finite-size powers26. In the case of the gaps, we here
instead found conventional finite-size scaling, ∆ ∝ L−z,
but a thermodynamic limit controlled by ν′.

As shown in the inset of Fig. 3, the gap is linear in
L for g close to gc. The gap derivatives Dµ(L) ≡
L∂∆µ(g, L)/∂g are shown in Fig. 7, exhibiting diver-
gences with opposite signs. We also show the scaling of
Ds + Dt, where it appears that the leading divergence
is canceled, with only a weaker divergence remaining
(which should be ∝ L1/ν′−ω). The cancellation, together
with the identification of the scaled gap values observed
in Fig. 5, implies that the scaling functions for L → ∞
are symmetric, at least in the linear order, around the
critical point: fs(y) = ft(−y) with y = δL1/ν′

. This du-
ality between singlet and triplet excitations supports the
proposed SO(5) symmetry at the critical point 22; note
that, with the three triplets at q = (π, π) and singlets at
(π, 0) and (0, π), we have a total of 5 gapless modes that
scale in the same way.

IV. LINEARLY DISPERSING SPINONS

We next show the dispersion curve around the DQC
point and investigate carefully the finite-size scaling of
the lowest gaps. It will be shown that at the critical
point, there are both gapless singlets and triplets at k =
(0, 0), (π, 0), (0, π), and (π, π). In addition, the velocities
around the gapless modes are studied by the winding-
number method and the direct gap measurement. It is
found that a unique velocity appears around the multiple-
gapless modes. These findings strongly indicates that
the low-energy excitation is formed by linearly dispersing
spinons.

A. Full Dispersion

We study the dispersion of the lowest triplet. Figure 8
shows results for L = 16 and several values of g along
a standard path in the Brillouin zone. Spin-wave theory
for the Heisenberg model produces a magnon-excitation
energy that is in general good agreement with numeri-
cal calculations9. The main discrepancy is at the AFM
zone boundary, the line from k = (π/2, π/2) to (π, 0),
where in spin wave theory to order 1/S there is no dis-
persion. Numerical calculations show a 10% lower energy
at (π, 0)39,40. The minimum at (π, 0) has been termed the
“roton minimum”41, in analogy with the local dispersion
minimum in 4He; it was argued that it originates from
interactions between the transverse (magnon) and longi-
tudinal (“Higgs”) modes. In the J-Q model, we can see
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that the differences between k = (π/2, π/2) and (π, 0)
increase dramatically as we approach the critical point.
The reduction in (π, 0) energy is in accord with a vari-
ational argument 42, according to which the triplet gap
at (π, 0) must vanish if the Néel to VBS transition is
continuous. For the relatively small system in Fig. 8 the
expected gapless (π, 0) mode is not yet apparent and re-
quires a finite-size analysis close to gc, as we will dis-
cuss below. Even with the data in Fig. 8, it is now clear
that the weak roton minimum of the Heisenberg model is
due to VBS fluctuations (which should also be related to
emergent gauge bosons43), as also discussed in44, which
are strengthened as Q/J is increased and push the min-
imum down to 0 as the DQC point is approached.

B. Finite-size Scaling

In addition to the gapless triplet at k = (π, π) and sin-
glets at (π, 0),(0, π), we also expect a gapless triplet at
k = (0, 0), as is well known in the Heisenberg model and
which is also reflected in Fig. 8. Next we will show that
actually there are both gapless singlets and triplets at
all these four points, k = (0, 0), (π, 0), (0, π), and (π, π);
that is, there are eight gapless excitation modes in to-
tal. We focused the calculations at J/Q = 0.045, close
to the estimated critical value, and extracted the gaps
∆µ,k at several wave-vectors. Results are displayed in
Fig. 9, along with fits to the expected 1/L forms for
z = 1 criticality. A very interesting observation is a
singlet-triplet symmetry—a generalization of the equiv-
alence of the lowest s,t gaps: ∆t,(π,q) ≈ ∆s,(π,π−q) is
seen for q = 0, 2π/L, π − 2π/L, and π. The singlets are
a bit higher than the corresponding triplets, likely be-
cause of higher-order irrelevant fields as the differences
appear to vanish as L→∞. In Fig. 9 we draw lines with
the same prefactors in 1/L for the corresponding gaps.
These findings strongly suggest that the system has gap-
less singlet and triplet excitations at (0, 0), (π, 0), (0, π),
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singlet

1/L

FIG. 9. (Color online) Triplet (left) and singlet (right) gaps
at several wave-vectors for systems close to the DQC point
(J/Q = 0.045). The smallest wave-vector increment 2π/L is
denoted by k1. The solid lines illustrate the expected critical
form ∆ ∝ L−1 with ∆t,(π,q) = ∆s,(π,π−q) imposed.
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FIG. 10. (Color online) Scaling of the triplet gaps at k =
(π, π) and (π, 0) and of the square-root of the product of the
two. The coupling ratio is J/Q = 0.045, close to the estimated
critical coupling.

and (π, π), with a remarkable relationship between the
finite-size corrections for singlets and triplets that may
again be related to emergent SO(5) symmetry.

Another cancellation of corrections is found in an anal-
ysis of the triplets at (π, π) and (π, 0). Here an almost
perfect cancellation of corrections is seen in the prod-
uct of the gaps; ∆t,(π,π)∆t,(π,0). In Fig. 10 the two gaps
along with the square-root of the product are scaled by
L. The individual scaled gaps approach finite values as
L→∞ but there are significant corrections. The correc-
tions in the product are much smaller and not seen on the
scale of Fig. 10, indicating that the (π, π) and (π, 0) gaps
scale as L−1(1±aL−ω) with different signs in front of the
L−ω correction. Then the leading corrections cancel in
the product and the remaining correction is ∝ a2L−2ω,
which, apparently, is overall too small to clearly see in
Fig. 10 (likely because of a very small prefactor a2).

It should be noted that the coupling ratio considered
here, J/Q = 0.045, is very close to but not exactly at the
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critical ratio (J/Q)c ≈ 0.044726. Being slightly on the
AFM side of the transition, the triplet (π, π) gap could
be marginally affected by the quantum rotor states, the
gaps to which asymptotically scale as L−29, and the (π, 0)
triplet may be affected by the small gap expected in the
weak AFM state at this wave-vector. The corrections an-
alyzed above could then be partially due to cross-overs
into such AFM scaling, i.e., the exponent ω would then
be only an effective exponent for the range of sizes con-
sidered. Analyzing the gaps at the crossing point, as we
did in Fig. 4, avoids this issue, and since the value of
ω obtained there is very similar to what can be inferred
from below in Fig. 11, for a different quantity computed
at J/Q = 0.045, we conclude that the effects from not
being exactly at the critical point should only be very
minor here.

C. Unique Velocity

We present an estimate of the velocity obtained using
winding numbers first, and thereafter discuss the more
direct approach using gaps. For a system with conserved
magnetization, the standard QMC mappings from the
partition function in d dimensions to an effective one with
d + 1 dimensions leads to topologically conserved wind-
ing numbers. The temporal winding number Wτ sim-
ply counts the difference between the number of up and
down spins, while the spatial winding numbers Wr (here
r = x, y in two dimensions) correspond to a quantization
of the net spin currents due to periodic boundaries in
space and time. If a QMC simulation includes updates
that can change the winding numbers, which the loop
updates in the stochastic series expansion (SSE) method
used here indeed can13, physical quantities related to the
winding number fluctuations can be computed45. The
uniform magnetic susceptibility is given by

χ =
β

N

〈
M2
z

〉
=

β

N

〈
W 2
τ

〉
, (14)

where Mz is the total magnetization. In two dimensions
the spin stiffness is given by.

ρs =
1

2β

(〈
W 2
x

〉
+
〈
W 2
y

〉)
. (15)

For a many-body system with dynamic exponent z = 1
(linear dispersion), Lorentz invariance is emergent when
L → ∞ and β = 1/T → ∞. The effective length of the
system in the time dimension is Lτ = cβ. It has been
argued that a cubic space-time geometry (i.e., with the
system having effectively equal lengths in space and time)
should be defined by requiring the following condition for
a given spatial system size L47:〈

W 2
r (β∗)

〉
=
〈
W 2
τ (β∗)

〉
, (16)

where β∗ is the unique value of β for which the equality
holds. This criterion offers an interesting way to compute
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1/L

2.20

2.25

2.30

c

FIG. 11. (Color online) Velocity estimates for J-Q model
at J/Q = 0.045 [close to its critical point, (J/Q)c ≈ 0.447]
extracted using the cubic criterion Eq. (16). The unit of c
corresponds to setting the lattice constant to 1 and the energy
scale J +Q = 1. The curve shows a fit including a power-law
correction ∝ L−ω to the infinite-size velocity. The fit with
error analysis gives c = 2.31(5) and ω = 0.24(8).
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FIG. 12. (Color online) Size-dependent velocity estimators
around the gapless points. The solid (blue) line is a fit to the
ct,(π,π) data for L ≥ 20 and gives c = 2.282(5) (χ2/Ndof ≈
0.4). The fits to the other data sets use the same c along
with L−1 and L−2 corrections. The horizontal dashed lines
indicate the value of c ± one standard deviation obtained
using a winding-number estimator.

the velocity c of excitations as the aspect ratio: c = L/β∗.
One can expect this procedure to deliver the correct ve-
locity in the limit L → ∞. In some cases this can be
shown directly based on low-energy field theory46,47, but
even in the absence of such descriptions the arguments
are very general and one can expect the correct velocity
for any system with linear dispersion. In Ref.34 we pre-
sented several high-precision tests for both AFM ordered
and critical systems.

We have used the winding-number method also for the
J-Q model and present results for several system sizes at
J/Q = 0.045 in Fig. 11. The finite-size data are in ex-
cellent agreement with a constant plus a finite-size cor-
rection ∝ L−ω, with the velocity c/(J + Q) = 2.31(5)
in the thermodynamic limit and ω = 0.24(8). As shown
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in Fig. 12, the value of c is in excellent agreement with
the velocity extracted using energy gaps, and it is also
in good agreement with a previous QMC calculation
(where, however, no scaling correction was used in the
analysis)46. We also note that the value of the correction
exponent ω is close to values extracted based on other
quantities, here as well as in Ref.26, and it is also close
to a result based on a renormalization-group calculation
within the the DQC field theory38.

We next extract the velocity c of excitations, using
k-points away from the gapless points K0 by amounts
k1, k2, where kn = n2π/L;

cµ,K0
(L) ≡ (L/2π) [∆µ,K0+k2

(L)−∆µ,K0+k1
(L)] .

(17)
At (π, 0) we have two options for the direction of the
small displacements kn, and we find the best statistical
precision with K0 + kn = (π, kn) and (π − kn, 0) for the
triplet and singlet, respectively. In principle we can also
define the velocity based solely on the gaps ∆µ,K0+k1 ,
but Eq. (17) has smaller size corrections. For k 6= 0, we
expect momentum-dependent corrections in the form of
integer powers of 1/L 34,

∆µ,K0+k(L) = ck +Bµ,K0+kL
−1 +O(L−2), (18)

i.e., the non-trivial critical scaling behavior is seen only
exactly at the gapless points (k = 0), and the coefficients
can be expanded as Bµ,K0+k = aµ,K0

+ bµ,K0
k +O(k2).

Note that limk→0Bµ,K0+k 6= Bµ,K0
in general34.

The estimator cµ,K0
(L) = c+ bµ,K0

/L+O(1/L2) con-
verges to the correct velocity in the thermodynamic limit
even at a critical point, as long as z = 134. We here an-
alyze those singlets and triplets for which the gaps were
determined to sufficient precision. As shown in Fig. 12,
the velocities appear to converge to the same value. We
have the highest precision for the triplet at K0 = (π, π),
giving c = 2.282(5). For the other cases we simply fit
curves with this c fixed. The velocity estimates from
the winding-number method and the direct gap measure-
ments agree within statistical errors. The velocities of the
linearly dispersing modes for both singlets and triplets
around all four gapless points being equal to each other
again points to an emergent symmetry between the low-
lying singlets and triplets at the critical point.

V. SUMMARY AND CONCLUSIONS

We have studied the excitation gaps and the disper-
sion relation of the SU(2) symmetric J-Q model on the
square lattice, using unbiased QMC methods. The tran-
sition point was located by level spectroscopy of the low-
est excitation gaps (locating gap crossing points), which
correspond to triplet excitations at k = (π, π) and sin-
glets at k = (π, 0) and (0, π). We found a duality of
the scaling function governing these gaps, and estimated
the relevant critical exponent governing the gap scaling

FIG. 13. Schematic illustration of the low-lying energy spec-
trum at the deconfined quantum-critical point. There are
four gapless points for both S = 0 and S = 1 excitations,
at k = (0, 0), (π, 0), (0, π), and (π, π). Close to these points
the modes disperse linearly with the same velocity. The dis-
persion relation marks the lower edge of a continuum of exci-
tations arising from two essentially deconfined spinons, with
the single-spinon dispersion also being the same as the lower
edge of the two-spinon continuum.

in the ordered phases, which we argued is the same ex-
ponent, ν′, that governs the emergent U(1) symmetry in
the VBS phase, i.e., not the standard correlation length
exponent ν. The value of ν′ is consistent with other re-
cent estimates26, as is the leading irrelevant exponent,
ω ≈ 0.3.

At the critical point, there are both gapless singlets
and triplets at k = (0, 0), (π, 0), (0, π), and (π, π), form-
ing eight gapless excitation modes, in total, with the same
velocity, as illustrated in Fig. 13. The unique velocity
for these gapless modes and the degenerate singlets and
triplets clearly point to deconfined spinon excitations.
From the fact that we have measured two-spinon excita-
tion from the ground state with S = 0 and k = (0, 0) via
the projector algorithm which uniquely singles out the
ground state with momentum k = (0, 0), we infer that
the single-spinon dispersion relation is equal to the de-
generate S = 0 and S = 1 dispersions at criticality (i.e.,
close to the g = 0.05 curve in Fig. 8, which is already
almost L→∞ converged away from the gapless points).
This situation is a direct analogue of the excitations of
the S = 1/2 Heisenberg chain.

In the DQC theory, weak spinon-spinon interactions
are predicted to lead to different scaling prefactors be-
tween the corresponding singlets and triplet (or possibly
a finite gap for singlets, which we do not find any indi-
cation of here)6. To within our numerical precision, the
dominant 1/L prefactor of the gap scalings are the same,
though we can of course not rule out very small differ-
ences. Our study therefore suggests that the spinons in
fact are fully deconfined in the case of SU(2) spins, and
that this may be directly related to an emergent SO(5)
symmetry27, which has been argued to be a special DQC
feature not present for SU(N) spins with N > 2.
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